Changes of Soybean Protein during Tofu Processing
Abstract
:1. Introduction
2. Soy Protein
3. Changes in Soy Protein during Tofu Processing
3.1. Influence of Soybean Varieties and Growing Conditions
3.2. Influence of Storage Conditions
3.3. Influence of Soaking and Refining
3.4. Pretreatments
3.4.1. Soybean Pretreatment
3.4.2. Soymilk Pretreatment
- (1)
- Heat Treatment
- (2)
- Ultrasound Pretreatment
3.5. Coagulants
3.5.1. Salt Coagulants
3.5.2. Acid Coagulant
3.5.3. Enzyme Coagulant
3.5.4. New Coagulants
- (1)
- Emulsion Coagulant
- (2)
- Complex Coagulants
3.5.5. Additives
- (1)
- Carbohydrates
- (2)
- Phytic Acid
3.6. Compression, Preservation, and Packaging
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Shi, Y.G.; Liu, L.L. Research progress on correlation between soybean protein and tofu quality. J. Food Technol. 2018, 36, 1–8. [Google Scholar]
- Du, L.Q. New Technology of Tofu Production, 1st ed.; Chemical Industry Publishing House: Beijing, China, 2018; pp. 1–64. ISBN 978-7-122-31433-8. [Google Scholar]
- Hui, E.; Henning, S.M.; Park, N.; Heber, D.; Liang, V.; Go, W. Genistein and daidzein/glycitein content in tofu. J. Food Compos. Anal. 2001, 14, 199–206. [Google Scholar] [CrossRef]
- Shi, Y.G. Soybean Products Technology, 2nd ed.; China Light Industry Press: Beijing, China, 2011; pp. 7–90. ISBN 978-7-5019-4807-9. [Google Scholar]
- Maruyama, Y.; Maruyama, N.; Mikami, B.; Utsumi, S. Structure of the core region of the soybean β-conglycinin α′ subunit. Acta Crystallogr. Sect. D 2004, 60, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Tandang-Silvas, M.R.; Fukuda, T.; Fukuda, C.; Prak, K.; Cabanos, C.; Kimura, A.; Itoh, T.; Mikami, B.; Utsumi, S.; Maruyama, N. Conservation and divergence on plant seed 11S globulins based on crystal structures. Bba-Proteins Proteom. 2010, 1804, 1432–1442. [Google Scholar] [CrossRef]
- Minor, W.; Steczko, J.; Stec, B.; Otwinowski, Z.; Axelrod, B. Crystal structure of soybean lipoxygenase L-1 at 1.4 A resolution. Biochemistry 1996, 35, 10687–10701. [Google Scholar] [CrossRef] [PubMed]
- Song, H.K.; Suh, S.W. Kunitz-type soybean trypsin inhibitor revisited: Refined structure of its complex with porcine trypsin reveals an insight into the interaction between a homologous inhibitor from Erythrina caffra and tissue-type plasminogen activator. J. Mol. Biol. 1998, 275, 347–363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hirata, A.; Adachi, M.; Sekine, A.; Kang, Y.N.; Mikami, B. Structural and enzymatic analysis of soybean-amylase mutants with increased pH optimum. J. Biol. Chem. 2004, 279, 7287–7295. [Google Scholar] [CrossRef] [Green Version]
- Olsen, L.R.; Dessen, A.; Gupta, D.; Sabesan, S.; Brewer, C.F. X-ray crystallographic studies of unique cross-linked lattices between four isomeric biantennary oligosaccharides and soybean agglutinin. Biochemistry 1997, 36, 15073–15080. [Google Scholar] [CrossRef]
- Taski-Ajdukovic, K.; Djordjevic, V.; Vidic, M.; Vujakovic, M. Subunit composition of seed storage proteins in high-protein soybean genotypes. Pesqui. Agropecuária Bras. 2010, 45, 721–729. [Google Scholar] [CrossRef] [Green Version]
- Utsumi, S.; Matsumara, Y.; Mori, T. Structure-function relationships of soy proteins by using recombinant systems. Enzym. Microb. Techol. 2002, 30, 284–288. [Google Scholar] [CrossRef]
- Ren, C.; Tang, L.; Zhang, M.; Guo, S. Structural characterization of heat-induced protein particles in soy milk. J. Agric. Food Chem. 2009, 57, 1921–1926. [Google Scholar] [CrossRef]
- Zeng, J.H.; Liu, L.L.; Yang, Y.; Zhang, N.; Shi, Y.G.; Zhu, X.Q. Research progress on thermal modification and its dissociation association action of soy proteins. Soybean Sci. 2019, 38, 142–147+158. [Google Scholar] [CrossRef]
- Thanh, V.H.; Shibasaki, K. Major proteins of soybean seeds. Subunit structure of β-conglycinin. J. Agric. Food Chem. 1978, 26, 692–695. [Google Scholar] [CrossRef]
- Fukushima, D. Recent progress in research and technology on soybeans. Food Sci. Technol. Res. 2001, 7, 8–16. [Google Scholar] [CrossRef] [Green Version]
- Pazdernik, D.L.; Plehn, S.J.; Halgerson, J.L.; Orf, J.H. Effect of temperature and genotype on the crude glycinin fraction (11S) of soybean and its analysis by near-infrared reflectance spectroscopy (Near-IRS). J. Agric. Food Chem. 1996, 44, 2278–2281. [Google Scholar] [CrossRef]
- James, A.T.; Yang, A. Interactions of protein content and globulin subunit composition of soybean proteins in relation to tofu gel properties. Food Chem. 2016, 194, 284–289. [Google Scholar] [CrossRef]
- Li, M.; Dong, H.; Wu, D.; Chen, H.; Zhang, Q. Nutritional evaluation of whole soybean curd made from different soybean materials based on amino acid profiles. Food Qual. Saf. 2020, 4, 1. [Google Scholar] [CrossRef]
- Asrat, U.; Horo, J.T.; Gebre, B.A. Physicochemical and sensory properties of tofu prepared from eight popular soybean [glycine max (L.) merrill] varieties in ethiopia. Sci. Afr. 2019, 6, 1–13. [Google Scholar] [CrossRef]
- Bainy, E.M.; Tosh, S.M.; Corredig, M.; Woodrow, L.; Poysa, V. Protein subunit composition effects on the thermal denaturation at different stages during the soy protein isolate processing and gelation profiles of soy protein isolates. J. Am. Oil Chem. Soc. 2008, 85, 581–590. [Google Scholar] [CrossRef]
- Stanojevic, S.P.; Barac, M.B.; Pesic, M.B.; Vucelic-Radovic, B.V. Assessment of soy genotype and processing method on quality of soybean tofu. J. Agric. Food Chem. 2011, 59, 7368–7376. [Google Scholar] [CrossRef]
- Cai, T.; Chang, K. Processing effect on soybean storage proteins and their relationship with tofu quality. J. Agric. Food Chem. 1999, 47, 720–727. [Google Scholar] [CrossRef]
- Wu, C.; Hua, Y.; Chen, Y.; Kong, X.; Zhang, C. Effect of 7S/11S ratio on the network structure of heat-induced soy protein gels: A study of probe release. RSC Adv. 2016, 6, 11981–11987. [Google Scholar] [CrossRef]
- Kumar, V.; Rani, A.; Solanki, S.; Hussain, S.M. Influence of growing environment on the biochemical composition and physical characteristics of soybean seed. J. Food Compos. Anal. 2006, 19, 188–195. [Google Scholar] [CrossRef]
- Yang, A.; James, A.T. Influence of globulin subunit composition of soybean proteins on silken tofu quality. 1. Effect of growing location and 11SA4 and 7Sα’ deficiency. Crop Pasture Sci. 2014, 65, 259. [Google Scholar] [CrossRef]
- Poysa, V.; Woodrow, L. Stability of soybean seed composition and its effect on soymilk and tofu yield and quality. Food Res. Int. 2002, 35, 337–345. [Google Scholar] [CrossRef]
- Kong, F.; Chang, S.K.C.; Liu, Z.; Wilson, L.A. Changes of soybean quality during storage as related to soymilk and tofu making. J. Food Sci. 2008, 73, S134–S144. [Google Scholar] [CrossRef] [PubMed]
- Saio, K.; Kobayakawa, K.; Kito, M. Protein denaturation during model storage studies of soybeans and meals. Cereal. Chem. 1982, 59, 408–412. [Google Scholar] [CrossRef]
- Yang, A.; James, A.T. Comparison of two small-scale processing methods for testing silken tofu quality. Food Anal. Method. 2016, 9, 385–392. [Google Scholar] [CrossRef]
- Li, L.T.; Cao, W. Influence of different soaking methods on tofu processing. Sci. Technol. Food Ind. 1998, 3, 19–21. [Google Scholar]
- Li, L.T.; Cao, W. Effect of soybean soaking temperature on tofu processing. Food Sci. 1998, 6, 29–32. [Google Scholar] [CrossRef]
- Shi, Y.G.; Li, G.; Hu, C.L.; Zhao, J.Y. Effect of soaking time on the quality of tofu. Food Sci. 2006, 12, 167–169. [Google Scholar] [CrossRef]
- Pan, Z.; Tangratanavalee, W. Characteristics of soybeans as affected by soaking conditions. Food Sci. Technol. 2003, 36, 143–151. [Google Scholar] [CrossRef]
- Guo, X.F.; Guo, Q.Q.; Lin, X.Z.; Liang, Z.C.; He, Z.G. Isothermal water absorption model of peeled soybean and optimization of process parameters of rehydration. Sci. Technol. Food Ind. 2020, 41, 207–211. [Google Scholar] [CrossRef]
- Zhang, H.; Jiang, Y.Z.; Xu, G.H.; Sun, D.S.; Liu, L.J.; Dong, S.K. Study on the difference of protein and fat content under soybean peeling condition. New Agric. 2019, 15, 29–32. [Google Scholar]
- Cui, J.; Ye, F.Y.; Zhao, G.H. Preparation of high fiber content soymilk and tofu using dehusked soybean. Mod. Food Sci. Technol. 2016, 32, 164–169. [Google Scholar] [CrossRef]
- Noh, E.J.; Park, S.Y.; Pak, J.I.; Hong, S.T.; Yun, S.E. Coagulation of soymilk and quality of tofu as affected by freeze treatment of soybeans. Food Chem. 2005, 91, 715–721. [Google Scholar] [CrossRef]
- Cao, Y.; Mezzenga, R. Design principles of food gels. Nat. Food 2020, 1, 106–118. [Google Scholar] [CrossRef] [Green Version]
- Guo, J.; Yang, X.; He, X.; Wu, N.; Wang, J.; Gu, W.; Zhang, Y. Limited aggregation behavior of β-Conglycinin and its terminating effect on glycinin aggregation during heating at pH 7.0. J. Agric. Food Chem. 2012, 60, 3782–3791. [Google Scholar] [CrossRef]
- Qi, B.K.; Zhao, C.B.; Li, Y.; Xu, L.; Ding, J.; Wang, H.; Jiang, L.Z. Effect of heat treatment on solubility and secondary structure of soybean 11S glycinin. Food Sci. 2018, 39, 39–44. [Google Scholar] [CrossRef]
- Shilpashree, B.G.; Arora, S.; Chawla, P.; Tomar, S.K. Effect of succinylation on physicochemical and functional properties of milk protein concentrate. Food Res. Int. 2015, 72, 223–230. [Google Scholar] [CrossRef]
- Przybycien, T.M.; Bailey, J.E. Secondary structure perturbations in salt-induced protein precipitates. Biochim. Biophys. Acta 1991, 1076, 103. [Google Scholar] [CrossRef]
- Mills, E.N.; Huang, L.; Noel, T.R.; Gunning, A.P.; Morris, V.J. Formation of thermally induced aggregates of the soya globulin beta-conglycinin. Biochim. Biophys. Acta 2001, 1547, 339–350. [Google Scholar] [CrossRef]
- German, B.; Damodaran, S.; Kinsella, J.E. Thermal dissociation and association behavior of soy proteins. J. Agric. Food Chem. 1982, 30, 807–811. [Google Scholar] [CrossRef]
- Liu, Z.; Chang, S.K.C.; Li, L.; Tatsumi, E. Effect of selective thermal denaturation of soybean proteins on soymilk viscosity and tofu’s physical properties. Food Res. Int. 2004, 37, 815–822. [Google Scholar] [CrossRef]
- Peng, X.; Ren, C.; Guo, S. Particle formation and gelation of soymilk: Effect of heat. Trends Food Sci. Techol. 2016, 54, 138–147. [Google Scholar] [CrossRef]
- Yang, Y.; Ji, Z.; Wu, C.; Ding, Y.; Gu, Z. Effect of the heating process on the physicochemical characteristics and nutritional properties of whole cotyledon soymilk and tofu. RSC Adv. 2020, 1, 4625–4636. [Google Scholar] [CrossRef]
- Damodaran, S.; Kinsella, J.E. Interaction of carbonyls with soy protein: Thermodynamic effects. J. Agric. Food Chem. 1981, 29, 1249–1253. [Google Scholar] [CrossRef]
- Wang, X.B.; Wang, L.; Zhou, G.W.; Qiao, J.W.; Zhang, A.Q.; Wang, Y.Y. Effect of different ultrasound time on the structure and emulsifying property of soybean-whey mixed protein. Trans. Chin. Soc. Agric. Mach. 2020, 51, 358–364. [Google Scholar]
- Liu, L.; Zeng, J.; Sun, B.; Zhang, N.; He, Y.; Shi, Y.; Zhu, X. Ultrasound-assisted mild heating treatment improves the emulsifying properties of 11S globulins. Molecules 2020, 25, 875. [Google Scholar] [CrossRef] [Green Version]
- Sun, B.Y.; Shi, Y.G. Effect of ultrasonic on emulsification of soybean protein concentrate by alcohol method. J. Chin. Cereals Oils Assoc. 2006, 4, 60–63. [Google Scholar] [CrossRef]
- Chen, L.; Chen, J.; Ren, J.; Zhao, M. Effects of ultrasound pretreatment on the enzymatic hydrolysis of soy protein isolates and on the emulsifying properties of hydrolysates. J. Agric. Food Chem. 2011, 59, 2600–2609. [Google Scholar] [CrossRef] [PubMed]
- Karki, B.; Lamsal, B.P.; Grewell, D.; Pometto, A.L.; van Leeuwen, J.; Khanal, S.K.; Jung, S. Functional properties of soy protein isolates produced from ultrasonicated defatted soy flakes. J. Am. Oil Chem. Soc. 2009, 86, 1021–1028. [Google Scholar] [CrossRef]
- Liu, R.; Zeng, Q.H.; Wang, Z.Y.; Cheng, S.; Mu, H.J.; Liang, R. Effects of ultrasonic treatment on gel rheological properties and gel formation of soybean protein isolate. Sci. Technol. Food Ind. 2020, 41, 87–92. [Google Scholar] [CrossRef]
- Li, Y.; Tian, T.; Liu, J.; Lou, B.B.; Li, S.X.; Wang, Z.J. Effect of ultrasound on structure and emulsification of soy protein isolate. Food Ind. 2019, 40, 184–188. [Google Scholar]
- Hu, H.; Li-Chan, E.C.Y.; Wan, L.; Tian, M.; Pan, S. The effect of high intensity ultrasonic pre-treatment on the properties of soybean protein isolate gel induced by calcium sulfate. Food Hydrocoll. 2013, 32, 303–311. [Google Scholar] [CrossRef]
- Zhang, P.; Hu, T.; Feng, S.; Xu, Q.; Zheng, T.; Zhou, M.; Chu, X.; Huang, X.; Lu, X.; Pan, S.; et al. Effect of high intensity ultrasound on transglutaminase-catalyzed soy protein isolate cold set gel. Ultrason. Sonochem. 2016, 29, 380–387. [Google Scholar] [CrossRef] [PubMed]
- Cao, F.; Li, X.; Luo, S.; Mu, D.; Zhong, X.; Jiang, S.; Zheng, Z.; Zhao, Y. Effects of organic acid coagulants on the physical properties of and chemical interactions in tofu. LWT 2017, 85, 58–65. [Google Scholar] [CrossRef]
- Kohyama, K.; Sano, Y.; Doi, E. Rheological characteristics and gelation mechanism of tofu (soybean curd). J. Agric. Food Chem. 1995, 43, 1808–1812. [Google Scholar] [CrossRef]
- Lee, C.H.; Rha, C. Microstructure of soybean protein aggregates and its relation to the physical and textural properties of the curd. J. Food Sci. 1978, 43, 79–84. [Google Scholar] [CrossRef]
- Cheng, R.D. Changes of soy protein in the process of making tofu. China Brew. 1993, 4, 8–12. [Google Scholar]
- Lu, J.Y.; Carter, E.; Chung, R.A. Use of calcium salts for soybean curd preparation. J. Food Sci. 1980, 45, 32–34. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, C.Z.; Li, B.K.; Lin, D.R.; Chen, H. Research progress in tofu processing: From raw materials to processing conditions. Crit. Rev. Food Sci. Nutr. 2018, 58, 1–85. [Google Scholar] [CrossRef]
- Zhou, S.H.; Chen, Y.; Zhang, M.; Liu, J.; Wang, J.Y.; Guo, S. Study of molecular forces in formation of brine concentrated tofu gelatin. Food Res. Dev. 2013, 34, 15–19. [Google Scholar] [CrossRef]
- Liu, L.S.; Jin, Y.; Zhang, X.F.; Zhang, Q.; Bai, J.; Guo, H.; Peng, Y.J. Comparative Study on Structure and Chemical Interaction Between Brine Tofu and GDL Tofu. Food Sci. Technol. 2020, 45, 60–64. [Google Scholar] [CrossRef]
- Yang, F.; Pan, S.Y.; Zhang, C.L. Structural Change of Protein during Tofu Gelation Process. Food Sci. 2009, 30, 120–124. [Google Scholar] [CrossRef]
- Jin, Y.; Liu, L.S.; Zhang, X.F.; Zhang, Q.; Bai, J.; Guo, H.; Peng, Y.J. Effects of Coagulation Temperature on Gelling Properties and Chemical Forces of Lactone Tofu. Food Sci. 2020, 636, 58–64. [Google Scholar]
- Liu, Z.S.; Li, L.T.; Eizo, T. Study on properties of tofu salt-coagulant and mechanism of tofu coagulation. Cereals Oils Assoc. 2000, 3, 39–43. [Google Scholar] [CrossRef]
- Liu, H.H.; Kuo, M.I. Effect of microwave heating on the viscoelastic property and microstructure of soy protein isolate gel. J. Texture Stud. 2011, 42, 1–9. [Google Scholar] [CrossRef]
- Li, Z.; Regenstein, J.M.; Fei, T.; Yang, L. Tofu products: A review of their raw materials, processing conditions, and packaging. Compr. Rev. Food Sci. Food Saf. 2020, 19, 1–8. [Google Scholar] [CrossRef]
- Liu, L.L.; Zhu, X.Q.; Sun, B.Y.; Zeng, J.H.; Yang, Y.; Shi, Y.G. Change of protein in the processing of acid wheytofu. In Proceedings of the Abstracts of Food Summit in China and 16th Annual Meeting of CIFST, Wuhan, China, 13–14 November 2019. [Google Scholar]
- Fuke, Y.; Sekiguchi, M.; Matsuoka, H. Nature of stem bromelain treatments on the aggregation and gelation of soybean proteins. J. Food Sci. 1985, 50, 1283–1288. [Google Scholar] [CrossRef]
- Luan, G.Z.; Li, L.T. Study on coagulation of soybean milk by protease. Food Ind. Sci. Technol. 2006, 1, 71–74. [Google Scholar] [CrossRef]
- Luan, G.Z.; Cheng, Y.Q.; Lu, Z.H.; Li, L.T. Development of soymilk clotting enzyme researching. Acad. Period. Farm Prod. Process. 2006, 10, 41–43. [Google Scholar] [CrossRef]
- Yang, H.P.; Hua, Y.F.; Chen, Y.M.; Zhang, C.M.; Kong, X.Z. Effect of transglutaminase on rupture strength of GDL Tofu and its mechanism. Food Ferment. Ind. 2018, 44, 8–12. [Google Scholar] [CrossRef]
- Li, J.L.; Cheng, Y.Q.; Jiao, X.; Zhu, Q.M.; Yin, L.J. Effect of W/O and W/O/W controlled-release emulsion coagulants on characteristic of bittern-solidified tofu. Trans. Chin. Soc. Agric. Mach. 2013, 44, 162–168. [Google Scholar] [CrossRef]
- Li, J.L. Preparation of W/O and W/O/W Emulsion Coagulation and Their Improvement to the Quality of Traditional Bittern-Solidified Tofu; China Agricultural University: Beijing, China, 2014. [Google Scholar]
- Li, J.; Qiao, Z.; Tatsumi, E.; Saito, M.; Cheng, Y.; Yin, L. A novel approach to improving the quality of bittern-solidified tofu by w/o controlled-release coagulant. 1: Preparation of W/O bittern coagulant and its controlled-release property. Food Bioprocess Tech. 2013, 6, 1790–1800. [Google Scholar] [CrossRef]
- Li, J.; Qiao, Z.; Tatsumi, E.; Saito, M.; Cheng, Y.; Yin, L. A novel approach to improving the quality of bittern-solidified tofu by w/o controlled-release coagulant. 2: Using the improved coagulant in tofu processing and product evaluation. Food Bioprocess Techol. 2013, 6, 1801–1808. [Google Scholar] [CrossRef]
- Zhu, Q.M.; Li, J.L.; Liu, Y.; Yin, L.Y. Effect of new W/O halogen coagulant on moisture change in soybean protein gel. J. Chin. Cereals Oils Assoc. 2014, 29, 100–105. [Google Scholar] [CrossRef]
- Yu, X.; Huang, X.D. Traditional Soybean Products Processing Technology, 1st ed.; Chemical Industry Press: Beijing, China, 2011; pp. 11–90. ISBN 978-7-122-10594-3. [Google Scholar]
- Yang, M.; Zhang, Q.C. Discussion on improving the quality of lactone tofu. Food Sci. 1997, 2, 72–73. [Google Scholar]
- He, Y.D. Production Technology and Deep Processing Technology of Soybean Products, 1st ed.; Agricultural Press: Beijing, China, 1990; pp. 1–50. ISBN 7-109-01670-6. [Google Scholar]
- Wang, X.; Luo, K.; Liu, S.; Adhikari, B.; Chen, J. Improvement of gelation properties of soy protein isolate emulsion induced by calcium cooperated with magnesium. J. Food Eng. 2019, 244, 32–39. [Google Scholar] [CrossRef]
- Khoder, R.M.; Yin, T.; Liu, R.; Xiong, S.; Huang, Q. Effects of nano fish bone on gelling properties of tofu gel coagulated by citric acid. Food Chem. 2020, 332. [Google Scholar] [CrossRef]
- Zhao, Y.Y.; Cao, F.H.; Li, X.J.; Mu, D.D.; Zhong, X.Y.; Jiang, S.T.; Zheng, Z.; Luo, S.Z. Effects of different salts on the gelation behaviour and mechanical properties of citric acid-induced tofu. Int. J. Food Sci. Technol. 2019, 55, 785–794. [Google Scholar] [CrossRef]
- Xing, G.; Giosafatto, C.V.L.; Carpentieri, A.; Pasquino, R.; Dong, M.; Mariniello, L. Gelling behavior of bio-tofu coagulated by microbial transglutaminase combined with lactic acid bacteria. Food Res. Int. 2020, 134. [Google Scholar] [CrossRef] [PubMed]
- Shi, N.; Xu, H.W.; Chen, H.Q.; Zhang, Y.Y.; Guo, K.Y.; Liu, S.; Dong, B.; Ma, Y.L.; Tan, J.X. Optimization of preparation process of colored tender tofu with compound coagulant. J. Food Sci. Technol. 2019, 37, 93–99. [Google Scholar] [CrossRef]
- Li, M.; Chen, F.S.; Yang, H.S.; Wang, M.L.; Lai, S.J. Effect of magnesium chloride guar gum mixture on the coagulation process of tofu. Grain Fats 2014, 27, 30–33. [Google Scholar] [CrossRef]
- Li, M.; Chen, F.; Yang, B.; Lai, S.; Yang, H.; Liu, K.; Bu, G.; Fu, C.; Deng, Y. Preparation of organic tofu using organic compatible magnesium chloride incorporated with polysaccharide coagulants. Food Chem. 2015, 167, 168–174. [Google Scholar] [CrossRef]
- Cao, F.H. Study on Formation and Gel Mechanism of Bean Curd Induced by Organic Acids; Hefei University of Technology: Hefei, China, 2018. [Google Scholar]
- Zhao, H.; Chen, J.; Hemar, Y.; Cui, B. Improvement of the rheological and textural properties of calcium sulfate- induced soy protein isolate gels by the incorporation of different polysaccharides. Food Chem. 2020, 310. [Google Scholar] [CrossRef]
- No, H.K.; Meyers, S.P. Preparation of tofu using chitosan as a coagulant for improved shelf-life. Int. J. Food Sci. Technol. 2004, 39, 133–141. [Google Scholar] [CrossRef]
- Zhao, X.Y.; Wang, S.H.; Deng, C.K. Applied research of chitosan in processing of pressure lactone bean curd. Sci. Technol. Food Ind. 2012, 4, 177–180+186. [Google Scholar]
- Jun, J.Y.; Jung, M.J.; Jeong, I.H.; Kim, G.W.; Sim, J.M.; Nam, S.Y.; Kim, B.M. Effects of crab shell extract as a coagulant on the textural and sensorial properties of tofu (soybean curd). Food Sci. Nutr. 2019, 7, 547–553. [Google Scholar] [CrossRef]
- Schaefer, M.J.; Love, J. Relationships between soybean components and tofu texture. J. Food Qual. 2010, 15, 53–66. [Google Scholar] [CrossRef]
- Saio, K.; Watanabe, T.; Koyama, E.; Yamazaki, S. Protein-Calcium-Phytic acid relationships in soybean: Part III. Effect of phytic acid on coagulative reaction in tofu-making. Agric. Biol. Chem. 1969, 33, 36–42. [Google Scholar] [CrossRef] [Green Version]
- Ishiguro, T.; Ono, T.; Wada, T.; Tsukamoto, C.; Kono, Y. Changes in soybean phytate content as a result of field growing conditions and influence on tofu texture. Biosci. Biotechnol. Biochem. 2006, 70, 874–880. [Google Scholar] [CrossRef] [Green Version]
- Zhao, L.; Zhu, J.; Su, E.Y.; Yang, H.W.; Hu, Z.Y.; Li, L. Effect of processing conditions on quality and protein secondary structure in southern tofu. Food Sci. 2019, 40, 62–69. [Google Scholar]
- Shimizu, S.; Stenner, R.; Matubayasi, N. Statistical thermodynamics of biomolecular denaturation and gelation from the Kirkwood-Buff theory towards the understanding of tofu. Food Hydrocolloid 2017, 62, 128–139. [Google Scholar] [CrossRef]
- Wu, H.; Wu, T.; Chen, Z.J. Research on the new preservative technology of tofu. Mod. Food Sci. Technol. 2005, 21, 1–4. [Google Scholar]
- Obatolu, V.A. Effect of different coagulants on yield and quality of tofu from soymilk. Eur. Food Res. Technol. 2008, 226. [Google Scholar] [CrossRef]
- Kobayashi, R.; Ishiguro, T.; Ozeki, A.; Kawai, K.; Suzuki, T. Property changes of frozen soybean curd during frozen storage in “Kori-tofu” manufacturing process. Food Hydrocolloid 2020, 104. [Google Scholar] [CrossRef]
- Ward, G. Modified atmosphere packaging for extending storage life of fresh fruits and vegetables. Ref. Modul. Food Sci. 2016, 2, 1–8. [Google Scholar]
Component | Ingredient | Structure | pH | Relative Molecular Mass | |
---|---|---|---|---|---|
A | B | ||||
2S (15~22%) | Trasylol | 4.5 | 8000~21,500 | 15,000~30,000 | |
Cytochrome C | 10.2~10.8 | 12,000 | |||
7S (34~37%) | Hemagglutinin | - | 102,000 | 100,000~200,000 | |
Lipoxygenase | 5.7~6.4 | 102,000 | |||
β-amylase | 5.0~6.5 | 61,700 | |||
β-Conglycinin | 5.07~5.88 | 180,000~210,000 | |||
11S (31~42%) | Glycinin | 5.28~5.78 | 350,000 | 350,000 | |
15S (9~10%) | - | - | - | 600,000 | 600,000 |
Protein | Subunit | Molecular Weight (kDa) | Isoelectric Point |
---|---|---|---|
7S β-Conglycinin | α | 57~72 | 5.23 |
α’ | 57~68 | 5.07 | |
β | 45~52 | 5.88 | |
11S Glycinin | A1aB1b | 53.6 | - |
A2B1a | 52.4 | - | |
A1bB2 | 52.2 | - | |
A5A4B3 | 61.2 | - | |
A3B4 | 55.4 | - | |
A1a | - | 5.78 | |
A1b | - | 5.28 | |
B1a | - | 5.46 | |
B1b | - | 5.73 | |
A2 | - | 5.46 | |
A3 | - | 5.60 | |
A4 | - | 5.29 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guan, X.; Zhong, X.; Lu, Y.; Du, X.; Jia, R.; Li, H.; Zhang, M. Changes of Soybean Protein during Tofu Processing. Foods 2021, 10, 1594. https://doi.org/10.3390/foods10071594
Guan X, Zhong X, Lu Y, Du X, Jia R, Li H, Zhang M. Changes of Soybean Protein during Tofu Processing. Foods. 2021; 10(7):1594. https://doi.org/10.3390/foods10071594
Chicago/Turabian StyleGuan, Xiangfei, Xuequn Zhong, Yuhao Lu, Xin Du, Rui Jia, Hansheng Li, and Minlian Zhang. 2021. "Changes of Soybean Protein during Tofu Processing" Foods 10, no. 7: 1594. https://doi.org/10.3390/foods10071594
APA StyleGuan, X., Zhong, X., Lu, Y., Du, X., Jia, R., Li, H., & Zhang, M. (2021). Changes of Soybean Protein during Tofu Processing. Foods, 10(7), 1594. https://doi.org/10.3390/foods10071594