Assessment of the Analytical Performance of Three Near-Infrared Spectroscopy Instruments (Benchtop, Handheld and Portable) through the Investigation of Coriander Seed Authenticity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection and Preparation
2.2. Near-Infrared Spectroscopy
2.3. Multivariate Data Analysis
2.3.1. Spectral Pre-Treatment
2.3.2. Classification Models
2.3.3. Regression Models
3. Results and Discussion
3.1. Near-Infrared Spectroscopy
3.2. Model Development and Validation
3.2.1. Model Development Using SIMCA 15 Software
3.2.2. Model Development Using the Lab Software (SCiO Only)
3.2.3. Regression Models Developed Using TQ Analyst Software (iS50 and Flame-NIR)
3.2.4. Regression Models Developed Using the Lab Software (SCiO Only)
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
Thermo iS50 | Flame-NIR | SCiO | |||||||
---|---|---|---|---|---|---|---|---|---|
Type | ID | Model | Pre-Processing | A | R2Xcum | A | R2Xcum | A | R2Xcum |
2-CLASS | M1 | PLS-DA | None | 4 | 1.00 | 5 | 1.00 | 1 | 0.99 |
M2 | OPLS-DA | None | 2 + 2 + 0 | 1.00 | 1 + 3 + 0 | 1.00 | 1 + 1 + 0 | 0.91 | |
M3 | PLS-DA | SNV | 3 | 0.99 | 3 | 0.83 | 2 | 0.95 | |
M4 | OPLS-DA | SNV | 2 + 1 + 0 | 0.99 | 1 + 2 + 0 | 0.83 | 1 + 1 + 0 | 0.78 | |
M5 | PLS-DA | SNV + 1DER | 3 | 1.00 | 4 | 0.91 | 4 | 0.81 | |
M6 | OPLS-DA | SNV + 1DER | 2 + 1 + 0 | 1.00 | 1 + 3 + 0 | 0.91 | 2 + 2 + 0 | 0.80 | |
M7 | PLS-DA | SNV + 1DER + SG | 3 | 0.98 | 3 | 0.91 | 4 | 0.80 | |
M8 | OPLS-DA | SNV + 1DER + SG | 2 + 1 + 0 | 0.93 | 1 + 2 + 0 | 0.91 | 2 + 2 + 0 | 1.00 | |
MULTICLASS | M9 | PLS-DA | None | 2 | 0.98 | 4 | 1.00 | 2 | 1.00 |
M10 | OPLS-DA | None | 1 + 1 + 0 | 0.98 | 2 + 2 + 0 | 1.00 | 1 + 2 + 0 | 1.00 | |
M11 | PLS-DA | SNV | 3 | 1.00 | 4 | 0.91 | 4 | 1.00 | |
M12 | OPLS-DA | SNV | 1 + 3 + 0 | 1.00 | 2 + 2 + 0 | 0.91 | 2 + 2 + 0 | 1.00 | |
M13 | PLS-DA | SNV + 1DER | 3 | 1.00 | 3 | 0.99 | 4 | 1.00 | |
M14 | OPLS-DA | SNV + 1DER | 1 + 2 + 0 | 1.00 | 2 + 2 + 0 | 0.99 | 2 + 2 + 0 | 0.81 | |
M15 | PLS-DA | SNV + 1DER + SG | 3 | 0.98 | 3 | 0.92 | 4 | 0.80 | |
M16 | OPLS-DA | SNV + 1DER + SG | 1 + 2 + 0 | 0.92 | 2 + 2 + 0 | 0.95 | 2 + 2 + 0 | 0.99 |
References
- Barrett, C.B. Actions Now Can Curb Food Systems Fallout from COVID-19. Nat. Food 2020. Available online: https://www.nature.com/articles/s43016-020-0085-y.pdf (accessed on 15 April 2020). [CrossRef]
- EU Rapid Alert System for Food and Feed (RASFF). Available online: https://webgate.ec.europa.eu/rasff-window/portal/?event=SearchByKeyword&NewSearch=1&Keywords=horse%20meat (accessed on 20 May 2020).
- Black, C.; Haughey, S.; Chevallier, O.P.; Galvin-King, P.; Elliott, C.T. A comprehensive strategy to detect the fraudulent adulteration of herbs: The oregano approach. Food Chem. 2016, 210, 551–557. [Google Scholar] [CrossRef] [Green Version]
- Brauge, T.; Faille, C.; Inglebert, G.; Dubois, T.; Morieux, P.; Slomianny, C.; Midelet-Bourdin, G. Comparative evaluation of DNA extraction methods for amplification by qPCR of superficial vs intracellular DNA from Bacillus spores. Int. J. Food Microbiol. 2018, 266, 289–294. [Google Scholar] [CrossRef] [PubMed]
- Achilleos, C.; Berthier, F. Evaluation of qPCR and plate counting for quantifying thermophilic starters in cheese. Food Microbiol. 2017, 65, 149–159. [Google Scholar] [CrossRef]
- Huck, C.W. Advances of Vibrational Spectroscopic Technologies in Life Sciences. Molecules 2017, 22, 278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, H.; Xu, Y.C.; Siesler, H.W.; Han, B.X.; Zhang, G.Z. Hand-Held Near-Infrared Spectroscopy for Authentication of Fengdous and Quantitative Analysis of Mulberry Fruits. Front. Plant Sci. 2019, 10, 1548. [Google Scholar] [CrossRef]
- Huang, J.; Wen, Q.; Nie, Q.; Chang, F.; Zhou, Y.; Wen, Z. Miniaturized NIR Spectrometer Based on Novel MOEMS Scanning Tilted Grating. Micromachines 2018, 9, 478. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schuler, L.P.; Milne, J.S.; Dell, J.M.; Faraone, L. MEMS-based microspectrometer technologies for NIR and MIR wavelengths. J. Phys. D Appl. Phys. 2019, 42, 133001. [Google Scholar] [CrossRef]
- Grassi, S.; Alamprese, C. Advances in NIR spectroscopy applied to process analytical technology in food industries. Curr. Opin. Food Sci. 2018, 22, 17–21. [Google Scholar] [CrossRef]
- Bec, K.B.; Grabska, J.; Huck, C.W. Principles and Applications of Miniaturized Near-Infrared (NIR) Spectrometers. Chem. Eur. J. 2020, 26, 1–20. [Google Scholar]
- McVey, C.; McGrath, T.F.; Haughey, S.A.; Elliott, C.T. A rapid food chain approach for authenticity screening: The development, validation and transferability of a chemometric model using two handheld near infrared spectroscopy (NIRS) devices. Talanta 2020. [Google Scholar] [CrossRef]
- Parastara, H.; Kollenburg, G.; Weesepoel, Y.; den Doel, A.; Buydens, L.; Jansen, J. Integration of handheld NIR and machine learning to “Measure & Monitor” chicken meat authenticity. Food Control 2020, 112, 107149. [Google Scholar]
- Oliveira, M.M.; Cruz-Tirado, J.P.; Roque, J.V.; Teófilo, R.F.; Barbin, D.F. Portable near-infrared spectroscopy for rapid authentication of adulterated paprika powder. J. Food Compos. Anal. 2020, 87, 103403. [Google Scholar] [CrossRef]
- Grassi, S.; Casiraghi, E.; Alamprese, C. Handheld NIR device: A non-targeted approach to assess authenticity of fish fillets and patties. Food Chem. 2018, 243, 382–388. [Google Scholar] [CrossRef] [PubMed]
- Guelpa, A.; Marini, F.; du Plessis, A.; Slabbert, R.; Manley, M. Verification of authenticity and fraud detection in South African honey using NIR spectroscopy. Food Control 2017, 73, 1388–1396. [Google Scholar] [CrossRef]
- Schmutzler, M.; Beganovic, A.; Bohler, G.; Huck, C.W. Methods for detection of pork adulteration in veal product based on FT-NIR spectroscopy for laboratory, industrial and on-site analysis. Food Control 2015, 57, 258–267. [Google Scholar] [CrossRef]
- Haughey, S.A.; Galvin-King, P.; Malechaux, A.; Elliott, C.T. The use of handheld near-infrared reflectance spectroscopy (NIRS) for the proximate analysis of poultry feed and to detect melamine adulteration of soya bean meal. Anal. Methods 2015, 7, 181. [Google Scholar] [CrossRef]
- Pérez-Marín, D.; Paz, P.; Guerrero, J.E.; Garrido-Varo, A.; Sánchez, M.T. Miniature handheld NIR sensor for the on-site non-destructive assessment of post-harvest quality and refrigerated storage behavior in plums. J. Food Eng. 2010, 99, 294–302. [Google Scholar] [CrossRef]
- Zamora-Rojas, E.; Pérez-Marín, D.; De Pedro-Sanz, E.; Guerrero-Ginel, J.E.; Garrido-Varo, A. Handheld NIRS analysis for routine meat quality control: Database transfer from at-line instruments. Chemom. Intell. Lab. Syst. 2012, 114, 30–35. [Google Scholar] [CrossRef]
- Lin, C.A.; Ayvaz, H.; Rodriguez-Saona, L.E. Application of portable and handheld infrared spectrometers for determination of sucrose levels in infant cereals. Food Anal. Methods 2014, 7, 1414. [Google Scholar] [CrossRef]
- Ayvaz, H.; Rodriguez-Saona, L.E. Application of handheld and portable spectrometers for screening acrylamide content in commercial potato chips. Food Chem. 2015, 174, 154–162. [Google Scholar] [CrossRef]
- Modroño, S.; Soldado, A.; Martínez-Fernández, A.; de la Roza-Delgado, B. Handheld NIRS sensors for routine compound feed quality control: Real time analysis and field monitoring. Talanta 2017, 162, 597–603. [Google Scholar] [CrossRef]
- Wiedemair, V.; Huck, C.W. Evaluation of the performance of three hand-held near-infrared spectrometer through investigation of total antioxidant capacity in gluten free grains. Talanta 2018, 189, 233–240. [Google Scholar] [CrossRef]
- Malegori, C.; Marques, E.J.N.; de Freitas, S.T.; Pimentel, M.F.; Pasquini, C.; Casiraghi, E. Comparing the analytical performances of Micro-NIR and FT-NIR spectrometers in the evaluation of acerola fruit quality, using PLS and SVM regression algorithms. Talanta 2017, 165, 112–116. [Google Scholar] [CrossRef]
- Donis-González, I.R.; Valero, C.; Momin, M.A.; Kaur, A.; Slaughter, D.C. Performance evaluation of two commercially available portable spectrometers to non-invasively determine table grape and peach quality attributes. Agronomy 2020, 10, 148. [Google Scholar] [CrossRef] [Green Version]
- Wiedemair, V.; Langore, D.; Garsleitner, R.; Dillinger, K.; Huck, C. Investigations into the performance of a novel pocket-sized Near-Infrared spectrometer for cheese analysis. Molecules 2019, 24, 428. [Google Scholar] [CrossRef] [Green Version]
- Kartakoullis, A.; Comaposad, J.; Cruz-Carrión, A.; Serra, X.; Gou, P. Feasibility study of smartphone-based Near Infrared Spectroscopy (NIRS) for salted minced meat composition diagnostics at different temperatures. Food Chem. 2019, 278, 314–321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilde, A.S.; Haughey, S.A.; Galvin-King, P.; Elliott, C.T. The feasibility of applying NIR and FT-IR fingerprinting to detect adulteration in black pepper. Food Control 2019, 100, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Shannon, M.; Ch, R.; McGrath, T.F.; Kapil, A.P.; Elliott, C.T. A two-tiered system of analysis to tackle rice fraud: The Indian Basmati study. Talanta 2021, 225, 122038. [Google Scholar] [CrossRef]
- McGrath, T.F.; Shannon, M.; Chevallier, O.P.; Ch, R.; Xu, F.; Kong, F.; Peng, H.; Teye, E.; Akaba, S.; Wu, D.; et al. Food Fingerprinting: Using a two-tiered approach to monitor and mitigate food fraud in rice. J. AOAC Int. 2021, 104, 16–28. [Google Scholar] [CrossRef] [PubMed]
- MacArthur, R.L.; Teye, E.; Darkwa, S. Predicting adulteration of Palm oil with Sudan IV dye using shortwave handheld spectroscopy and comparative analysis of models. Vib. Spectrosc. 2020, 110, 103129. [Google Scholar] [CrossRef]
- van Ruth, S.; Liu, N. How organic is organic milk? Can we have a quick check? NIR News 2019, 30, 18–21. [Google Scholar] [CrossRef]
- Teye, E.; Amuah, C.L.Y.; McGrath, T.; Elliott, C. Innovative and rapid analysis for rice authenticity using hand-held NIR spectrometry and chemometrics. Spectrochim. Acta A 2019, 217, 147–154. [Google Scholar] [CrossRef] [PubMed]
- PerkinElmer. Safeguarding Herb and Spice Authenticity. 2018. Available online: www.perkinelmer.com (accessed on 5 October 2018).
- Van den Berg, R.A.; Hoefsloot, H.C.; Westerhuis, J.A.; Smilde, A.K.; van der Werf, M.J. Centering, scaling, and transformations: Improving the biological information content of metabolomics data. BMC Genom. 2006, 7, 142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Armbruster, D.A.; Pry, T. Limit of blank, limit of detection and limit of quantitation. Clin. Biochem. Rev. 2008, 29, S49–S52. [Google Scholar]
- Ozaki, Y. Near-Infrared spectroscopy—Its versatility in analytical chemistry. Anal. Sci. 2012, 28, 545–563. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Spectrometer | Spectral Resolution (nm) | Measurement | Detector | Spectral Resolution | Software | Dimensions | Weight |
---|---|---|---|---|---|---|---|
MicroNIR 1700 ES (Viavi) | 950–1650 | Diffuse reflection, transmission, or transflection | 128 pixel InGaAs photodiode array | 12.5 nm at 1000 nm | VIAVI MicroNIR Pro software suitea (data acquisition, calibration and method development, user management, and real-time prediction) | 50 ×45 mm | 64 g |
DLP NIRscan Nano EVM (Texas Instruments) | 900–1700 | Diffuse reflection | 1 mm single-pixel InGaAs uncooled linear array | 10 nm | DLP NIRscan Nano software b (graphical user interface only) | 62 × 58 × 36 | 54 g |
SCiO (Consumer Physics) | 740–1070 | Diffuse reflection | Silicon photodiode array | 28 nm average across its working spectral region of 740–1070 nm | TheLab a (data acquisition, calibration and method development, user management, and real-time prediction) | 67.7 × 40.2 × 18.8 mm | 35 g |
NeoSpectra Micro (Si-Ware) | 1350–2550 | Diffuse reflectance | Single uncooled InGaAs photodetector | 16 nm at 1500 nm | SpectroMOST software bc (graphical user interface only). Software development kit is available for development of application software | 60 × 30 × 40 mm inclusive of Raspberry Pi board) | 17 g |
NIRONE Sensor S (Spectral Engines) | Various: 1100–1350 1350–1650 1550–1950 1750–2150 2000–2450 | Diffuse reflectance | Single element InGaAs | Various depending on the spectral range: 12–28 nm | SensorControl b (graphical user interface only) | 25 × 25 × 17.5 mm | 15 g |
Predictability | |||||||||
---|---|---|---|---|---|---|---|---|---|
Thermo Is50 | Flame-NIR | SCiO | |||||||
Type | ID | Model | Pre-Processing | Coriander | Adulterants | Coriander | Adulterants | Coriander | Adulterants |
2-CLASS | M1 | PLS-DA | None | 97.1% | 100.0% | 98.5% | 100.0% | 92.3% | 96.7% |
M2 | OPLS-DA | None | 97.1% | 100.0% | 95.6% | 100.0% | 92.6% | 96.7% | |
M3 | PLS-DA | SNV | 100.0% | 100.0% | 98.5% | 100.0% | 92.6% | 96.7% | |
M4 | OPLS-DA | SNV | 100.0% | 100.0% | 97.1% | 100.0% | 91.1% | 100.0% | |
M5 | PLS-DA | SNV + 1DER | 100.0% | 100.0% | 95.6% | 100.0% | 91.1% | 100.0% | |
M6 | OPLS-DA | SNV + 1DER | 100.0% | 100.0% | 97.1% | 100.0% | 91.1% | 100.0% | |
M7 | PLS-DA | SNV + 1DER + SG | 100.0% | 100.0% | 94.1% | 100.0% | 91.1% | 100.0% | |
M8 | OPLS-DA | SNV + 1DER + SG | 98.5% | 100.0% | 95.6% | 100.0% | 91.1% | 100.0% | |
MULTICLASS | M9 | PLS-DA | None | 100.0% | 100.0% | 97.1% | 100.0% | 92.6% | 100.0% |
M10 | OPLS-DA | None | 100.0% | 100.0% | 97.1% | 100.0% | 91.2% | 100.0% | |
M11 | PLS-DA | SNV | 100.0% | 100.0% | 95.6% | 100.0% | 91.2% | 100.0% | |
M12 | OPLS-DA | SNV | 97.1% | 100.0% | 95.6% | 100.0% | 91.2% | 100.0% | |
M13 | PLS-DA | SNV + 1DER | 100.0% | 100.0% | 94.1% | 100.0% | 95.6% | 100.0% | |
M14 | OPLS-DA | SNV + 1DER | 98.5% | 100.0% | 94.1% | 100.0% | 94.1% | 100.0% | |
M15 | PLS-DA | SNV + 1DER + SG | 94.1% | 100.0% | 94.1% | 100.0% | 91.2% | 100.0% | |
M16 | OPLS-DA | SNV + 1DER + SG | 100.0% | 100.0% | 94.1% | 100.0% | 91.2% | 93.3% |
Predictability | ||||
---|---|---|---|---|
Type | ID | Pre-Processing | Coriander | Adulterants |
2-CLASS | M1 | None | 99.0% | 89.0% |
M2 | Log | 100.0% | 88.0% | |
M3 | SNV | 96.0% | 90.0% | |
M4 | 1DER | 100.0% | 86.0% | |
M5 | 2DER | 96.0% | 91.0% | |
M6 | SNV + 1DER | 98.0% | 82.0% | |
M7 | SNV + 2DER | 99.0% | 82.0% | |
M8 | Log + SNV + 1DER | 97.0% | 85.0% | |
M9 | Log + SNV + 2DER | 99.0% | 84.0% | |
MULTICLASS | M10 | None | 100.0% | 82.0% |
M11 | Log | 100.0% | 85.0% | |
M12 | SNV | 100.0% | 63.0% | |
M13 | 1DER | 99.0% | 87.7% | |
M14 | 2DER | 99.0% | 88.7% | |
M15 | SNV + 1DER | 100.0% | 75.3% | |
M16 | SNV + 2DER | 98.0% | 80.0% | |
M17 | Log + SNV + 1DER | 98.0% | 79.3% | |
M18 | Log + SNV + 2DER | 97.0% | 74.6% |
Salt | Starch | Sawdust | |||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Recovery (%) | Recovery (%) | Recovery (%) | |||||||||||||||||||||||
Model | R2 | RMSEC | RMSEP | LOD (%) | LOQ (%) | 10.00 | 20.00 | 30.00 | R2 | RMSEC | RMSEP | LOD (%) | LOQ (%) | 10.00 | 20.00 | 30.00 | R2 | RMSEC | RMSEP | LOD (%) | LOQ (%) | 10.00 | 20.00 | 30.00 | |
iS50 | 1.00 | 0.94 | 2.56 | 2.07 | 4.80 | 14.70 | 100.05 | 92.89 | 90.99 | 1.00 | 0.46 | 0.47 | 1.10 | 3.30 | 106.97 | 98.28 | 99.67 | 0.96 | 4.33 | 4.59 | 3.50 | 10.50 | 106.59 | 91.89 | 86.19 |
2.00 | 0.95 | 2.30 | 1.82 | 3.50 | 10.60 | 132.25 | 98.75 | 85.99 | 1.00 | 0.65 | 0.34 | 0.70 | 2.20 | 103.12 | 97.98 | 99.82 | 0.96 | 2.07 | 3.34 | 4.20 | 12.70 | 109.15 | 93.43 | 94.33 | |
3.00 | 0.91 | 3.02 | 2.74 | 6.60 | 20.10 | 110.28 | 88.30 | 86.30 | 0.99 | 0.92 | 1.04 | 2.40 | 7.20 | 89.06 | 91.72 | 99.01 | 0.92 | 2.12 | 3.44 | 5.40 | 16.50 | 106.81 | 84.80 | 76.22 | |
4.00 | 0.94 | 2.56 | 2.07 | 4.80 | 14.50 | 100.05 | 92.89 | 90.99 | 1.00 | 0.46 | 0.47 | 1.10 | 3.30 | 106.97 | 98.28 | 99.67 | 0.96 | 2.96 | 3.96 | 3.46 | 10.50 | 106.59 | 101.21 | 84.19 | |
5.00 | 0.94 | 2.56 | 2.07 | 4.80 | 14.50 | 106.97 | 98.28 | 99.67 | 1.00 | 0.46 | 0.47 | 1.10 | 3.30 | 106.97 | 98.28 | 99.67 | 0.96 | 2.07 | 3.34 | 3.50 | 10.50 | 106.58 | 101.21 | 85.33 | |
6.00 | 0.95 | 2.31 | 1.83 | 3.50 | 10.60 | 131.83 | 98.69 | 85.92 | 1.00 | 0.33 | 0.31 | 0.60 | 1.90 | 103.06 | 98.06 | 99.81 | 0.98 | 2.07 | 3.34 | 4.50 | 13.70 | 97.09 | 108.38 | 88.55 | |
7.00 | 0.91 | 2.95 | 2.67 | 6.10 | 18.60 | 94.23 | 85.53 | 89.79 | 1.00 | 0.37 | 0.39 | 0.80 | 2.40 | 97.98 | 96.65 | 100.17 | 0.97 | 1.51 | 2.99 | 2.80 | 8.40 | 101.83 | 102.96 | 91.44 | |
8.00 | 0.94 | 2.56 | 2.07 | 4.80 | 14.50 | 100.05 | 92.89 | 90.99 | 1.00 | 0.46 | 0.47 | 1.90 | 3.30 | 106.97 | 98.28 | 99.67 | 0.96 | 1.73 | 3.15 | 4.70 | 14.40 | 106.58 | 101.21 | 84.47 | |
Flame NIR | 1.00 | 0.88 | 3.65 | 3.41 | 5.10 | 15.40 | 137.45 | 77.23 | 76.22 | 0.96 | 2.02 | 2.56 | 7.20 | 21.90 | 78.30 | 92.73 | 93.25 | 0.83 | 2.07 | 3.34 | 10.90 | 33.10 | 137.45 | 77.23 | 76.22 |
2.00 | 0.80 | 3.99 | 4.06 | 5.70 | 18.50 | 110.30 | 68.96 | 75.53 | 0.97 | 1.92 | 1.65 | 5.60 | 17.50 | 81.43 | 94.23 | 99.32 | 0.74 | 4.34 | 4.56 | 13.00 | 39.70 | 110.30 | 68.96 | 75.53 | |
3.00 | 0.64 | 5.83 | 5.39 | 8.50 | 25.70 | 117.80 | 55.20 | 51.67 | 0.84 | 4.04 | 3.62 | 10.30 | 31.20 | 115.10 | 80.55 | 69.78 | 0.75 | 5.24 | 4.76 | 10.90 | 38.04 | 117.80 | 55.20 | 51.67 | |
4.00 | 0.88 | 3.65 | 3.41 | 5.10 | 15.40 | 137.45 | 77.23 | 76.22 | 0.96 | 2.02 | 2.56 | 7.20 | 21.90 | 78.30 | 92.73 | 93.25 | 0.83 | 5.13 | 4.65 | 10.90 | 33.10 | 137.45 | 77.23 | 76.22 | |
5.00 | 0.87 | 3.75 | 3.59 | 4.80 | 14.60 | 134.55 | 74.81 | 75.08 | 0.96 | 2.02 | 2.57 | 7.20 | 21.90 | 78.00 | 92.59 | 93.17 | 0.83 | 4.34 | 4.56 | 10.80 | 32.90 | 134.55 | 74.81 | 75.08 | |
6.00 | 0.86 | 3.92 | 3.92 | 5.10 | 15.60 | 104.55 | 68.32 | 73.80 | 0.96 | 2.01 | 1.71 | 6.00 | 18.30 | 80.83 | 94.51 | 98.32 | 0.74 | 4.33 | 4.59 | 13.00 | 39.60 | 104.55 | 68.32 | 73.80 | |
7.00 | 0.78 | 4.76 | 4.99 | 6.60 | 20.20 | 139.50 | 59.74 | 50.20 | 0.96 | 2.12 | 1.98 | 6.60 | 20.00 | 88.73 | 90.61 | 99.37 | 0.94 | 5.24 | 4.76 | 7.60 | 33.10 | 139.50 | 59.74 | 50.20 | |
8.00 | 0.87 | 3.79 | 3.59 | 4.80 | 14.60 | 134.55 | 74.81 | 75.08 | 0.96 | 2.02 | 2.57 | 7.20 | 21.90 | 78.00 | 92.59 | 93.17 | 0.83 | 2.60 | 2.13 | 10.80 | 33.10 | 134.55 | 74.81 | 75.08 |
Recovery % | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Preprocessing | R2 | RMSEC | RMSEP | LOD | LOQ | 10 | 20 | 30 | ||
iS50 | Salt | 2DER + SG | 0.95 | 2.19 | 2.39 | 6.02 | 18.30 | 120.55 | 109.91 | 72.96 |
Starch | None | 1.00 | 0.43 | 0.43 | 0.90 | 2.74 | 100.00 | 103.84 | 101.59 | |
Sawdust | SG | 0.97 | 1.88 | 3.00 | 2.86 | 8.69 | 87.27 | 87.64 | 89.86 | |
FlameNIR | Salt | None | 0.78 | 4.80 | 4.71 | 10.38 | 31.56 | 154.80 | 65.01 | 70.05 |
Starch | None | 0.98 | 1.62 | 1.92 | 5.73 | 17.43 | 102.67 | 99.15 | 92.89 | |
Sawdust | None | 0.95 | 2.56 | 2.14 | 7.41 | 22.52 | 181.54 | 105.92 | 101.97 |
Salt | Starch | Sawdust | |||||||
---|---|---|---|---|---|---|---|---|---|
Model | R2 | RMSEC | RMSEP | R2 | RMSEC | RMSEP | R2 | RMSEC | RMSEP |
Raw | 0.793 | 2.94 | 2.94 | 0.971 | 1.23 | 1.23 | 0.887 | 2.17 | 2.17 |
Log | 0.798 | 3.013 | 3.013 | 0.967 | 1.296 | 1.296 | 0.886 | 2.26 | 2.26 |
Log SNV | 0.881 | 2.46 | 2.45 | 0.966 | 1.273 | 1.273 | 0.881 | 2.135 | 2.135 |
Log SNV 1DER | 0.792 | 3.35 | 3.35 | 0.963 | 1.34 | 1.34 | 0.885 | 2.242 | 2.241 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
McVey, C.; Gordon, U.; Haughey, S.A.; Elliott, C.T. Assessment of the Analytical Performance of Three Near-Infrared Spectroscopy Instruments (Benchtop, Handheld and Portable) through the Investigation of Coriander Seed Authenticity. Foods 2021, 10, 956. https://doi.org/10.3390/foods10050956
McVey C, Gordon U, Haughey SA, Elliott CT. Assessment of the Analytical Performance of Three Near-Infrared Spectroscopy Instruments (Benchtop, Handheld and Portable) through the Investigation of Coriander Seed Authenticity. Foods. 2021; 10(5):956. https://doi.org/10.3390/foods10050956
Chicago/Turabian StyleMcVey, Claire, Una Gordon, Simon A. Haughey, and Christopher T. Elliott. 2021. "Assessment of the Analytical Performance of Three Near-Infrared Spectroscopy Instruments (Benchtop, Handheld and Portable) through the Investigation of Coriander Seed Authenticity" Foods 10, no. 5: 956. https://doi.org/10.3390/foods10050956
APA StyleMcVey, C., Gordon, U., Haughey, S. A., & Elliott, C. T. (2021). Assessment of the Analytical Performance of Three Near-Infrared Spectroscopy Instruments (Benchtop, Handheld and Portable) through the Investigation of Coriander Seed Authenticity. Foods, 10(5), 956. https://doi.org/10.3390/foods10050956