Dental, Skeletal, and Soft Tissue Changes after Bone-Borne Surgically Assisted Rapid Maxillary Expansion: A Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Protocol, Eligibility Criteria, and Literature Search
2.2. Study Selection, Data Extraction, and Risk of Bias Assessment
2.3. Data Synthesis
3. Results
3.1. Study Selection
3.2. Study Characteristics
3.3. Risk of Bias within Studies
3.4. Results from Individual Studies
3.5. Quantitative Synthesis
3.5.1. Arch Perimeter
3.5.2. Palatal Depth
3.5.3. Radiograph Outcomes
3.5.4. Publication Bias
3.5.5. Sensitivity and Subgroup Analyses
3.5.6. Quality of Evidence
- Downgraded by one point for some concerns of bias (with regards to the randomization process and confounding).
- Downgraded by one point for imprecision (small sample of participants).
- Downgraded by one point for some concerns of bias (with regards to the randomization process, confounding, and selection of participants).
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Database | Search Strategy |
---|---|
MEDLINE via Pubmed | (surg* OR “surgically-assisted”) AND ((palat* OR maxill* OR “upper jaw” OR “upper arch” OR transpalatal) AND (expansion OR expand* OR distract* OR enlargement)) AND (miniscrew* OR “mini-screw*” OR “micro-screw*” OR “mini-implant*” OR “micro-implant*” OR microimplant* OR “skeletal anchor*” OR “bone-borne” OR “bone borne” OR “bone-anchored” OR “bone anchored” OR “temporary anchorage device” OR TAD OR implant* OR screw* OR hybrid) |
Web of Science | (ALL=(surg* OR “surgically-assisted”)) AND ALL=((palat* OR maxill* OR “upper jaw” OR “upper arch” OR transpalatal) AND (expansion OR expand* OR distract* OR enlargement))) AND ALL=((miniscrew* OR “mini-screw*” OR “micro-screw*” OR “mini-implant*” OR “micro-implant*” OR microimplant* OR “skeletal anchor*” OR “bone-borne” OR “bone borne” OR “bone-anchored” OR “bone anchored” OR “temporary anchorage device” OR TAD OR implant* OR screw* OR hybrid) limit to: Dentistry Oral Surgery Medicine |
Scopus | (TITLE-ABS-KEY((surg* OR “surgically-assisted”))) AND (TITLE-ABS-KEY((palat* OR maxill* OR “upper jaw” OR “upper arch” OR transpalatal) AND (expansion OR expand* OR distract* OR enlargement))) AND (TITLE-ABS-KEY (miniscrew* OR “mini-screw*” OR “micro-screw*” OR “mini-implant*” OR “micro-implant*” OR microimplant* OR “skeletal anchor*” OR “bone-borne” OR “bone borne” OR “bone-anchored” OR “bone anchored” OR “temporary anchorage device” OR TAD OR implant* OR screw* OR hybrid)) |
Advanced search (Cochrane, DARE, Virtual Health Library) | (Title Abstract Keyword) surg* OR “surgically-assisted” AND (palat* OR maxill* OR “upper jaw” OR “upper arch” OR transpalatal) AND (expansion OR expand* OR distract* OR enlargement) AND miniscrew* OR “mini-screw*” OR “micro-screw*” OR “mini-implant*” OR “micro-implant*” OR microimplant* OR “skeletal anchor*” OR “bone-borne” OR “bone borne” OR “bone-anchored” OR “bone anchored” OR “temporary anchorage device” OR TAD OR implant* OR screw* OR hybrid |
Manual search terms for trial registries (Clinicaltrials.gov, WHO ICTRP, EU Clinical Trials Register) |
|
Manual search terms (Science Direct, Google Scholar, Open Grey, ProQuest) |
|
Trial ID | Type of Outcomes |
---|---|
Aras et al. (2010) [22] | Nasal area measurements CT: maxillary expansion at canine and molar level |
Aras et al. (2017) [23] | Soft and hard tissue variables (SNA, SNB, ANB, among others) |
Asscherickx et al. (2016) [24] | Casts: width changes (canine, premolar and molar), angulation changes (premolar and molar), arch perimeter Lateral cephalograms: medio-orbital, nasal cavity, and maxillary widths |
Barone et al. (2020) [4] | Interdental and intergingival canine, premolar and molar distances Premolar and molar inclinations |
Dowgierd et al. (2018) [25] | Lateral cephalograms: Distances in N-ANS—anterior section, S-PNS—posterior section/Angles in anterior and posterior area (e.g., SNA, SNB, ANB, S-N-ANS, S-N-PNS) CBCT: PA-nose floor, bottom of the base of the nose/distances between first maxillary molars |
Hansen et al. (2007) [26] | Transverse expansion of the alveolar process, transverse width and buccal tipping in premolar and molar region |
Huizinga et al. (2018) [27] | Lateral expansion in five directions: (1) inferior–anterior, (2) inferior–posterior, (3) superior–posterior of the right maxillary segment, (4) anterior vs. posterior of the anterior part of the maxilla, (5) caudal vs. cranial of the caudal part of the maxilla |
Koudstaal et al. (2009) [28] | Palatal depth, width (at canine, premolar, molar level), arch perimeter, SNA, distances (SN to A, SN to PNS), nasal floor, tipping |
Kunz et al. (2016) [29] | Amount of expansion and angles of crown tipping from canines through second molars |
Landes et al.(2009a) [30] | Skeletal widening, segmental inclination, dental widening, dental tipping, bone resorption at premolars, molars |
Landes et al. (2009b) [31] | Skeletal widening, segmental inclination, dental widening, dental tipping, bone resorption at premolars, molars |
Laudemann et al. (2009) [32] | Transverse skeletal widening, segmental inclination, bone resorption at premolars, molars |
Laudemann et al. (2010) [33] | Transverse skeletal widening, dental widening, dental tipping, attachment loss at frontal teeth, premolars, molars |
Laudemann et al. (2011) [34] | Transverse widening, segmental inclination, bone resorption at premolars and molars, dental tipping, pterygoid widening, pterygoid bending, pterygomaxillary inclination |
Matteini et al. (2001) [35] | Expansion and expansion ratio for canines, first premolars, first molars, canines |
Nada et al. (2012) [36] | Widths: canines, first and second premolars, first and second molars/alveolar expansion at the right, left and anterior segment |
Nada et al. (2013) [37] | Maxillary soft tissue changes (upper lip, right and left lateral regions, right and left cheek region) and upper incisor inclination |
Nikolaev et al. (2017) [38] | Interapical and intercoronal distances between maxillary canines, premolars and first molars, coronal-apical index |
Parhiz et al. (2011) [39] | Angular changes (e.g., SNA, SNB, ANB) |
Petrick et al. (2011) [40] | Midpalatal suture: density, width (anterior, median, posterior) |
Pinto et al. (2001) [41] | Intercanine, interpremolar, intermolar expansion, expansion ratio, arch periphery gain, angulation of first molars and first premolars |
Ploder et al. (2021) [42] | Interdental expansion measurements at tooth and bone levels (canines, first and second premolars, first and second molars) |
Seeberger et al. (2015) [43] | Nasal floor expansion (at four different levels) Premolars and molars: crown width, apex width, left and right angle |
Tausche et al. (2007) [44] | Transverse expansion at coronal and apical level (central incisors, canines, first premolars, first molars) Transverse expansion at the alveolar crest level (first premolars, first molars) Changes in skeletal structures (orbits, piriform, ANS, PNS, Points A and B, zygomaxillary suture) |
Wallner et al. (2022) [45] | Nasal soft tissue variables, nasal skeletal expansion Skeletal maxillary variables (veritcal palate height at first molars, transverse width at canines and first molars) |
Xi et al. (2017) [46] | Dental show, mandibular plane angle, occlusal plane angle, vertical position of the maxilla, vertical chin position, anterior maxillary width, posterior maxillary width, horizontal chin position |
Zandi et al. (2014) [47] | Skeletal and dental changes: First premolar and first molar region: nasal floor width, palatal bone, interdental root distance, interdental cusp distance |
References
- Möhlhenrich, S.; Modabber, A.; Kniha, K.; Peters, F.; Steiner, T.; Hölzle, F.; Fritz, U.; Raith, S. Simulation of three surgical techniques combined with two different bone-borne forces for surgically assisted rapid palatal expansion of the maxillofacial complex: A finite element analysis. Int. J. Oral Maxillofac. Surg. 2017, 46, 1306–1314. [Google Scholar] [CrossRef] [PubMed]
- Suri, L.; Taneja, P. Surgically assisted rapid palatal expansion: A literature review. Am. J. Orthod. Dentofac. Orthop. 2008, 133, 290–302. [Google Scholar] [CrossRef] [PubMed]
- Koudstaal, M.J.; Poort, L.J.; van der Wal, K.G.H.; Wolvius, E.B.; Prahl-Andersen, B.; Schulten, A.J.M. Surgically assisted rapid maxillary expansion (SARME): A review of the literature. Int. J. Oral Maxillofac. Surg. 2005, 34, 709–714. [Google Scholar] [CrossRef] [PubMed]
- Barone, T.R.; Cahali, M.B.; Vasconcelos, C.; Barone, J.R. A comparison of tooth-borne and bone-anchored expansion devices in SARME. Oral Maxillofac. Surg. 2020, 24, 181–187. [Google Scholar] [CrossRef]
- Muñoz-Pereira, M.; Haas-Junior, O.; Meirelles, L.D.S.; Machado-Fernández, A.; Guijarro-Martínez, R.; Hernández-Alfaro, F.; de Oliveira, R.; Pagnoncelli, R. Stability and surgical complications of tooth-borne and bone-borne appliances in surgical assisted rapid maxillary expansion: A systematic review. Br. J. Oral Maxillofac. Surg. 2021, 59, e29–e47. [Google Scholar] [CrossRef]
- Zandi, M.; Miresmaeili, A.; Heidari, A.; Lamei, A. The necessity of pterygomaxillary disjunction in surgically assisted rapid maxillary expansion: A short-term, double-blind, historical controlled clinical trial. J. Craniomaxillofac. Surg. 2016, 44, 1181–1186. [Google Scholar] [CrossRef]
- Gogna, N.; Johal, A.S.; Sharma, P.K. The stability of surgically assisted rapid maxillary expansion (SARME): A systematic review. J. Craniomaxillofac. Surg. 2020, 48, 845–852. [Google Scholar] [CrossRef]
- Jia, H.; Zhuang, L.; Zhang, N.; Bian, Y.; Li, S. Comparison of skeletal maxillary transverse deficiency treated by microimplant-assisted rapid palatal expansion and tooth-borne expansion during the post-pubertal growth spurt stage. Angle Orthod. 2021, 91, 36–45. [Google Scholar] [CrossRef]
- de Oliveira, C.B.; Ayub, P.; Ledra, I.M.; Murata, W.H.; Suzuki, S.S.; Ravelli, D.B.; Santos-Pinto, A. Microimplant assisted rapid palatal expansion vs surgically assisted rapid palatal expansion for maxillary transverse discrepancy treatment. Am. J. Orthod. Dentofac. Orthop. 2021, 159, 733–742. [Google Scholar] [CrossRef]
- Fastuca, R.; Campobasso, A.; Zecca, P.A.; Caprioglio, A. 3D facial soft tissue changes after rapid maxillary expansion on primary teeth: A randomized clinical trial. Orthod. Craniofac. Res. 2018, 21, 140–145. [Google Scholar] [CrossRef]
- Hamedi-Sangsari, A.; Chinipardaz, Z.; Carrasco, L. Following Surgically Assisted Rapid Palatal Expansion, Do Tooth-Borne or Bone-Borne Appliances Provide More Skeletal Expansion and Dental Expansion? J. Oral Maxillofac. Surg. 2017, 75, 2211–2222. [Google Scholar] [CrossRef]
- Krüsi, M.; Eliades, T.; Papageorgiou, S.N. Are there benefits from using bone-borne maxillary expansion instead of tooth-borne maxillary expansion? A systematic review with meta-analysis. Prog. Orthod. 2019, 20, 9. [Google Scholar] [CrossRef]
- Blæhr, T.L.; Mommaerts, M.Y.; Kjellerup, A.D.; Starch-Jensen, T. Surgically assisted rapid maxillary expansion with bone-borne versus tooth-borne distraction appliances—A systematic review. Int. J. Oral Maxillofac. Surg. 2019, 48, 492–501. [Google Scholar] [CrossRef]
- Vilani, G.N.L.; Mattos, C.T.; Ruellas, A.C.O.; Maia, L.C. Long-term dental and skeletal changes in patients submitted to surgically assisted rapid maxillary expansion: A meta-analysis. Oral Surg. Oral Med. Oral Radiol. 2012, 114, 689–697. [Google Scholar] [CrossRef]
- Bortolotti, F.; Solidoro, L.; Bartolucci, M.L.; Parenti, S.I.; Paganelli, C.; Alessandri-Bonetti, G. Skeletal and dental effects of surgically assisted rapid palatal expansion: A systematic review of randomized controlled trials. Eur. J. Orthod. 2020, 42, 434–440. [Google Scholar] [CrossRef]
- Higgins, J.; Thomas, J.; Cumpston, M.; Li, T.; Page, M.; Welch, V. (Eds.) Cochrane Handbook for Systematic Reviews of Interventions, Version 6.2. Available online: https://training.cochrane.org/handbook (accessed on 2 May 2021).
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Sterne, J.A.C.; Savović, J.; Page, M.J.; Elbers, R.G.; Blencowe, N.S.; Boutron, I.; Cates, C.J.; Cheng, H.Y.; Corbett, M.S.; Eldridge, S.M.; et al. RoB 2: A revised tool for assessing risk of bias in randomised trials. BMJ 2019, 366, l4898. [Google Scholar] [CrossRef]
- Sterne, J.A.C.; Hernán, M.A.; Reeves, B.C.; Savović, J.; Berkman, N.D.; Viswanathan, M.; Henry, D.; Altman, D.G.; Ansari, M.T.; Boutron, I.; et al. ROBINS-I: A tool for assessing risk of bias in non-randomised studies of interventions. BMJ 2016, 355, i4919. [Google Scholar] [CrossRef]
- Koletsi, D.; Fleming, P.S.; Michelaki, I.; Pandis, N. Heterogeneity in Cochrane and non-Cochrane meta-analyses in orthodontics. J. Dent. 2018, 74, 90–94. [Google Scholar] [CrossRef]
- Schünemann, H.; Brożek, J.; Guyatt, G.; Oxman, A. Grading quality of evidence and strength of recommendations for diagnostic tests and strategies. BMJ 2008, 336, 1106–1110. [Google Scholar] [CrossRef]
- Aras, A.; Akay, M.C.; Çukurova, I.; Günbay, T.; Işıksal, E.; Aras, I. Dimensional Changes of the Nasal Cavity after Transpalatal Distraction Using Bone-Borne Distractor: An Acoustic Rhinometry and Computed Tomography Evaluation. J. Oral Maxillofac. Surg. 2010, 68, 1487–1497. [Google Scholar] [CrossRef] [PubMed]
- Aras, I.; Ölmez, S.; Akay, M.C.; Günbay, T.; Aras, A. The effects of maxillary expansion on the soft tissue facial profile. J. Istanb. Univ. Fac. Dent. 2017, 51, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Asscherickx, K.; Govaerts, E.; Aerts, J.; Vannet, B.V. Maxillary changes with bone-borne surgically assisted rapid palatal expansion: A prospective study. Am. J. Orthod. Dentofac. Orthop. 2016, 149, 374–383. [Google Scholar] [CrossRef] [PubMed]
- Dowgierd, K.; Borowiec, M.; Kozakiewicz, M. Bone changes on lateral cephalograms and CBCT during treatment of maxillary narrowing using palatal osteodistraction with bone-anchored appliances. J. Craniomaxillofac. Surg. 2018, 46, 2069–2081. [Google Scholar] [CrossRef]
- Hansen, L.; Tausche, E.; Hietschold, V.; Hotan, T.; Lagravère, M.; Harzer, W. Skeletally-anchored Rapid Maxillary Expansion using the Dresden Distractor. J. Orofac. Orthop. 2007, 68, 148–158. [Google Scholar] [CrossRef]
- Huizinga, M.P.; Meulstee, J.W.; Dijkstra, P.U.; Schepers, R.H.; Jansma, J. Bone-borne surgically assisted rapid maxillary expansion: A retrospective three-dimensional evaluation of the asymmetry in expansion. J. Craniomaxillofac. Surg. 2018, 46, 1329–1335. [Google Scholar] [CrossRef]
- Koudstaal, M.J.; Wolvius, E.B.; Schulten, A.J.M.; Hop, W.C.J.; van der Wal, K.G.H. Stability, tipping and relapse of bone-borne versus tooth-borne surgically assisted rapid maxillary expansion; a prospective randomized patient trial. Int. J. Oral Maxillofac. Surg. 2009, 38, 308–315. [Google Scholar] [CrossRef]
- Kunz, F.; Linz, C.; Baunach, G.; Böhm, H.; Meyer-Marcotty, P. Expansion patterns in surgically assisted rapid maxillary expansion. J. Orofac. Orthop. 2016, 77, 357–365. [Google Scholar] [CrossRef]
- Landes, C.A.; Laudemann, K.; Petruchin, O.; Mack, M.G.; Kopp, S.; Ludwig, B.; Sader, R.A.; Seitz, O. Comparison of Bipartite Versus Tripartite Osteotomy for Maxillary Transversal Expansion Using 3-Dimensional Preoperative and Postexpansion Computed Tomography Data. J. Oral Maxillofac. Surg. 2009, 67, 2287–2301. [Google Scholar] [CrossRef]
- Landes, C.A.; Laudemann, K.; Schübel, F.; Petruchin, O.; Mack, M.; Kopp, S.; Sader, R.A. Comparison of Tooth- and Bone-Borne Devices in Surgically Assisted Rapid Maxillary Expansion by Three-Dimensional Computed Tomography Monitoring. J. Craniofac. Surg. 2009, 20, 1132–1141. [Google Scholar] [CrossRef]
- Laudemann, K.; Petruchin, O.; Mack, M.G.; Kopp, S.; Sader, R.; Landes, C.A. Evaluation of surgically assisted rapid maxillary expansion with or without pterygomaxillary disjunction based upon preoperative and post-expansion 3D computed tomography data. Oral Maxillofac. Surg. 2009, 13, 159–169. [Google Scholar] [CrossRef]
- Laudemann, K.; Petruchin, O.; Nafzger, M.; Ballon, A.; Kopp, S.; Sader, R.A.; Landes, C.A. Long-term 3D cast model study: Bone-borne vs. tooth-borne surgically assisted rapid maxillary expansion due to secondary variables. Oral Maxillofac. Surg. 2010, 14, 105–114. [Google Scholar] [CrossRef]
- Laudemann, K.; Santo, G.; Revilla, C.; Harth, M.; Kopp, S.; Sader, R.A.; Landes, C.A. Assessment of Surgically Assisted Rapid Maxillary Expansion Regarding Pterygomaxillary Disjunction Using Thin Volume-Rendering Technique: In Variance Analysis and in Reliability, Accuracy, and Validity. J. Oral Maxillofac. Surg. 2011, 69, 2631–2643. [Google Scholar] [CrossRef]
- Matteini, C.; Mommaerts, M.Y. Posterior transpalatal distraction with pterygoid disjunction: A short-term model study. Am. J. Orthod. Dentofac. Orthop. 2001, 120, 498–502. [Google Scholar] [CrossRef]
- Nada, R.M.; Fudalej, P.S.; Maal, T.J.J.; Bergé, S.J.; Mostafa, Y.A.; Kuijpers-Jagtman, A.M. Three-dimensional prospective evaluation of tooth-borne and bone-borne surgically assisted rapid maxillary expansion. J. Craniomaxillofac. Surg. 2012, 40, 757–762. [Google Scholar] [CrossRef]
- Nada, R.M.; van Loon, B.; Maal, T.J.; Bergé, S.J.; Mostafa, Y.A.; Kuijpers-Jagtman, A.M.; Schols, J.G. Three-dimensional evaluation of soft tissue changes in the orofacial region after tooth-borne and bone-borne surgically assisted rapid maxillary expansion. Clin. Oral Investig. 2013, 17, 2017–2024. [Google Scholar] [CrossRef]
- Nikolaev, A.V.; Andreishchev, A.R.; Kutukova, S.I. Comparative biomechanical study of surgically assisted rapid palatal expansion with tooth-borne and bone-borne expanders. Stomatologiia 2017, 96, 48. [Google Scholar] [CrossRef]
- Parhiz, A.; Schepers, S.; Lambrichts, I.; Vrielinck, L.; Sun, Y.; Politis, C. Lateral cephalometry changes after SARPE. Int. J. Oral Maxillofac. Surg. 2011, 40, 662–671. [Google Scholar] [CrossRef]
- Petrick, S.; Hothan, T.; Hietschold, V.; Schneider, M.; Harzer, W.; Tausche, E. Bone density of the midpalatal suture 7 months after surgically assisted rapid palatal expansion in adults. Am. J. Orthod. Dentofac. Orthop. 2011, 139, S109–S116. [Google Scholar] [CrossRef]
- Pinto, P.X.; Mommaerts, M.Y.; Wreakes, G.; Jacobs, W.V.G.J.A. Immediate postexpansion changes following the use of the transpalatal distractor. J. Oral Maxillofac. Surg. 2001, 59, 994–1000. [Google Scholar] [CrossRef]
- Ploder, O.; Winsauer, H.; Juengling, K.; Grill, F.; Bissinger, O.; Wolff, K.-D.; Kolk, A. Is There a Significant Difference in Relapse and Complication Rate of Surgically Assisted Rapid Palatal Expansion Using Tooth-Borne, Bone-Borne, and Orthodontic Mini-Implant–Borne Appliances? J. Oral Maxillofac. Surg. 2021, 79, 213–224. [Google Scholar] [CrossRef] [PubMed]
- Seeberger, R.; Abe-Nickler, D.; Hoffmann, J.; Kunzmann, K.; Zingler, S. One-stage tooth-borne distraction versus two stage bone-borne distraction in surgically assisted maxillary expansion (SARME). Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2015, 120, 693–698. [Google Scholar] [CrossRef] [PubMed]
- Tausche, E.; Deeb, W.; Hansen, L.; Hietschold, V.; Harzer, W.; Schneider, M. CT Analysis of Nasal Volume Changes after Surgically-assisted Rapid Maxillary Expansion. J. Orofac. Orthop. 2009, 70, 306–317. [Google Scholar] [CrossRef] [PubMed]
- Wallner, J.; Denoiseux, B.; Van de Casteele, E.; Bila, M.; Van Hemelen, G.; Nadjmi, N.; Vercruysse, H., Jr. Do Gender and Age Influence Nasal Soft Tissue Widening after Bone-Borne Transpalatal Distraction? J. Oral Maxillofac. Surg. 2022, 80, 1613–1627. [Google Scholar] [CrossRef]
- Xi, T.; Laskowska, M.; van de Voort, N.; Ghaeminia, H.; Pawlak, W.; Bergé, S.; Maal, T. The effects of surgically assisted rapid maxillary expansion (SARME) on the dental show and chin projection. J. Craniomaxillofac. Surg. 2017, 45, 1835–1841. [Google Scholar] [CrossRef]
- Zandi, M.; Miresmaeili, A.; Heidari, A. Short-term skeletal and dental changes following bone-borne versus tooth-borne surgically assisted rapid maxillary expansion: A randomized clinical trial study. J. Craniomaxillofac. Surg. 2014, 42, 1190–1195. [Google Scholar] [CrossRef]
Trial ID | Study Design | Pterygomaxillary Disjunction (PMD) | Distractor | Activation Time | Number of Patients | Mean Age—Sex (M/F) | Measuring Method | Timepoints | Selected Results (Mean Difference (SD), unless Otherwise Indicated) |
---|---|---|---|---|---|---|---|---|---|
Aras et al. (2010) [22] | prospective cohort | no | Transpalatal Distractor, SurgiTec NV (Bruges, Belgium) | 1 mm/day (7–10 days) | 11 | 27.3 — 5/6 | CT | T1 (baseline) T2 (6.7 ± 2.3 months after surgical intervention, at expander removal) | Canines Bimaxillary width: 6.59 Bialveolar width: 7.37 Molars Bimaxillary width: 4.55 Bialveolar width: 5.95 |
Aras et al. (2017) [23] | retrospective cohort | no | Transpalatal Distractor, SurgiTec NV (Bruges, Belgium) | 1 mm/day (7–10 days) | 16 | 27.4 — 9/7 | lateral cephalometric radiographs | T1 (baseline) T2 (after expansion—before any further ortho treatment) | SNA: 0.63° SNB: −0.64° ANPg: 1.07° SNGoGn: 0.85° Basic upper lip thickness: −0.61 |
Asscherickx et al. (2016) [24] | prospective cohort | no | Transpalatal Distractor, SurgiTec NV (Bruges, Belgium) | 1 mm/3 days (8–22 days) | 21 | 26.5 — 6/15 | study casts, posteroanterior cephalograms | T1 (baseline) T2 (end of expansion) T3 (10 weeks after T2) | Intercanine width (T2): 6.6 (0.35) Intercanine width (relapse): −1.0 (0.38) Intermolar width (T2): 5.2 (0.36) Intermolar width (relapse): 0.1 (0.35) Arch perimeter (T2): 7.8 (0.47) Arch perimeter (relapse): 2.4 (0.39) |
Barone et al. (2020) [4] | prospective cohort | no | RPE® expander (KLS Martin, Tuttligen, Germany) | 1 mm/day | 12 | NA — NA | virtual study models from dental casts | T1 (baseline) T2 (1 year post-operatively) | Interdental canine distance: 2.18 (1.30) Interdental premolar distance: 4.89 (3.05) Interdental molar distance: 3.22 (3.56) Intergingival canine distance: 2.21 (1.60) Intergingival premolar distance: 4.35 (2.86) Intergingival molar distance: 2.66 (2.73) (no data on significance) |
Dowgierd et al. (2018) [25] | retrospective cohort | yes | Titamed Smile Distractor | approx. 0.6 mm/day | 78 | 16.86 — NA | CBCT, lateral cephalograms | T1 (baseline) T2 (3 months post distraction) | (pre- and post-treatment values) ANB: −0.75 (4.47)/0.48 (4.04) SNA: 82.52 (5.69)/81.28 (4.19) SNB: 82.05 (5.23)/81.60 (5.06) S-PNS: 47.42 (4.69)/47.87 (4.48) N-ANS: 50.72 (4.24)/51.32 (4.45) Molar distance (dental): 36.94 (3.47)/41.77 (4.26) Molar distance (alveolar): 31.44 (3.06)/36.25 (3.92) Palatal height: 14.32 (2.41)/13.38 (2.67) |
Hansen et al. (2007) [26] | prospective cohort | yes | Dresden distractor | 0.96 mm/day (7 days) | 12 | 25.3 — NA | CT | T1 (baseline) T2 (post expansion) | Midpalatal suture expansion—ANS: 3.00 (1.49) Midpalatal suture expansion–PNS: 0.97 (0.92) Alveolar process expansion—premolars: 5.55 (2.63) Alveolar process expansion—molars: 4.87 (2.44) Crown expansion—premolars: 6.07 (2.97) Crown expansion—molars: 5.71 (2.42) Root-apex expansion—premolars: 4.28 (2.99) Root-apex expansion—molars: 4.98 (2.28) Molar tipping (range): 1.1–2.6 Alveolar process tipping (range): 8–9.8 |
Huizinga et al. (2018) [27] | retrospective cohort | yes | TPD (Classic or All-in-one, Surgi-Tec, Sint-Denijs-Westrem, Belgium) | 0.33–0.66 mm/day | 20 | 24.5 — 12/8 | CBCT | T1 (baseline) T2 (post expansion) | lateral expansion in 5 directions [median (IQR)] Inferior–anterior (right maxillary segment): 0.36 (−1.42, 3.29) Inferior–posterior (right m.s.): −0.03 (−0.54, 1.74) Superior–posterior (right m.s.): 0.10 (−0.45, 1.46) Anterior vs. posterior (anterior maxillary part): −0.53 (−1.40, 1.13) Caudal vs. cranial (caudal maxillary part): 1.51 (0.69, 1.93) |
Koudstaal et al. (2009) [28] | RCT | no | Transpalatal Distractor, SurgiTec NV (Bruges, Belgiumor RPE® expander (KLS Martin, Tuttligen, Germany) | 1 mm/day | 23 (25 randomized) | 33 — 10/15 | lateral and PA cephalograms, casts | T1 (baseline) T2 (post expansion) T3 (12 months after treatment) | Intercanine width (T2): 6 (3.4) Intercanine width (relapse): −1.3 (3.2) Intermolar width (T2): 5.2 (3.4) Intermolar width (relapse): −0.6 (1.5) Arch perimeter (T2): 7.3 (3.7) Arch perimeter (relapse): −1.3 (4.5) Palatal depth at molar (net change): −0.4 (0.7) SNA (net change): 0.5 (1.3) |
Kunz et al. (2016) [29] | retrospective cohort | yes (partial separation of pterygoid process) | Transpalatal Distractor, SurgiTec NV (Bruges, Belgium or RPE® expander (KLS Martin, Tuttligen, Germany) | 0.66 mm/day (2–3 weeks) | 16 | 26.5 — 6–10 | 3D models dental casts | T1 (baseline) T2 (5.6 ± 3.5 months post distraction) | Transverse distance—canines: 4.43 (2.21) Transverse distance—first premolars: 4.56 (2.27) Transverse distance—second premolars: 4.18 (1.77) Transverse distance—first molars: 3.53 (1.83) Transverse distance—second molars: 2.72 (1.19) |
Landes et al.(2009a) [30] | retrospective and prospective cohort | yes/no | MWD (Normed, Tuttlingen, Germany) or TPD (Surgi-Tec, Bruges, Belgium) | 0.5–0.6 mm/day | 8 (bipartite) 11 (tripartite) | NA — NA | 3D-CT scans | T1 (baseline) T2 (post expansion) | Skeletal widening (skeletal)—Bipartite: −2.73 (2.24) Skeletal widening (skeletal)—Tripartite: −4.4 (3.59) Skeletal widening (alveolar)—Bipartite: −3.01 (2.14) Skeletal widening (alveolar)—Tripartite: −3.98 (2.39) Segmental inclination—Bipartite: −0.60 (2.95) Segmental inclination—Tripartite: 4.44 (2.38) Dental widening (tips)—Bipartite: −3.76 (2.18) Dental widening (tips)—Tripartite: −4.5 (4.42) Dental widening (buccal prominence)—Bipartite: −4.05 (2.99) Dental widening (buccal prominence)—Tripartite: −5.08 (5.29) |
Landes et al.(2009b) [31] | retrospective and prospective cohort | yes/no | MWD (Normed, Tuttlingen, Germany) or TPD (Surgi-Tec, Bruges, Belgium) | 0.5–0.6 mm/day | 24 (50) | NA — NA | 3D-CT scans | T1 (baseline) T2 (post expansion) | Skeletal widening (skeletal)—first premolars: 6.51 (3.19) Skeletal widening (skeletal)—first molars: 3.19 (1.87) Skeletal widening (alveolar)—first premolars: 7.16 (2.91) Skeletal widening (alveolar)—first molars: 5.07 (1.63) Dental widening (tips)—first premolars: 7.51 (3.3) Dental widening (tips)—first molars: 7.12 (2.29) Dental widening (buccal prominence)—first premolars: 7.30 (2.49) Dental widening (buccal prominence)—first molars: 6.84 (1.97) |
Laudemann et al. (2009) [32] | retrospective and prospective cohort | yes/no | MWD (Normed, Tuttlingen, Germany) or TPD (Surgi-Tec, Bruges, Belgium) | 0.5–0.6 mm/day | 24 | NA — NA | 3D-CT scans | T1 (baseline) T2 (4–26 weeks post expansion) | Transverse widening (skeletal—with PMD): −4.50 (3.91) Transverse widening (skeletal—no PMD): −2.61 (2.43) Transverse widening (alveolar—with PMD): −3.00 (2.44) Transverse widening (alveolar—no PMD): −3.52 (2.69) Segmental inclination (with PMD): 1.50 (2.86) Segmental inclination (no PMD): −0.91 (1.89) |
Laudemann et al. (2010) [33] | retrospective cohort | yes/no | MWD (Normed, Tuttlingen, Germany) or TPD (Surgi-Tec, Bruges, Belgium) | 0.5—0.6 mm/day | 18 | NA — NA | 3D scanned cast models | T1 (baseline) T2 (20.5 ± 1.34 months post-expansion) | Transverse skeletal widening (gingival margin): 1.61 (1.76) Transverse skeletal widening (cusp tips): 0.99 (3.28) Dental tipping—canines: −0.21 (0.95) Dental tipping—first premolar: −0.06 (1.27) Dental tipping—first molar: 0.22 (1.01) |
Laudemann et al. (2011) [34] | retrospective and prospective cohort | yes/no | MWD (Normed, Tuttlingen, Germany) or TPD (Surgi-Tec, Bruges, Belgium) | 0.5–0.6 mm/day | 25 | NA — NA | 3D-CT scans | T1 (baseline) T2 (2.87 ± 1.59 months post-expansion) | Transverse widening (skeletal) (<20 years old—with PMD): −4.72 (5.34) Transverse widening (skeletal) (>20 years old—with PMD): −4.03 (1.73) Transverse widening (skeletal) (<20 years old—no PMD): −2.77 (2.09) Transverse widening (skeletal) (>20 years old— no PMD): −3.01 (2.83) Transverse widening (alveolar) (<20 years old—with PMD): −2.50 (3.07) Transverse widening (alveolar) (>20 years old—with PMD): −3.18 (2.16) Transverse widening (alveolar) (<20 years old—no PMD): −3.58 (2.32) Transverse widening (alveolar) (>20 years old— no PMD): −4.48 (1.33) |
Matteini et al. (2001) [35] | prospective cohort | yes | TPD | 0.33 mm/day | 20 | 20 — 8/12 | Models | T1 (before surgery) T2 (post expansion, 2–3 weeks later) | Transverse expansion—canines: 29.9% (14.1) Transverse expansion—first premolars: 28.3% (11.6) Transverse expansion—first molars: 20.8% (7.2) |
Nada et al. (2012) [36] | prospective cohort | yes | TPD (Surgi-Tec, Bruges, Belgium) | 1 mm/day | 17 | 29.4 — NA | 3D CBCT models | T1 (baseline), T2 (22 ± 7 months after completion of pre-surgical orthodontic treatment and prior to second orthognathic intervention) | Interocclusal expansion—first premolars: 6.24 (2.3) Interocclusal expansion—first molars: 7.14 (3.7) Interapical expansion—first premolars: 5.2 (3.2) Interapical expansion—first molars: 4.6 (3) |
Nada et al. (2013) [37] | prospective cohort | yes | TPD (Surgi-Tec, Bruges, Belgium) | 1 mm/day | 15 | 30 — 7/8 | 3D CBCT models | T1 (baseline) T2 (22 ± 7 months after completion of pre-surgical orthodontic treatment) | Lip, middle segment: −1.6 (1.9) Lip, right segment: −0.45 (2.3) Lip, left segment: −0.48 (1.8) Maxilla, middle segment: −1.12 (1.5) Maxilla, right segment: 1.97 (0.9) Maxilla, left segment: 1.82 (0.9) |
Nikolaev et al. (2017) [38] | retrospective cohort | NA | NA | NA | 21 | NA — NA | CBCT | T1 (baseline) T2 (day of the expander removal) | Interapical distance first premolars: 3.1 (0.4) Interapical distance molars: 2.3 (0.3) Intercoronal distance first premolars: 4.8 (0.5) Intercoronal distance molars: 4.1 (0.4) |
Parhiz et al. (2011) [39] | retrospective cohort | yes | TPD (SurgiTec, Bruges, Belgium) | 0.33 mm/day | 50 | 26 — 20/30 | posteroanterior (PA) and lateral cephalograms, panoramic and periapical radiographs, intraoral and extraoral photographs, study models | T1 (baseline) T2 (20 ± 9 months) | SNA: 1.60 (2.57) SNB: 0.46 (2.61) ANB: 1.06 (2.00) U1-SN: −4.82 (8.94) U1-PP: −3.86 (8.56) |
Petrick et al. (2011) [40] | prospective cohort | no | Dresden Distractor (DD; ITU, Dresden, Germany) | 1 mm/day (8 days) | 16 | 24.5 — 7/9 | CT | T1 (baseline) T2 (on average 7.01 months after SARME) | Midpalatal suture width—anterior: 2.30/168% Midpalatal suture width—median: 1.12/140% Midpalatal suture width—posterior: 0.26/111% |
Pinto et al. (2001) [41] | prospective cohort | no | TPD (Surgi-Tec, Bruges, Belgium) | 0.33 mm/day | 20 | 21.5 — 9/11 | Digital photographs of the models (dental casts) | T1 (baseline) T2 (end of expansion) | Expansion—first premolars (%): 31.7 (14) Expansion—first molars (%): 20.4 (8.7) Arch periphery gain: 10.5 (4.6) Angulation of first premolars: −8.3 (9.6) Angulation of first molars: 0.9 (9.9) |
Ploder et al. (2021) [42] | retrospective cohort | yes | TPD (Surgi-Tec, Bruges, Belgium) or OMI appliance (Micro-4 Hyrax appliance (MICRO4), Tiger Dental, Bregenz, Austria) | TPD: 1 mm/day (12.6 ± 5.8 days) OMI: 0.51 mm/day (12.5 ± 1.3 days) | 12 (TPD) 13 (OMI) | TPD: 24.8 OMI: 36.1 — TPD: 5/7 OMI: 4/9 | Cast models Panoramic radiographs | T1 (before surgery, 1–7 days) T2 (after consolidation period, 8–10 weeks) T3 (1 year after surgery, range 10–14 months) | Tooth level TPD Overall expansion: 5.22 mm (1.72) Relapse: 0.76 mm (1.37) Canines: 4.76 mm (3.00) Relapse: 1.33 mm (1.25) First molars: 4.91 mm (2.64) Relapse: 0.06 mm (1.63) Bone level TPD Overall expansion: 4.66 mm (2.03) Relapse: 0.71 mm (0.96) Canines: 4.38 mm (1.57) Relapse: 0.85 mm (1.59) First molars: 4.89 mm (3.08) Relapse: 0.50 mm (1.55) |
Seeberger et al. (2015) [43] | prospective cohort | yes | Titamed Uni-Smile Distractor (Wervik, Belgium) | 0.5 mm/day | 19 | 22 — 8/11 | CBCT | T1 (1 month before) T2 (3 months after surgery) | (median (IQR)) Premolar crown width: 4.6 (3.4) Premolar apex width: 3.3 (3.1) Molar crown width: 3.40 (2.4) Molar apex width: 3.20 (2.8) |
Tausche et al. (2007) [44] | prospective cohort | no | DD—Dresden Distractor | over- compensation of 0.5–1 mm (8–10 days) | 17 | 28.8 — 6/11 | CT | T1 (before) T2 (6 months after insertion of DD) | Intercoronal width—first premolars: 6.72 (2.58) Intercoronal width—first molars: 6.44 (1.92) Interapical width—first premolars: 5.79 (2.65) Interapical width—first molars: 6.53 (2.07) |
Wallner et al. (2022) [45] | retrospective cohort | yes | Titamed SMILE 3-distractor (Kontich, Belgium) | 0.5 mm/day (0.25 mm twice a day) for 14 days | 91 | 20 — 33/58 | superimposed CBCT images | T1 (baseline) T2 (approx. 1 year postoperatively) | Vertical palate height at first molars: −0.1 (1.0) Alveolar width at canines: 4.8 (1.8) Alveolar width at first molars: 3.8 (1.4) |
Xi et al. (2017) [46] | retrospective cohort | yes (only in cases of asymmetric mobility) | TPD (UNI-Smile distractor, Titamed, Kontich, Belgium). | 1 mm/day (consolidation period of 8–10 weeks) | 78 with hyrax group | 30.2 — 22/56 | 3D cephalometric reference frame from CBCT | T1 (baseline) T2 (20.3 ± 6.2 months) | Dental show: 2.5 (2.1) Mandibular plane angle: 1.1 (1.1) Vertical changes at A-point: 1.6 (2.3) Vertical changes at pogonion: 1.8 (1.8) Anterior maxillary expansion: 1.8 (1.0) Posterior maxillary expansion: 2.6 (1.8) Chin advancement: −1.5 (2.2) |
Zandi et al. (2014) [47] | RCT | yes | TPD (SurgiTec, Bruges, Belgium) | 0.5–0.6 mm/day up to an overexpansion of 2–3 mm | 15 | 19.4 — 5/10 | CBCT | T1 (before operation) T2 (immediately after consolidation period) | Palatal bone width: 4.33 (1.23) Interdental cusp distance—first premolars: 6.73 (2.15) Interdental cusp distance—first molars: 6.53 (2.67) Interapical distance—first premolars: 4.4 (1.68) Interapical distance—first molars: 4.5 (1.83) |
Trial ID | 1. Confounding | 2. Selection of Participants for the Study | 3. Classification of Interventions | 4. Deviations from Intended Interventions | 5. Missing Data | 6. Measurement of Outcomes | 7. Selection of the Reported Result | Overall |
---|---|---|---|---|---|---|---|---|
Aras et al. (2010) [22] | + | ++ | ++ | ++ | ++ | + | ++ | + |
Aras et al. (2017) [23] | + | + | ++ | ++ | ++ | + | ++ | + |
Asscherickx et al. (2016) [24] | + | ++ | ++ | ++ | ++ | ++ | ++ | + |
Barone et al. (2020) [4] | + | ++ | ++ | ++ | ++ | + | ++ | + |
Dowgierd et al. (2018) [25] | + | + | ++ | ++ | ++ | + | ++ | + |
Hansen et al. (2007) [26] | + | + | ++ | ++ | ++ | + | ++ | + |
Huizinga et al. (2018) [27] | + | - | ++ | ++ | + | + | ++ | - |
Kunz et al. (2016) [29] | + | + | ++ | ++ | ++ | + | ++ | + |
Landes et al. (2009a) [30] | + | + | ++ | ++ | + | ++ | ++ | + |
Landes et al. (2009b) [31] | + | + | ++ | ++ | + | ++ | ++ | + |
Laudemann et al. (2009) [32] | + | + | ++ | ++ | + | ++ | ++ | + |
Laudemann et al. (2010) [33] | + | + | ++ | ++ | + | ++ | ++ | + |
Laudemann et al. (2011) [34] | + | + | ++ | ++ | + | ++ | ++ | + |
Matteini et al. (2001) [35] | + | ++ | ++ | ++ | ++ | + | ++ | + |
Nada et al. (2012) [36] | + | ++ | ++ | ++ | ++ | ++ | ++ | + |
Nada et al. (2013) [37] | + | ++ | ++ | ++ | ++ | ++ | ++ | + |
Nikolaev et al. (2017) [38] | + | ? | ++ | ++ | ++ | + | ++ | ? |
Parhiz et al. (2011) [39] | + | + | ++ | ++ | ++ | + | ++ | + |
Petrick et al. (2011) [40] | + | ++ | ++ | ++ | ++ | ++ | ++ | + |
Pinto et al. (2001) [41] | + | ++ | ++ | ++ | ++ | ++ | ++ | + |
Ploder et al. (2021) [42] | + | + | ++ | - | ++ | + | ++ | - |
Seeberger et al. (2015) [43] | + | + | ++ | ++ | ++ | + | ++ | + |
Tausche et al. (2007) [44] | + | - | ++ | ++ | ++ | + | ++ | - |
Wallner et al. (2022) [45] | + | + | ++ | ++ | ++ | + | ++ | + |
Xi et al. (2017) [46] | + | - | ++ | ++ | ++ | + | ++ | - |
Trial ID | 1. Randomization Process | 2. Deviations from Intended Interventions | 3. Missing Outcome Data | 4. Measurement of the Outcome | 5. Selection of the Reported Result | Overall |
---|---|---|---|---|---|---|
Koudstaal et al. (2009) [28] | * | + | + | + | * | * |
Zandi et al. (2014) [47] | + | * | * | + | * | * |
Outcome | No of Trials | Time Point | RC | 95% CI | SE | P | I2 (95% CI) | t2 (95% CI) | P (Q) |
---|---|---|---|---|---|---|---|---|---|
Arch perimeter | 3 | IA Exp | −7.39 | −10.31, −4.47 | 1.49 | <0.001 | 0% | 0 | 0.86 |
Palatal depth | 3 | Ret | 0.49 | −0.02, 1.01 | 0.26 | 0.06 | 5.61% | 0.01 | 2.48 |
SNA | 2 | Ret | 0.62 | −1.02, 2.25 | 0.83 | 0.46 | 29.33% | 0.44 | 0.23 |
Outcomes | Anticipated Absolute Effects (95% CI) | No of Participants (Studies) | Certainty of the Evidence (Grade) | Comments | |
---|---|---|---|---|---|
Risk before SARME | Risk after SARME | ||||
Arch perimeter assessed with dental casts Follow-up: range 2 weeks to 12 months | The mean arch perimeter was 69.92 mm | RC −7.39 (increase) (−10.31 to −4.47) | 64 (1 RCT, 2 observational studies) | ⨁⨁◯◯ Low [24,28,41] a, b | The evidence suggests that treatment with SARME increases the arch perimeter. |
Palatal depth assessed with CBCT, dental casts Follow-up: range 3 months to 12 months | The mean palatal depth was 18.77 mm | RC 0.49 (decrease) (−0.02 to 1.01) | 192 (1 RCT, 2 observational studies) | ⨁⨁◯◯ Low [24,28,45] b, c | The evidence suggests that treatment with SARME may result in a slight reduction in palatal depth. |
SNA assessed with CBCT, lateral cephalograms Follow-up: range 3 months to 12 months | The mean SNA was 81.88° | RC 0.62 (decrease) (−1.02 to 2.25) | 101 (1 RCT, 1 observational study) | ⨁⨁◯◯ Low [25,28] b, c | The evidence suggests that treatment with SARME may result in little to no difference in SNA. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sekertzi, C.; Koukouviti, M.-M.; Chatzigianni, A.; Kolokitha, O.-E. Dental, Skeletal, and Soft Tissue Changes after Bone-Borne Surgically Assisted Rapid Maxillary Expansion: A Systematic Review and Meta-Analysis. Dent. J. 2023, 11, 143. https://doi.org/10.3390/dj11060143
Sekertzi C, Koukouviti M-M, Chatzigianni A, Kolokitha O-E. Dental, Skeletal, and Soft Tissue Changes after Bone-Borne Surgically Assisted Rapid Maxillary Expansion: A Systematic Review and Meta-Analysis. Dentistry Journal. 2023; 11(6):143. https://doi.org/10.3390/dj11060143
Chicago/Turabian StyleSekertzi, Christina, Maria-Marina Koukouviti, Athina Chatzigianni, and Olga-Elpis Kolokitha. 2023. "Dental, Skeletal, and Soft Tissue Changes after Bone-Borne Surgically Assisted Rapid Maxillary Expansion: A Systematic Review and Meta-Analysis" Dentistry Journal 11, no. 6: 143. https://doi.org/10.3390/dj11060143
APA StyleSekertzi, C., Koukouviti, M. -M., Chatzigianni, A., & Kolokitha, O. -E. (2023). Dental, Skeletal, and Soft Tissue Changes after Bone-Borne Surgically Assisted Rapid Maxillary Expansion: A Systematic Review and Meta-Analysis. Dentistry Journal, 11(6), 143. https://doi.org/10.3390/dj11060143