Effect of Different Silane Coupling Agents on the Bond Strength between Hydrogen Peroxide-Etched Epoxy-Based- Fiber-Reinforced Post and Composite Resin Core
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fabrication of the Experimental Models
2.2. Sectioning of the Samples
2.3. Measurement of the Lateral Surface Area of the Post
2.4. Measurement of Push-Out Bond Strength
2.5. Failure Mode Analysis
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
6. Clinical Implications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Faria, A.C.L.; Rodrigues, R.C.S.; de Almeida Antunes, R.P.; de Mattos, M.D.G.C.; Ribeiro, R.F. Endodontically treated teeth: Characteristics and considerations to restore them. J. Prosthodont. Res. 2011, 55, 69–74. [Google Scholar] [CrossRef] [PubMed]
- Leung, W.S.F.; Lee, A.H.C.; Liu, C.; Hu, M.; Chang, J.W.W.; Neelakantan, P.; Zhang, C. Fracture resistance of endodontically treated maxillary premolars with non-carious cervical lesions restored with different post systems. Eur. Endod. J. 2023, 8, 65–71. [Google Scholar] [CrossRef] [PubMed]
- Kaur, B.; Gupta, S.; Grover, R.; Sadana, G.; Gupta, T.; Mehra, M. Comparative Evaluation of Fracture Resistance of Endodontically Treated Teeth Restored with Different Core Build-Up Materials: An In Vitro Study. Int. J. Clin. Pediatr. Dent. 2021, 14, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Sengun, A.; Cobankara, F.K.; Orucoglu, H. Effect of a new restoration technique on fracture resistance of endodontically treated teeth. Dent. Traumatol. 2008, 24, 214–219. [Google Scholar] [CrossRef] [PubMed]
- Lamichhane, A.; Xu, C.; Zhang, F.-Q. Dental fiber-post resin base material: A review. J. Adv. Prosthodont. 2014, 6, 60–65. [Google Scholar] [CrossRef]
- Ng, Y.-L.; Mann, V.; Gulabivala, K. A prospective study of the factors affecting outcomes of nonsurgical root canal treatment: Part 1: Periapical health. Int. Endod. J. 2011, 44, 583–609. [Google Scholar] [CrossRef]
- Artopoulou, I.-I.; O’Keefe, K.L.; Powers, J.M. Effect of Core Diameter and Surface Treatment on the Retention of Resin Composite Cores to Prefabricated Endodontic Posts. J. Prosthodont. 2006, 15, 172–179. [Google Scholar] [CrossRef]
- Kutlu, I.U.; Yanikoglu, N.D. The Influences of Various Matrices and Silanization on the Bond Strength between Resin Cores and Glass Fiber Posts. J. Odontol. 2018, 2, 1. [Google Scholar]
- Saker, S.; El-Kholany, N.; El-Wassefy, N. Effect of Different Surface Treatments on Push-out Bond Strength of Glass Fiber Posts to Resin Composite Core Material. J. Dent. Appl. 2015, 2, 246–250. [Google Scholar]
- Elsaka, S.E. Influence of chemical surface treatments on adhesion of fiber posts to composite resin core materials. Dent. Mater. 2013, 29, 550–558. [Google Scholar] [CrossRef]
- Wrbas, K.T.; Schirrmeister, J.F.; Altenburger, M.J.; Agrafioti, A.; Hellwig, E. Bond strength between fibre posts and composite resin cores: Effect of post surface silanization. Int. Endod. J. 2007, 40, 538–543. [Google Scholar] [CrossRef]
- Cecchin, D.; Farina, A.P.; Vitti, R.P.; Moraes, R.R.; Bacchi, A.; Spazzin, A.O. Acid Etching and Surface Coating of Glass-Fiber Posts: Bond Strength and Interface Analysis. Braz. Dent. J. 2016, 27, 228–233. [Google Scholar] [CrossRef] [PubMed]
- Daneshkazemi, A.; Davari, A.; Askari, N.; Kaveh, M. Effect of different fiber post surface treatments on microtensile bond strength to composite resin. J. Prosthet. Dent. 2016, 116, 896–901. [Google Scholar] [CrossRef] [PubMed]
- Novais, V.R.; Júnior, P.C.S.; Rontani, R.M.P.; Correr-Sobrinho, L.; Soares, C.J. Bond strength between fiber posts and composite resin core: Influence of temperature on silane coupling agents. Braz. Dent. J. 2012, 23, 8–14. [Google Scholar] [CrossRef] [PubMed]
- Ibtisam, O.A.; Haitham, E.; Emad, S.E. Effect of Fiber Post-Resin Matrix Composition on Bond Strength of Post-Cement Interface. Int. J. Dent. 2018, 2018, 4751627. [Google Scholar]
- Monticelli, F.; Toledano, M.; Tay, F.R.; Cury, A.H.; Goracci, C.; Ferrari, M. Post-surface conditioning improves interfacial adhesion in post/core restorations. Dent. Mater. 2006, 22, 602–609. [Google Scholar] [CrossRef]
- Monticelli, F.; Ferrari, M.; Toledano, M. Cement system and surface treatment selection for fiber post luting. Med. Oral Patol. Oral Cir. Bucal 2008, 13, 214. [Google Scholar]
- Zhang, M.; Matinlinna, J.P. E-Glass Fiber Reinforced Composites in Dental Applications. Silicon 2012, 4, 73–78. [Google Scholar] [CrossRef]
- Shrivastava, D.; Shaikh, D.A.; Mahule, D.A.; Dondani, D.J. Comparative evaluation of bond strength of different dual cure composite core materials with glass fiber post: An in-vitro study. Eur. J. Mol. Clin. Med. 2021, 8, 2944–2956. [Google Scholar]
- Goracci, C.; Raffaelli, O.; Monticelli, F.; Balleri, B.; Bertelli, E.; Ferrari, M. The adhesion between prefabricated FRC posts and composite resin cores: Microtensile bond strength with and without post-silanization. Dent. Mater. 2005, 21, 437–444. [Google Scholar] [CrossRef]
- Sahafi, A.; Peutzfeldt, A.; Asmussen, E.; Gotfredsen, K. Bond strength of resin cement to dentin and to surface-treated posts of titanium alloy, glass fiber, and zirconia. J. Adhes. Dent. 2003, 5, 153–162. [Google Scholar] [PubMed]
- Cardoso, P.E.C.; Sadek, F.T.; Goracci, C.; Ferrari, M. Adhesion testing with the microtensile method: Effects of dental substrate and adhesive system on bond strength measurements. J. Adhes. Dent. 2002, 4, 291–297. [Google Scholar] [PubMed]
- Zhong, B.; Zhang, Y.; Zhou, J.; Chen, L.; Li, D.; Tan, J. UV irradiation improves the bond strength of resin cement to fiber posts. Dent. Mater. J. 2011, 30, 455–460. [Google Scholar] [CrossRef] [PubMed]
- Vano, M.; Goracci, C.; Monticelli, F.; Tognini, F.; Gabriele, M.; Tay, F.R.; Ferrari, M. The adhesion between fibre posts and composite resin cores: The evaluation of microtensile bond strength following various surface chemical treatments to posts. Int. Endod. J. 2006, 39, 31–39. [Google Scholar] [CrossRef] [PubMed]
- Barghi, N.; Berry, T.; Chung, K. Effects of timing and heat treatment of silanated porcelain. J. Oral Rehabil. 2000, 27, 407–412. [Google Scholar] [CrossRef]
- Kasraei, S.; Ebadi, S.; Atai, M.; Khamverdi, Z.; Khajeh., S. Effect of Silane Solvent on Microtensile Bond Strength of Hy-drogen Peroxide-Treated Fiber Post and Composite Core. Front. Dent. 2008, 5, 120–125. [Google Scholar]
- Matinlinna, J.P.; Lung, C.Y.K.; Tsoi, J.K.H. Silane adhesion mechanism in dental applications and surface treatments: A review. Dent. Mater. 2018, 34, 13–28. [Google Scholar] [CrossRef]
- Pape, P.G.; Plueddemann, E.P. Methods for improving the performance of silane coupling agents. J. Adhes. Sci. Technol. 1991, 5, 831–842. [Google Scholar] [CrossRef]
- Menezes, M.D.S.; Queiroz, E.C.; Soares, P.V.; Faria-E-Silva, A.L.; Soares, C.J.; Martins, L.R.M. Fiber Post Etching with Hydrogen Peroxide: Effect of Concentration and Application Time. J. Endod. 2011, 37, 398–402. [Google Scholar] [CrossRef]
- Blatz, M.B.; Sadan, A.; Kern, M. Resin-ceramic bonding: A review of the literature. J. Prosthet. Dent. 2003, 89, 268–274. [Google Scholar] [CrossRef]
Types of Failure | Description |
---|---|
Type 1 | Cohesive failure within the post |
Type 2 | Cohesive failure within the core |
Type 3 | Total adhesive failure (no core attached to post) |
Type 4 | Minimal adhesive failure (core material cover 75% of post surface) |
Type 5 | Moderate adhesive failure (core material cover 50% of post surface) |
Type 6 | Predominate adhesive failure (core material cover 25% of post surface) |
Post Number | Section Number | Rely X Post with Hydrogen Peroxide G1 = C | Rely X Post with Vitique Silane G2 = HV | Rely X Post with Relyx Ceramic Primer G3 = H3M | Rely X Post with Monobond Plus G4 = HMP | Rely X Post with Monobond N G5 = HMN |
---|---|---|---|---|---|---|
1 | 1 2 | 18.591 17.571 | 19.856 20.219 | 22.283 16.8 | 22.566 24.48 | 23.084 22.99 |
2 | 1 2 | 17.231 15.378 | 20.893 20.359 | 15.899 18.695 | 18.67 22.866 | 20.35 22.37 |
3 | 1 2 | 18.84 21.256 | 18.604 25.898 | 19.637 19.28 | 18.221 25.542 | 18.52 23.08 |
4 | 1 2 | 19.246 27.61 | 22.098 19.598 | 17.307 18.677 | 21.664 27.82 | 25.25 18.53 |
5 | 1 2 | 22.766 18.703 | 18.757 25.393 | 22.37 20.67 | 21.017 18.124 | 19.472 22.81 |
6 | 1 2 | 19.017 20.813 | 21.435 27.579 | 24.84 21.07 | 20.375 24.373 | 16.25 20.701 |
7 | 1 2 | 20.646 23.422 | 21.552 20.42 | 17.206 20.307 | 19.172 22.687 | 22.02 22.252 |
8 | 1 2 | 24.585 20.264 | 21.768 22.255 | 15.549 21.274 | 22.36 20.04 | 19.079 18.272 |
9 | 1 2 | 20.813 21.32 | 18.846 20.677 | 20.382 16.989 | 26.229 20.417 | 21.459 21.42 |
10 | 1 2 | 22.004 24.707 | 17.407 22.73 | 17.27 15.459 | 18.417 24.737 | 25.251 18.36 |
11 | 1 2 | 20.478 25.166 | 20.525 25.063 | 16.107 19.976 | 17.08 23.797 | 17.69 20.37 |
12 | 1 2 | 25.79 24.903 | 28.117 24.87 | 24.45 17.7 | 26.726 23.983 | 19.655 16.35 |
13 | 1 2 | 25.894 25.6 | 23.06 21.58 | 15.65 22.79 | 19.438 23.252 | 22.186 20.48 |
14 | 1 2 | 23.051 16.605 | 22.995 19.067 | 19.51 22.06 | 25.16 25.9 | 19.98 20.401 |
15 | 1 2 | 25.066 19.015 | 29.883 30.6 | 19.13 20.75 | 23.675 23.169 | 20.679 25.452 |
N = 15 (Total number of posts in each group) | N = 30 (Total number of sections) | M = 21.545 | M = 22.64 | M = 19.33 | M = 22.39 | M = 20.83 |
SD = 3.202 | SD = 3.27 | SD = 2.63 | SD = 2.89 | SD = 2.42 |
Multiple Comparisons | ||||||
---|---|---|---|---|---|---|
Dependent Variable: Bond Strength Tukey HSD | ||||||
(J) Silane | Mean Difference (I–J) | Std. Error | Sig. | 95% Confidence Interval | ||
Lower Bound | Upper Bound | |||||
C | HV | −1.10090 | 0.74957 | 0.584 | −3.1715 | 0.9697 |
H3M | 2.20880 * | 0.74957 | 0.030 | 0.1382 | 4.2794 | |
HMP | −0.85353 | 0.74957 | 0.786 | −2.9242 | 1.2171 | |
HMN | 0.71960 | 0.74957 | 0.872 | −1.3510 | 2.7902 | |
HV | C | 1.10090 | 0.74957 | 0.584 | −0.9697 | 3.1715 |
H3M | 3.30970 * | 0.74957 | 0.000 | 1.2391 | 5.3803 | |
HMP | 0.24737 | 0.74957 | 0.997 | −1.8233 | 2.3180 | |
HMN | 1.82050 | 0.74957 | 0.114 | −0.2501 | 3.8911 | |
H3M | C | −2.20880 * | 0.74957 | 0.030 | −4.2794 | −0.1382 |
HV | −3.30970 * | 0.74957 | 0.000 | −5.3803 | −1.2391 | |
HMP | −3.06233 * | 0.74957 | 0.001 | −5.1330 | −0.9917 | |
HMN | −1.48920 | 0.74957 | 0.278 | −3.5598 | 0.5814 | |
HMP | C | 0.85353 | 0.74957 | 0.786 | −1.2171 | 2.9242 |
HV | −0.24737 | 0.74957 | 0.997 | −2.3180 | 1.8233 | |
H3M | 3.06233 * | 0.74957 | 0.001 | 0.9917 | 5.1330 | |
HMN | 1.57313 | 0.74957 | 0.226 | −0.4975 | 3.6438 | |
HMN | C | −0.71960 | 0.74957 | 0.872 | −2.7902 | 1.3510 |
HV | −1.82050 | 0.74957 | 0.114 | −3.8911 | 0.2501 | |
H3M | 1.48920 | 0.74957 | 0.278 | −0.5814 | 3.5598 | |
HMP | −1.57313 | 0.74957 | 0.226 | −3.6438 | 0.4975 |
Mode of Failure * Group: Cross-Tabulation | ||||||||
---|---|---|---|---|---|---|---|---|
Groups | Total | |||||||
C | HV | H3M | HMP | HMN | ||||
Mode of Failure | Type 1: Cohesive Failure within Post | Count %Within failure mode. %within groups | 0 0.0% 0.0% | 0 0.0% 0.0% | 0 0.0% 0.0% | 0 0.0% 0.0% | 0 0.0% 0.0% | 0 0.0% 0.0% |
Type 2: Cohesive Failure within Core | Count %Within failure mode. %within groups | 0 0.0% 0.0% | 0 0.0% 0.0% | 0 0.0% 0.0% | 0 0.0% 0.0% | 0 0.0% 0.0% | 0 0.0% 0.0% | |
Type 3: Total Adhesive Failure | Count %Within failure mode. %within groups | 30 20.5% 100.0% | 29 19.9% 96.7% | 28 19.2% 93.3% | 30 20.5% 100.0% | 29 19.9% 96.7% | 146 100% 97.3% | |
Type 4 (mixed): Minimal Adhesive Failure | Count %Within failure mode. %within groups | 0 0.0% 0.0% | 0 0.0% 0.0% | 0 0.0% 0.0% | 0 0.0% 0.0% | 0 0.0% 0.0% | 0 0.0% 0.0% | |
Type 5 (mixed): Moderate Adhesive Failure | Count %Within failure mode. %within groups | 0 0.0% 0.0% | 0 0.0% 0.0% | 0 0.0% 0.0% | 0 0.0% 0.0% | 1 100% 3.3% | 1 100% 0.7% | |
Type 6 (mixed): Predominant Adhesive Failure | Count %Within failure mode. %within groups | 0 0.0% 0.0% | 1 33.3% 3.3% | 2 66.7% 6.7% | 0 0.0% 0.0% | 0 0.0% 0.0% | 3 100.0% 2% | |
Total | Count %Within failure mode. %within groups | 30 20.0% 100.0% | 30 20.0% 100.0% | 30 20.0% 100.0% | 30 20.0% 100.0% | 30 20.0% 100.0% | 150 100.0% 100.0% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adwani, S.; Elsubeihi, E.; Zebari, A.; Aljanahi, M.; Moharamzadeh, K.; Elbishari, H. Effect of Different Silane Coupling Agents on the Bond Strength between Hydrogen Peroxide-Etched Epoxy-Based- Fiber-Reinforced Post and Composite Resin Core. Dent. J. 2023, 11, 142. https://doi.org/10.3390/dj11060142
Adwani S, Elsubeihi E, Zebari A, Aljanahi M, Moharamzadeh K, Elbishari H. Effect of Different Silane Coupling Agents on the Bond Strength between Hydrogen Peroxide-Etched Epoxy-Based- Fiber-Reinforced Post and Composite Resin Core. Dentistry Journal. 2023; 11(6):142. https://doi.org/10.3390/dj11060142
Chicago/Turabian StyleAdwani, Sarah, Emad Elsubeihi, Ahmad Zebari, May Aljanahi, Keyvan Moharamzadeh, and Haitham Elbishari. 2023. "Effect of Different Silane Coupling Agents on the Bond Strength between Hydrogen Peroxide-Etched Epoxy-Based- Fiber-Reinforced Post and Composite Resin Core" Dentistry Journal 11, no. 6: 142. https://doi.org/10.3390/dj11060142
APA StyleAdwani, S., Elsubeihi, E., Zebari, A., Aljanahi, M., Moharamzadeh, K., & Elbishari, H. (2023). Effect of Different Silane Coupling Agents on the Bond Strength between Hydrogen Peroxide-Etched Epoxy-Based- Fiber-Reinforced Post and Composite Resin Core. Dentistry Journal, 11(6), 142. https://doi.org/10.3390/dj11060142