Trace Element Concentration and Stable Isotope Ratio Analysis in Blueberries and Bilberries: A Tool for Quality and Authenticity Control
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling
2.2. Analysis of Trace Elements
2.3. Light Stable Isotope Ratio Analysis (δ13C, δ15N, δ18O)
2.4. Statistical Analysis of Results
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Nile, S.H.; Park, S.W. Edible berries: Bioactive components and their effect on human health. Nutrition 2014, 30, 134–144. [Google Scholar] [CrossRef]
- Production Quantities of Blueberries. Faostat. Available online: http://www.fao.orgfaostat/en/#data/QC/visualize (accessed on 15 January 2021).
- Kunrade, L.; Rembergs, R.; Jekabsons, K.; Klavins, L.; Klavins, M.; Muceniece, R.; Riekstina, U. Inhibition of NF-κB pathway in LPS-stimulated THP-1 monocytes and COX-2 activity in vitro by berry pomace extracts from five Vaccinium species. J. Berry Res. 2020, 10, 381–396. [Google Scholar] [CrossRef]
- Szajdek, A.; Borowska, E.J. Bioactive compounds and health-promoting properties of berry fruits: A review. Plant Foods Human Nutr. 2008, 63, 147–156. [Google Scholar] [CrossRef]
- Vogl, S.; Picker, P.; Mihaly-Bison, J.; Fakhrudin, N.; Atanasov, A.G.; Heiss, E.H.; Kopp, B. Ethnopharmacological in vitro studies on Austria’s folk medicine—An unexplored lore in vitro anti-inflammatory activities of 71 Austrian traditional herbal drugs. J. Ethnopharmacol. 2013, 149, 750–771. [Google Scholar] [CrossRef] [Green Version]
- Samad, N.B.; Debnath, T.; Ye, M.; Hasnat, M.A.; Lim, B.O. In vitro antioxidant and anti–inflammatory activities of Korean blueberry (Vaccinium corymbosum L.) extracts. Asian Pac. J. Tropical Biomed. 2014, 4, 807–815. [Google Scholar] [CrossRef] [Green Version]
- Brasanac-Vukanovic, S.; Mutic, J.; Stankovic, D.M.; Arsic, I.; Blagojevic, N.; Vukasinovic-Pesic, V.; Tadic, V.M. Wild Bilberry (Vaccinium myrtillus L., Ericaceae) from Montenegro as a source of antioxidants for use in the production of nutraceuticals. Molecules 2018, 23, 1864. [Google Scholar] [CrossRef] [Green Version]
- Muceniece, R.; Klavins, L.; Kviesis, J.; Jekabsons, K.; Rembergs, R.; Saleniece, K.; Klavins, M. Antioxidative, hypoglycaemic and hepatoprotective properties of five Vaccinium spp. berry pomace extracts. J. Berry Res. 2019, 9, 267–282. [Google Scholar] [CrossRef]
- Klavins, L.; Kviesis, J.; Nakurte, I.; Klavins, M. Berry press residues as a valuable source of polyphenolics: Extraction optimisation and analysis. LWT 2018, 93, 583–591. [Google Scholar] [CrossRef]
- Klavins, L.; Kviesis, J.; Steinberga, I.; Klavina, L.; Klavins, M. Gas chromatography-mass spectrometry study of lipids in northern berries. Agronom. Res. 2016, 14, 1328–1346. [Google Scholar] [CrossRef]
- Martin, S.; Griswold, W. Human health effects of heavy metals. Environ. Sci. Technol. Briefs Citiz. 2009, 15, 1–6. [Google Scholar]
- Rodushkin, I.; Ödman, F.; Holmström, H. Multi-element analysis of wild berries from northern Sweden by ICP techniques. Sci. Total Environ. 1999, 231, 53–65. [Google Scholar] [CrossRef]
- Pöykiö, R.; Mäenpää, A.; Perämäki, P.; Niemelä, M.; Välimäki, I. Heavy metals (Cr, Zn, Ni, V, Pb, Cd) in lingonberries (Vaccinium vitis-idaea L.) and assessment of human exposure in two industrial areas in the Kemi-Tornio region, Northern Finland. Arch. Enviorn. Contam. Toxicol. 2005, 48, 338–343. [Google Scholar] [CrossRef] [PubMed]
- Eeva, T.; Holmström, H.; Espín, S.; Sánchez-Virosta, P.; Klemola, T. Leaves, berries and herbivorous larvae of bilberry Vaccinium myrtillus as sources of metals in food chains at a Cu-Ni smelter site. Chemosphere 2018, 210, 859–866. [Google Scholar] [CrossRef] [PubMed]
- Moilanen, M.; Fritze, H.; Nieminen, M.; Piirainen, S.; Issakainen, J.; Piispanen, J. Does wood ash application increase heavy metal accumulation in forest berries and mushrooms? For. Ecol. Manag. 2006, 226, 153–160. [Google Scholar] [CrossRef]
- Tahvonen, R.; Kumpulainen, J. Lead and cadmium in berries and vegetables on the Finnish market 1987–1989. Fresenius’ J. Anal. Chem. 1991, 340, 242–244. [Google Scholar] [CrossRef]
- Karlsons, A.; Osvalde, A.; Čekstere, G.; Pormale, J. Research on the mineral composition of cultivated and wild blueberries and cranberries. Agron. Res. 2018, 16, 454–463. [Google Scholar]
- Drozdz, P.; Seziene, V.; Pyrzynska, K. Mineral composition of wild and cultivated blueberries. Biol. Trace Elem. Res. 2018, 181, 173–177. [Google Scholar] [CrossRef] [Green Version]
- Retamales, J.B.; Hancock, J.F. Blueberries, 2nd ed.; CABI: London, UK, 2018. [Google Scholar]
- Shotyk, W. Trace elements in wild berries from reclaimed lands: Biomonitors of contamination by atmospheric dust. Ecol. Indicat. 2020, 110, 105960. [Google Scholar] [CrossRef]
- Nagajyoti, P.C.; Lee, K.D.; Sreekanth, T.V.M. Heavy metals, occurrence and toxicity for plants: A review. Environ. Chem. Lett. 2010, 8, 199–216. [Google Scholar] [CrossRef]
- Barcan, V.S.; Kovnatsky, E.F.; Smetannikova, M.S. Absorption of heavy metals in wild berries and edible mushrooms in an area affected by smelter emissions. Water Air Soil Pollut. 1998, 103, 173–195. [Google Scholar] [CrossRef]
- Levula, T.; Saarsalmi, A.; Rantavaara, A. Effects of ash fertilization and prescribed burning on macronutrient, heavy metal, sulphur and 137Cs concentrations in lingonberries (Vaccinium vitis-idaea). For. Ecol. Manag. 2000, 126, 269–279. [Google Scholar] [CrossRef]
- Nikodemus, O.; Brūmelis, G.; Tabors, G.; Lapina, L.; Pope, S. Monitoring of air pollution in Latvia between 1990 and 2000 using moss. J. Atm. Chem. 2004, 49, 521–531. [Google Scholar] [CrossRef]
- Reimann, C.; Siewers, U.; Tarvainen, T.; Bityukova, L.; Eriksson, J.; Gilucis, A.; Gregarauskiene, V.; Lukashev, V.; Matiainen, N.N.; Pasieczna, A. Baltic soil survey: Total concentrations of major and selected trace elements in arable soils from 10 countries around the Baltic Sea. Sci. Total Environ. 2000, 257, 155–170. [Google Scholar] [CrossRef]
- Kula, E.; Wildova, E.; Hrdlička, P. Accumulation and dynamics of manganese content in bilberry (Vaccinium myrtillus L.). Environ. Monit. Asses. 2018, 190, 224–236. [Google Scholar] [CrossRef]
- Versini, G.; Camin, F.; Ramponi, M.; Dellacassa, E. Stable isotope analysis in grape products: 13C-based internal standardisation methods to improve the detection of some types of adulterations. Anal. Chim. Acta 2006, 563, 325–330. [Google Scholar] [CrossRef]
- Bertoldi, D.; Cossignani, L.; Blasi, F.; Perini, M.; Barbero, A.; Pianezze, S.; Montesano, D. Characterisation and geographical traceability of Italian goji berries. Food Chem. 2019, 275, 585–593. [Google Scholar] [CrossRef] [PubMed]
- Perini, M.; Giongo, L.; Grisenti, M.; Bontempo, L.; Camin, F. Stable isotope ratio analysis of different European raspberries, blackberries, blueberries, currants and strawberries. Food Chem. 2018, 239, 48–55. [Google Scholar] [CrossRef]
- Robinson, D. δ15N as an integrator of the nitrogen cycle. Trends Ecol. Evol. 2001, 16, 153–162. [Google Scholar] [CrossRef]
- Lee, A.; Kalcsits, R.D.G. Genotypic variation in nitrogen isotope discrimination in Populus balsamifera L. clones grown with either nitrate or ammonium. J. Plant Physiol. 2016, 201, 54–61. [Google Scholar] [CrossRef]
- Epstein, S.; Mayeda, T. Variation of 18O content of waters from natural sources. Geochim. Cosmochim. Acta 1953, 4, 213–224. [Google Scholar] [CrossRef]
- Marion, H.; O’Leary, L. Carbon isotope fractionation in plants. Phytochem 1981, 20, 553–567. [Google Scholar] [CrossRef]
- Phoebe, G.; Aron, N.E.; Levin, E.J.; Beverly, T.E.; Huth, B.H.; Passey, E.M.; Pelletier, C.J.; Poulsen, I.Z.; Winkelstern, D.A.Y. Triple oxygen isotopes in the water cycle. Chem. Geol. 2020, 120026. [Google Scholar] [CrossRef]
- Camin, F.; Boner, M.; Bontempo, L.; Fauhl-Hassek, C.; Kelly, S.D.; Riedl, J.; Rossmann, A. Stable isotope techniques for verifying the declared geographical origin of food in legal cases. Trends Food Sci. Technol. 2017, 1, 176–187. [Google Scholar] [CrossRef]
- Schmidt, O.; Quilter, J.M.; Bahar, B.; Moloney, A.P.; Scrimgeour, C.M.; Begley, I.S.; Monahan, F.J. Inferring the origin and dietary history of beef from C, N and S stable isotope ratio analysis. Food Chem. 2005, 91, 545–549. [Google Scholar] [CrossRef]
- Faberi, A.; Marianella, R.M.; Fuselli, F.; La Mantia, A.; Ciardiello, F.; Montesano, C.; Mascini, M.; Sergi, M.; Compagnone, D. Fatty acid composition and δ13C of bulk and individual fatty acids as marker for authenticating Italian PDO/PGI extra virgin olive oils by means of isotopic ratio mass spectrometry. J. Mass Spec. 2014, 49, 840–849. [Google Scholar] [CrossRef] [PubMed]
- Mimmo, T.; Camin, F.; Bontempo, L.; Capici, C.; Tagliavini, M.; Cesco, S.; Scampicchio, M. Traceability of different apple varieties by multivariate analysis of isotope ratio mass spectrometry data. Rapid Comm. Mass Spec. 2015, 15, 1984–1990. [Google Scholar] [CrossRef] [PubMed]
- Longobardi, F.; Casiello, G.; Cortese, M.; Perini, M.; Camin, F.; Catucci, L.; Agostiano, A. Discrimination of geographical origin of lentils (Lens culinaris Medik.) using isotope ratio mass spectrometry combined with chemometrics. Food Chem. 2015, 1, 343–349. [Google Scholar] [CrossRef] [PubMed]
- Tosun, M. Detection of adulteration in mulberry pekmez samples added various sugar syrups with 13C/12C isotope ratio analysis method. Food Chem. 2014, 15, 555–559. [Google Scholar] [CrossRef]
- Schipilliti, L.; Bonaccorsi, I.; Cotroneo, A.; Dugo, P.; Mondello, L. Carbon isotope ratios of selected volatiles in Citrus sinensis and in orange-flavoured food. J. Sci. Food Agric. 2015, 95, 2944–2950. [Google Scholar] [CrossRef]
- Zhang, L.; Kujawinski, D.M.; Federherr, E.; Schmidt, T.C.; Jochmann, M.A. Caffeine in your drink: Natural or synthetic? Anal. Chem. 2012, 20, 2805–2810. [Google Scholar] [CrossRef]
Element | Patriot | Polaris | Bluecrop | Northblue | Chandler | Duke | Chippewa | Blueray 17 |
---|---|---|---|---|---|---|---|---|
K *** | 4080 ± 136 | 4823 ± 118 | 5509 ± 249 | 5247 ± 190 | 5626 ± 249 | 4955 ± 126 | 6208 ± 94 | 4706 ± 284 |
Ca *** | 302 ± 27 | 388 ± 17 | 386 ± 13 | 239 ± 53 | 382 ± 14 | 432 ± 29 | 411 ± 37 | 427 ± 58 |
Mg *** | 265 ± 6 | 322 ± 14 | 341 ± 15 | 286 ± 16 | 326 ± 8 | 361 ± 12 | 291 ± 18 | 38 ± 22 |
Na *** | 89 ± 5 | 123 ± 7 | 57 ± 9 | 65 ± 9 | 112 ± 10 | 208 ± 19 | 97 ± 14 | 83 ± 6 |
P *** | 779 ± 22 | 755 ± 19 | 713 ± 41 | 811 ± 31 | 671 ± 4 | 658 ± 54 | 713 ± 27 | 865 ± 10 |
S *** | 669 ± 15 | 665 ± 18 | 601 ± 41 | 764 ± 29 | 532 ± 11 | 546 ± 33 | 592 ± 26 | 583 ± 20 |
Al *** | 6.0 ± 1.0 | 7.3 ± 0.1 | 7.7 ± 0.5 | 7.5 ± 0.3 | 6.2 ± 0.5 | 5.8 ± 0.4 | 5.4 ± 0.4 | 9.2 ± 0.4 |
B *** | 2.17 ± 0.28 | 3.09 ± 0.25 | 3.59 ± 0.29 | 1.41 ± 0.11 | 2.44 ± 0.17 | 3.20 ± 0.14 | 2.12 ± 0.15 | 2.98 ± 0.29 |
Ba *** | 1.02 ± 0.16 | 1.09 ± 0.12 | 1.07 ± 0.06 | 0.64 ± 0.26 | 0.75 ± 0.07 | 1.19 ± 0.32 | 0.93 ± 0.11 | 1.46 ± 0.37 |
Cu *** | 2.44 ± 0.29 | 2.45 ± 0.68 | 3.51 ± 0.33 | 1.65 ± 0.20 | 4.28 ± 0.38 | 1.73 ± 0.36 | 2.62 ± 0.61 | 2.81 ± 0.43 |
Fe *** | 17.4 ± 2.5 | 20.6 ± 1.6 | 17.1 ± 0.7 | 16.1 ± 1.3 | 20.6 ± 2.0 | 20.3 ± 2.9 | 21.7 ± 2.2 | 18.6 ± 1.4 |
Mn *** | 10.6 ± 0.4 | 19.1 ± 1.4 | 15.5 ± 0.9 | 12.7 ± 1.4 | 11.0 ± 1.1 | 12.5 ± 0.5 | 10.4 ± 0.9 | 13.5 ± 3.4 |
Si *** | 30.7 ± 5.0 | 26.1 ± 3.5 | 41.2 ± 4.1 | 35.6 ± 2.5 | 32.8 ± 2.4 | 23.9 ± 3.4 | 35.6 ± 4.9 | 52.2 ± 11.4 |
Sr *** | 0.88 ± 0.15 | 0.95 ± 0.07 | 0.87 ± 0.05 | 0.49 ± 0.11 | 0.84 ± 0.08 | 1.37 ± 0.11 | 0.97 ± 0.07 | 1.31 ± 0.07 |
Zn *** | 3.7 ± 0.1 | 3.8 ± 0.3 | 4.8 ± 0.4 | 3.9 ± 0.2 | 3.7 ± 0.1 | 4.0 ± 0.2 | 3.7 ± 0.3 | 4.0 ± 0.01 |
As *** | 0.16 ± 0.05 | 0.12 ± 0.04 | 0.18 ± 0.01 | 0.19 ± 0.01 | 0.12 ± 0.01 | 0.31 ± 0.01 | 0.17 ± 0.02 | 0.31 ± 0.02 |
Cd *** | 0.030 ± 0.001 | 0.059 ± 0.001 | 0.057 ± 0.001 | <LOD | 0.013 ± 0.001 | 0.036 ± 0.001 | 0.015 ± 0.009 | 0.021 ± 0.002 |
Co *** | 0.07 ± 0.01 | 0.02 ± 0.01 | 0.05 ± 0.01 | 0.05 ± 0.01 | 0.05 ± 0.01 | 0.06 ± 0.01 | 0.03 ± 0.01 | 0.05 ± 0.01 |
Cr *** | 0.03 ± 0.01 | 0.06 ± 0.01 | 0.01 ± 0.01 | <LOD | <LOD | 0.08 ± 0.01 | 0.06 ± 0.01 | <LOD |
Mo *** | 0.03 ± 0.01 | 0.03 ± 0.01 | 0.03 ± 0.01 | 0.04 ± 0.01 | 0.05 ± 0.01 | 0.05 ± 0.01 | 0.05 ± 0.01 | 0.08 ± 0.01 |
Ni *** | 0.16 ± 0.01 | 0.18 ± 0.01 | 0.15 ± 0.01 | 0.08 ± 0.01 | 0.06 ± 0.01 | 0.12 ± 0.01 | 0.18 ± 0.01 | 0.03 ± 0.01 |
Pb *** | 0.09 ± 0.01 | 0.07 ± 0.01 | 0.11 ± 0.01 | 0.03 ± 0.01 | 0.07 ± 0.01 | 0.11 ± 0.01 | 0.08 ± 0.01 | 0.15 ± 0.01 |
Se *** | 0.30 ± 0.01 | 0.28 ± 0.01 | 0.11 ± 0.01 | <LOD | 0.11 ± 0.01 | 0.07 ± 0.01 | 0.12 ± 0.01 | 0.23 ± 0.01 |
V *** | 0.024 ± 0.001 | 0.067 ± 0.001 | 0.018 ± 0.005 | <LOD | <LOD | 0.018 ± 0.001 | 0.061 ± 0.004 | <LOD |
Element | Peru | Chile | Uruguay | Argentina | Morocco | Spain | Germany | Poland | Latvia |
---|---|---|---|---|---|---|---|---|---|
K *** | 6592 ± 59 | 7126 ± 66 | 5583 ± 72 | 6505 ± 26 | 7058 ± 94 | 5372 ± 63 | 4443 ± 31 | 6092 ± 62 | 4144 ± 280 |
Ca *** | 1293 ± 32 | 520 ± 75 | 508 ± 40 | 1028 ± 68 | 834 ± 88 | 477 ± 30 | 550 ± 58 | 360 ± 16 | 371 ± 31 |
Mg *** | 459 ± 34 | 423 ± 44 | 370 ± 40 | 438 ± 34 | 475 ± 40 | 388 ± 14 | 342 ± 20 | 275 ± 1 | 322 ± 14 |
Na *** | 90 ± 12 | 38 ± 7 | 20 ± 5 | 41 ± 9 | 134 ± 8 | 25 ± 3 | 22 ± 2 | 45 ± 4 | 34 ± 4 |
P *** | 586 ± 14 | 804 ± 14 | 767 ± 11 | 882 ± 27 | 918 ± 53 | 907 ± 24 | 533 ± 26 | 875 ± 50 | 746 ± 26 |
S *** | 531 ± 46 | 655 ± 64 | 578 ± 32 | 620 ± 41 | 587 ± 50 | 658 ± 12 | 363 ± 17 | 576 ± 12 | 619 ± 24 |
Al *** | 33.2 ± 6.8 | 14.9 ± 2.8 | 14.6 ± 1.9 | 33.4 ± 3.2 | 9.7 ± 8.1 | 5.9 ± 0.4 | 7.1 ± 0.3 | 10.7 ± 0.9 | 6.9 ± 0.4 |
B *** | 3.77 ± 0.46 | 3.83 ± 0.73 | 1.82 ± 0.60 | 3.48 ± 0.34 | 3.92 ± 0.20 | 2.22 ± 0.11 | 2.79 ± 0.23 | 2.97 ± 0.11 | 2.62 ± 0.21 |
Ba *** | 2.74 ± 0.08 | 2.82 ± 0.09 | 2.73 ± 0.81 | 8.54 ± 0.71 | 0.45 ± 0.08 | 0.54 ± 0.05 | 2.96 ± 0.43 | 0.68 ± 0.04 | 1.02 ± 0.18 |
Cu *** | 1.90 ± 0.11 | 7.91 ± 0.33 | 3.15 ± 0.46 | 3.90 ± 0.39 | 2.83 ± 0.63 | 1.54 ± 0.16 | 2.03 ± 0.17 | 1.58 ± 0.08 | 2.69 ± 0.41 |
Fe *** | 31.7 ± 4.1 | 13.3 ± 2.8 | 18.4 ± 2.3 | 26.0 ± 2.9 | 7.5 ± 3.8 | 14.9 ± 0.5 | 14.4 ± 1.4 | 16.0 ± 0.5 | 19.0 ± 1.8 |
Mn *** | 27.5 ± 3.4 | 21.5 ± 4.9 | 21.9 ± 8.0 | 117.2 ± 6.9 | 18.3 ± 5.4 | 15.6 ± 1.1 | 7.2 ± 0.5 | 36.1 ± 1.8 | 13.2 ± 1.3 |
Si *** | 88.3 ± 7.1 | 69.3 ± 6.9 | 85.6 ± 4.7 | 144.3 ± 11.4 | 81.8 ± 9.4 | 16.0 ± 2.4 | 27.5 ± 1.0 | 46.7 ± 2.8 | 34.8 ± 4.7 |
Sr *** | 3.77 ± 0.34 | 1.76 ± 0.18 | 1.58 ± 0.40 | 3.70 ± 0.62 | 0.39 ± 0.08 | 0.36 ± 0.03 | 0.80 ± 0.06 | 0.31 ± 0.06 | 0.96 ± 0.09 |
Zn *** | 3.5 ± 0.4 | 6.5 ± 1.3 | 4.0 ± 0.4 | 5.2 ± 0.1 | 6.1 ± 0.5 | 5.1 ± 0.1 | 3.7 ± 0.5 | 2.8 ± 0.1 | 3.97 ± 0.20 |
As *** | 0.15 ± 0.01 | 0.03 ± 0.01 | 0.13 ± 0.02 | 0.14 ± 0.02 | 0.18 ± 0.06 | 0.01 ± 0.01 | 0.30 ± 0.03 | 0.04 ± 0.01 | 0.08 ± 0.01 |
Cd *** | 0.030 ± 0.009 | <LOD | 0.016 ± 0.006 | 0.073 ± 0.006 | 0.012 ± 0.001 | 0.005 ± 0.001 | 0.030 ± 0.002 | 0.022 ± 0.006 | 0.02 ± 0.002 |
Co *** | 0.03 ± 0.01 | 0.02 ± 0.01 | 0.10 ± 0.02 | 0.02 ± 0.001 | 0.08 ± 0.005 | 0.02 ± 0.001 | 0.01 ± 0.005 | 0.02 ± 0.008 | 0.02 ± 0.01 |
Cr *** | 0.10 ± 0.008 | 0.29 ± 0.005 | <LOD | 0.06 ± 0.008 | <LOD | 0.01 ± 0.006 | <LOD | 0.04 ± 0.007 | 0.02 ± 0.001 |
Mo *** | 0.50 ± 0.002 | <LOD | <LOD | 0.07 ± 0.02 | 0.20 ± 0.02 | 0.07 ± 0.02 | 0.03 ± 0.02 | 0.06 ± 0.02 | 0.04 ± 0.02 |
Ni *** | 0.42 ± 0.015 | 0.60 ± 0.144 | 0.44 ± 0.065 | 0.26 ± 0.063 | 0.20 ± 0.05 | 0.04 ± 0.001 | 0.12 ± 0.037 | 0.22 ± 0.010 | 0.12 ± 0.03 |
Pb *** | 0.12 ± 0.01 | <LOD | 0.11 ± 0.01 | 0.16 ± 0.031 | 0.13 ± 0.02 | <LOD | 0.13 ± 0.044 | 0.06 ± 0.01 | 0.05 ± 0.01 |
Se *** | 0.24 ± 0.20 | <LOD | 0.37 ± 0.02 | 0.08 ± 0.01 | 0.30 ± 0.01 | <LOD | 0.08 ± 0.01 | 0.21 ± 0.01 | 0.13 ± 0.01 |
V *** | 0.130 ± 0.02 | <LOD | 0.111 ± 0.01 | 0.025 ± 0.01 | 0.105 ± 0.01 | 0.04 ± 0.01 | 0.028 ± 0.01 | 0.03 ± 0.01 | 0.02 ± 0.01 |
Element | Latvia | Lithuania | Finland | Norway |
---|---|---|---|---|
Ca *** | 971 ± 32 | 1020 ± 46 | 1134 ± 72 | 1161 ± 56 |
K *** | 5662 ± 66 | 5755 ± 116 | 5083 ± 72 | 5339 ± 54 |
Mg *** | 436 ± 34 | 439 ± 43 | 471 ± 14 | 532 ± 28 |
Na *** | 15 ± 4 | 9 ± 3 | 9 ± 3 | 42 ± 2 |
P *** | 868 ± 14 | 1021 ± 12 | 1074 ± 18 | 1234 ± 15 |
S *** | 791 ± 18 | 741 ± 26 | 617 ± 21 | 815 ± 21 |
Al *** | 27.8 ± 6.8 | 20.7 ± 3,2 | 15.9 ± 7.1 | 16.8 ± 1.8 |
B *** | 4.52 ± 0.4 | 4.84 ± 0.73 | 5.17 ± 0.53 | 6.28 ± 0.34 |
Ba *** | 9.71 ± 0.08 | 10.16 ± 0.09 | 10.34 ± 0.07 | 12.73 ± 0.08 |
Cu *** | 4.22 ± 0.39 | 5.35 ± 0.32 | 3.57 ± 0.29 | 3.42 ± 0.42 |
Fe *** | 16.5 ± 2.3 | 81.8 ± 3.2 | 10.9 ± 2.8 | 18.1 ± 2.9 |
Mn *** | 32.7 ± 1.1 | 243.3 ± 11.8 | 154.8 ± 21.2 | 216.6 ± 18.2 |
Si *** | 12.7 ± 4.7 | 39.6 ± 5.9 | 26.7 ± 3.2 | 20.9 ± 3.9 |
Sr *** | 1.14 ± 0.40 | 2.36 ± 0.62 | 2.71 ± 0.28 | 2.14 ± 0.48 |
Zn *** | 6.5 ± 0.4 | 7.8 ± 0.4 | 5.5 ± 0.5 | 7.6 ± 0.3 |
As *** | 0.12 ± 0.01 | 0.16 ± 0.01 | 0.03 ± 0.01 | 0.12 ± 0.02 |
Cd *** | 0.049 ± 0.001 | 0.033 ± 0.002 | 0.021 ± 0.006 | 0.033 ± 0.004 |
Co *** | 0.070 ± 0.01 | 0.067 ± 0.03 | 0.102 ± 0.03 | 0.049 ± 0.02 |
Cr *** | 0.213 ± 0.008 | 0.177 ± 0.008 | 0.149 ± 0.007 | 0.297 ± 0.009 |
Mo *** | 0.073 ± 0.002 | 0.091 ± 0.002 | 0.281 ± 0.002 | 0.096 ± 0.002 |
Ni *** | 0.428 ± 0.019 | 0.455 ± 0.015 | 0.322 ± 0.013 | 0.089 ± 0.016 |
Pb *** | 0.147 ± 0.012 | 0.456 ± 0.023 | 0.213 ± 0.016 | 0.247 ± 0.037 |
Se *** | 0.427 ± 0.027 | 0.347 ± 0.022 | 0.646 ± 0.025 | 0.619 ± 0.023 |
V *** | 0.067 ± 0.014 | 0.157 ± 0.021 | 0.050 ± 0.018 | 0.071 ± 0.014 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Klavins, L.; Maaga, I.; Bertins, M.; Hykkerud, A.L.; Karppinen, K.; Bobinas, Č.; Salo, H.M.; Nguyen, N.; Salminen, H.; Stankevica, K.; et al. Trace Element Concentration and Stable Isotope Ratio Analysis in Blueberries and Bilberries: A Tool for Quality and Authenticity Control. Foods 2021, 10, 567. https://doi.org/10.3390/foods10030567
Klavins L, Maaga I, Bertins M, Hykkerud AL, Karppinen K, Bobinas Č, Salo HM, Nguyen N, Salminen H, Stankevica K, et al. Trace Element Concentration and Stable Isotope Ratio Analysis in Blueberries and Bilberries: A Tool for Quality and Authenticity Control. Foods. 2021; 10(3):567. https://doi.org/10.3390/foods10030567
Chicago/Turabian StyleKlavins, Linards, Inessa Maaga, Maris Bertins, Anne Linn Hykkerud, Katja Karppinen, Česlovas Bobinas, Heikki M. Salo, Nga Nguyen, Henriikka Salminen, Karina Stankevica, and et al. 2021. "Trace Element Concentration and Stable Isotope Ratio Analysis in Blueberries and Bilberries: A Tool for Quality and Authenticity Control" Foods 10, no. 3: 567. https://doi.org/10.3390/foods10030567
APA StyleKlavins, L., Maaga, I., Bertins, M., Hykkerud, A. L., Karppinen, K., Bobinas, Č., Salo, H. M., Nguyen, N., Salminen, H., Stankevica, K., & Klavins, M. (2021). Trace Element Concentration and Stable Isotope Ratio Analysis in Blueberries and Bilberries: A Tool for Quality and Authenticity Control. Foods, 10(3), 567. https://doi.org/10.3390/foods10030567