Biochemical Characterization of Traditional Varieties of Apricots (Prunus armeniaca L.) of the Campania Region, Southern Italy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Plant Material
2.3. Dosage of Ascorbic Acid
2.4. Carotene Content
2.5. Total Polyphenols
2.6. Antioxidant Activity
2.7. Chromatographic Analysis
2.8. Statistical Analysis
3. Results and Discussion
3.1. Ascorbic Acid Content
3.2. β-Carotene Content
3.3. Total Polyphenols Content
3.4. Antioxidant Activity
3.5. Polyphenol Profile
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hormaza, J.I.; Yamane, H.; Rodrigo, J. Apricot. In Genome Mapping and Molecular Breeding in Plants; Kole, C., Ed.; Fruits and Nuts; Springer: Berlin/Heidelberg, Germany, 2007; Volume 4, pp. 171–187. [Google Scholar]
- Gatti, E.; Defilippi, B.G.; Predieri, S.; Infante, R. Apricot (Prunus armeniaca L.) quality and breeding perspectives. J. Food Agric. Environ. 2009, 7, 573–580. [Google Scholar]
- Glisic, I.; Milosevic, T.; Milosevic, N.; Nikolic, R.; Paunovic, G. Agroeconomic analysis of apricot production in early years after planting. In Book of Proceedings: Fifth International Scientific Agricultural Symposium “Agrosym 2014”; University of East Sarajevo, Faculty of Agriculture: Lukavica, Republika Srpska, 2014; pp. 215–220. [Google Scholar]
- Fratianni, F.; d’Acierno, A.; Cipriano, L.; Nazzaro, F. Apricots: Biochemistry and functional properties. Curr. Opin. Food Sci. 2018, 19, 23–29. [Google Scholar] [CrossRef]
- Sharma, R.; Gupta, A.; Abrol, G.S.; Joshi, V.K. Value addition of wild apricot fruits grown in North-West Himalayan regions. J. Food Sci. Technol. 2014, 51, 2917–2924. [Google Scholar] [CrossRef] [Green Version]
- Leccese, A.; Bartolini, S.; Viti, R. Total antioxidant capacity and phenolics content in fresh apricots. Acta Aliment. 2008, 37, 65–76. [Google Scholar] [CrossRef]
- Gecer, M.K.; Kan, T.; Gundogdu, M.; Ercisli, S.; Ilhan, G.; Sagbas, H.I. Physicochemical characteristics of wild and cultivated apricots (Prunus armeniaca L.) from Aras valley in Turkey. Genet. Resour. Crop Evol. 2020, 67, 935–945. [Google Scholar] [CrossRef]
- Rashid, F.; Ahmed, R.; Mahmood, A.; Ahmad, Z.; Bib, P.N.; Urooj Kazm, S.U. Flavonoid glycosides from Prunus armeniaca and the antibacterial activity of a crude extract. Arch. Pharmacal Res. 2007, 30, 932–937. [Google Scholar] [CrossRef]
- Minaiyan, M.; Ghannadi, A.; Asadi, M.; Etemad, M.; Mahzouni, P. Antiinflammatory effect of Prunus armeniaca L. (Apricot) extracts ameliorates TNBS-induced ulcerative colitis in rats. Res. Pharm. Sci. 2014, 9, 225–231. [Google Scholar] [PubMed]
- Jaafar, H.J. Effects of Apricot and Apricot Kernels on Human Health and Nutrition: A Review of Recent Human Research. Tech. BioChemMed 2021, 2, 139–162. [Google Scholar] [CrossRef]
- Garcia-Gomez, B.E.; Ruiz, D.; Salazar, J.A.; Rubio, M.; Martinez-Garcia, P.J.; Martinez Gomez, P. Analysis of Metabolites and Gene Expression Changes Relative to Apricot (Prunus armeniaca L.) Fruit Quality During Development and Ripening. Front. Plant Sci. 2020, 11, 1–24. [Google Scholar] [CrossRef] [PubMed]
- Alajil, O.; Sagar, V.R.; Kaur, C.; Rudra, S.G.; Sharma, R.R.; Kaushik, R.; Verma, M.K.; Tomar, M.; Kumar, M.; Mekhemar, M. Nutritional and Phytochemical Traits of Apricots (Prunus armeniaca L.) for Application in Nutraceutical and Health Industry. Foods 2021, 10, 1344. [Google Scholar] [CrossRef]
- Perez-Jimenez, J.; Neveu, V.; Vos, F.; Scalbert, A. Identification of the 100 richest dietary sources of polyphenols: An application of the Phenol-Explorer database. Eur. J. Clin. Nutr. 2010, 64, S112–S120. [Google Scholar] [CrossRef]
- Wani, S.M.; Masoodi, F.A.; Wani, T.A.; Ahmad, M.; Gani, A.; Ganai, S.A. Physical characteristics, mineral analysis and antioxidant properties of some apricot varieties grown in North India. COG Food Agric. 2015, 1, 1–10. [Google Scholar] [CrossRef]
- Erdogan-Orhan, I.; Kartal, M. Insights into research on phytochemistry and biological activities of Prunus armeniaca L. (apricot). Food Res. Int. 2011, 44, 1238–1243. [Google Scholar] [CrossRef]
- Nazzaro, F.; Caliendo, G.; Arnesi, G.; Veronesi, A.; Sarzi, P.; Fratianni, F. Comparative content of some bioactive compounds in two varieties of Capsicum annuum L. Sweet pepper and evaluation of their antimicrobial and mutagenic activities. J. Food Biochem. 2009, 33, 852–868. [Google Scholar] [CrossRef]
- Fratianni, F.; d’Acierno, A.; Cozzolino, A.; Spigno, P.; Riccardi, R.; Raimo, F.; Pane, C.; Zaccardelli, M.; Tranchida Lombardo, V.; Tucci, M.; et al. Biochemical Characterization of Traditional Varieties of Sweet Pepper (Capsicum annuum L.) of the Campania Region, Southern Italy. Antioxidants 2020, 9, 556. [Google Scholar] [CrossRef] [PubMed]
- Fratianni, F.; Cozzolino, A.; d’Acierno, A.; Nazzaro, F.; Riccardi, R.; Spigno, P. Qualitative Aspects of Some Traditional Landraces of the Tomato “Piennolo” (Solanum lycopersicum L.) of the Campania Region, Southern Italy. Antioxidants 2020, 9, 565. [Google Scholar] [CrossRef] [PubMed]
- Singleton, V.L.; Rossi, J.A. Colorimetry of Total Phenolics with Phosphomolybdic Phosphotungstic Acid Reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar]
- Ombra, M.N.; d’Acierno, A.; Nazzaro, F.; Riccardi, R.; Spigno, P.; Zaccardelli, M.; Pane, C.; Maione, M.; Fratianni, F. Phenolic composition and antioxidant and antiproliferative activities of the extracts of twelve common bean (Phaseolus vulgaris L.) endemic ecotypes of Southern Italy before and after cooking. Oxiddative Med. Cell. Longev. 2016, 2016, 1398298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pane, C.; Fratianni, F.; Parisi, M.; Nazzaro, F.; Zaccardelli, M. Control of Alternaria post-harvest infections on cherry tomato fruits by wild pepper phenolic-rich extracts. Crop Prot. 2016, 84, 81–87. [Google Scholar] [CrossRef]
- Wani, S.M.; Riyaz, U.; Wani, T.A.; Ahmad, M.; Gani, A.; Masoodi, F.A.; Dar, B.N.; Nazir, S.A. Mir, S.A. Influence of processing on physicochemical and antioxidant properties of Apricot (Prunus armeniaca L. variety Narmo. Cogent Food Agric. 2016, 2, 1176287. [Google Scholar]
- Ishaq, A.; Rathore, H.A.; Masud, T.; Ali, S. Influence of post harvest calcium chloride application, ethylene absorbent and modified atmosphere on quality characteristics and shelf life of apricot (Prunus armeniaca L.) fruit during storage. Pak. J. Nutr. 2009, 8, 861–865. [Google Scholar] [CrossRef] [Green Version]
- Hegedus, A.; Engel, R.; Abranko, L.; Balogh, E.; Blazovics, A.; Herman, R.; Halasz, J.; Ercisli, S.; Pedryc, A.; Stefanovits-Banyai, E. Antioxidant and Antiradical Capacities in Apricot (Prunus armeniaca L.) Fruits: Variations from Genotypes, Years, and Analytical Methods. J. Food Sci. 2010, 75, C722–C730. [Google Scholar] [CrossRef] [PubMed]
- Akin, E.B.; Karabulut, I.; Topcu, A. Some compositional properties of main Malatya apricot (Prunus armeniaca L.) varieties. Food Chem. 2008, 107, 939–948. [Google Scholar] [CrossRef]
- Derardja, A.; Pretzler, M.; Kampatsikas, I.; Barkat, M.; Rompel, A. Inhibition of apricot polyphenol oxidase by combinations of plant proteases and ascorbic acid. Food Chem. X 2019, 4, 100053. [Google Scholar] [CrossRef]
- Cui, K.; Zhao, H.; Sun, L.; Yang, L.; Cao, J.; Jiang, W. Impact of near freezing temperature storage on post harvest quality and antioxidant capacity of two apricots (Prunus armeniaca L.). J. Food Biochem. 2019, 43, e12857. [Google Scholar] [CrossRef]
- Wani, S.M.; Hussain, P.R.; Masoodi, F.A.; Ahmad, M.; Wani, T.A.; Gani, A.; Rather, S.A.; Suradkar, P. Evaluation of the Composition of Bioactive Compounds and Antioxidant Activity in Fourteen Apricot Varieties of North India. J. Agric. Sci. 2017, 9, 66–82. [Google Scholar] [CrossRef]
- Kafkaletou, M.; Kalantzis, I.; Karantzi, A.; Christopoulos, M.V.; Tsantili, E. Phytochemical characterization in traditional and modern apricot (Prunus armeniaca L.) cultivars—Nutritional value and its relation to origin. Sci. Hortic. 2019, 253, 195–202. [Google Scholar] [CrossRef]
- Nourozi, F.; Sayyari, M. Enrichment of Aloe vera gel with basil seed mucilage preserves bioactive compounds and postharvest quality of apricot fruits. Sci. Hortic. 2020, 262, 109041. [Google Scholar] [CrossRef]
- Leccese, A.; Viti, R.; Bartolini, S. The effect of solvent extraction on antioxidant properties of apricot fruit. Cent. Eur. J. Biol. 2011, 6, 199–204. [Google Scholar] [CrossRef]
- Zhou, W.; Niu, Y.; Ding, X.; Zhao, S.; Lia, Y.; Fan, G.; Zhang, S.; Liao, K. Analysis of carotenoid content and diversity in apricots (Prunus armeniaca L.) grown in China. Food Chem. 2020, 330, 127223. [Google Scholar] [CrossRef]
- Ayour, J.; Sagar, M.; Alfeddy, M.N.; Taourirte, M.; Benichou, M. Evolution of pigments and their relationship with skin color based on ripening in fruits of different Moroccan genotypes of apricots (Prunus armeniaca L.). Sci. Hortic. 2016, 207, 168–175. [Google Scholar] [CrossRef]
- Bennett, L.E.; Jegasothy, H.; Konczak, I.; Frank, D.; Sudharmarajan, S.; Clingeleffer, P.R. Total polyphenolics and anti-oxidant properties of selected dried fruits and relationships to drying conditions. J. Funct. Foods 2011, 3, 115–124. [Google Scholar] [CrossRef]
- Pék, Z.; Szuvandzsiev, P.; Daood, H.; Neményi, A.; Helyes, L. Effect of irrigation on yield parameters and antioxidant profiles of processing cherry tomato. Cent. Eur. J. Biol. 2014, 9, 383–395. [Google Scholar] [CrossRef] [Green Version]
- Dragovic-Uzelac, V.; Levaj, B.; Mrkic, V.; Bursac, D.; Boras, M. The content of polyphenols and carotenoids in three apricot cultivars depends on the stage of maturity and geographical region. Food Chem. 2007, 102, 966–975. [Google Scholar] [CrossRef]
- Rupinder, S.; Smita, R.N.D.U. Phenylpropanoid metabolism in ripening fruits. Compr. Rev. Food Sci. Food Saf. 2010, 9, 398–416. [Google Scholar]
- Wang, H.; Cao, G.; Prior, R.L. Total antioxidant capacity of citrus. J. Agric. Food Chem. 1996, 44, 701–705. [Google Scholar] [CrossRef]
- Drogoudi, P.D.; Vemmos, S.; Pantelidis, G.; Petri, E.; Tzoutzoukou, C.; Karayiannis, I. Physical characters and antioxidant, sugar, and mineral nutrient contents in fruit from 29 apricot (Prunus armeniaca L.) cultivars and hybrids. J. Agric. Food Chem. 2008, 56, 10754–10760. [Google Scholar] [CrossRef]
- Hussain, P.R.; Chatterjee, S.; Variyar, P.S.; Sharma, A.; Dar, M.A.; Wani, A.M. Bioactive compounds and antioxidant activity of gamma-irradiated sun-dried apricots (Prunus armeniaca L.). J. Food Comp. Anal. 2013, 30, 59–66. [Google Scholar] [CrossRef]
- Čanadanović-Brunet, J.M.; Vulić, J.J.; Ćetković, G.S.; Djilas, S.M.; Tumbas-Šaponjac, V.T. Bioactive compounds and antioxidant properties of dried apricot. Acta Period. Technol. 2013, 44, 193–205. [Google Scholar] [CrossRef]
- Djenidi, H.; Khennouf, S.; Bouaziz, A. Antioxidant activity and phenolic content of commonly consumed fruits and vegetables in Algeria. Prog. Nutr. 2020, 22, 224–235. [Google Scholar] [CrossRef]
- Vardi, N.; Parlakpinar, H.; Ozturk, F.; Ates, B.; Gul, M.; Cetin, A.; Erdogan, A.; Otlu, A. Potent protective effect of apricot and β-carotene on methotrexate-induced intestinal oxidative damage in rats. Food Chem. Toxicol. 2008, 46, 3015–3022. [Google Scholar] [CrossRef]
- Ugras, M.Y.; Kurus, M.; Ates, B.; Soylemez, H.; Otlu, A.; Yilmaz, A. Prunus armeniaca L. (apricot) protects rat testes from detrimental effects of low-dose x-rays. Nutr. Res. 2010, 30, 200–208. [Google Scholar] [CrossRef]
- Ishiwata, K.; Yamaguchi, T.; Takamura, H.; Matoba, T. DPPH radical-scavenging activity and polyphenol content in dried fruits. Food Sci. Technol. Res. 2004, 10, 152–156. [Google Scholar] [CrossRef] [Green Version]
- Göttingerová, M.; Kumšta, M.; Rampáčková, E.; Kiss, T.; Nečas, T. Analysis of phenolic compounds and some important analytical properties in selected apricot genotypes. Hortiscience 2021, 56, 1–7. [Google Scholar] [CrossRef]
- Gundogdu, M.; Ercisli, S.; Berk, S.; Kan, T.; Canan, I.; Gecer, M.K. Diversity on color and phenolic compounds in apricot fruits. J. Food Meas. Charact. 2017, 11, 2087–2093. [Google Scholar] [CrossRef]
- Spínola, V.; Pinto, J.; Llorent-Martínez, E.J.; Tomas, H.; Castilho, P.C. Evaluation of Rubus grandifolius L.(wild blackberries) activities targeting management of type-2 diabetes and obesity using in vitro models. Food Chem. Toxicol. 2019, 123, 443–452. [Google Scholar] [CrossRef]
- Moine, E.; Brabet, P.; Guillou, L.; Durand, T.; Vercauteren, J.; Crauste, C. New lipophenol antioxidants reduce oxidative damage in retina pigment epithelial cells. Antioxidants 2018, 7, 197. [Google Scholar] [CrossRef] [Green Version]
- Ortiz López, L.; Márquez Valadez, B.; Gómez Sánchez, A.; Silva-Lucero, M.D.C.; Ortiz-López, L.; Márquez-Valadez, B.; Gómez-Sánchez, A. Green tea compound epigallo cathechin 3 gallate (EGCG) increases neuronal survival in adult hippocampal neurogenesis in vivo and in vitro. Neuroscience 2016, 322, 208–220. [Google Scholar] [CrossRef]
- Oyama, J.; Shiraki, A.; Nishikido, T.; Maeda, T.; Komoda, H.; Shimizu, T.; Makino, N.; Node, K. EGCG, a green tea catechin, attenuates the progression of heart failure induced by the heart/muscle specific deletion of MnSOD in mice. J. Cardiol. 2017, 69, 417–427. [Google Scholar] [CrossRef] [Green Version]
- Kapoor, M.P.; Sugita, M.; Nishimura, A.; Sudo, S.; Okubo, T. Influence of acute ingestion and regular intake of green tea catechins on resting oxidative stress biomarkers assays in a paralleled randomized controlled crossover supplementation study in healthy men. J. Funct. Foods 2018, 45, 381–391. [Google Scholar] [CrossRef]
- Nazzaro, F.; Fratianni, F.; Cozzolino, R.; Martignetti, A.; Malorni, L.; De Feo, V.; Cruz, A.G.; d’Acierno, A. Antibacterial activity of three extra virgin olive oils of the Campania region, Southern Italy, related to their polyphenol content and composition. Microorganisms 2019, 7, 321. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Xiao, X.; Li, K.; Li, X.; Shi, B.; Liao, X. Synthesis of catechin rare earth complex with efficient and broad spectrum anti biofilm activity. Chem. Biodivers. 2020, 17, e1900734. [Google Scholar] [CrossRef]
- Qu, Z.; Liu, A.; Li, P.; Liu, C.; Xiao, W.; Huang, J.; Liu, Z.; Zhang, S. Advances in physiological functions and mechanisms of (−)-epicatechin. Crit. Rev. Food Sci. Nutr. 2020, 61, 211–233. [Google Scholar] [CrossRef] [PubMed]
- Ragheb, S.R.; Mohamed, L.; El Wakeel, L.M.; Nasr, M.S.; Sabri, N.A. Impact of rutin and vitamin C combination on oxidative stress and glycemic control in patients with type 2 diabetes. Clin. Nutr. ESPEN 2020, 35, 128–135. [Google Scholar] [CrossRef] [PubMed]
- Iglesias-Carres, L.; Mas-Capdevila, A.; Bravo, F.I.; Bladé, C.; Arola-Arnal, A.; Muguerza, B. Optimization of extraction methods for characterization of phenolic compounds in apricot fruit (Prunus armeniaca). Food Funct. 2019, 10, 6492–6502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Varieties | Ascorbic Acid (mg 100 g−1 FW) | β-Carotene (mg 100 g−1 FW) | Total Polyphenols (mg 100 g−1 FW) | Antioxidant Activity (EC50, mg) |
---|---|---|---|---|
BARACCA | 4.05 (±0.13) | 0.408 (±0.52) | 29.88 (±11.382) | 10.15 (±0.04) |
BOCCUCCIA EBOLI | 6.04 (±0.09) | 0.307 (±0.68) | 35.87 (±15.29) | 6.60 (±0.12) |
BOCCUCCIA GROSSA | 4.09 (±0.15) | 0.223 (±0.26) | 22.130 (±19.87) | 12.79 (±0.16) |
BOCCUCCIA LISCIA | 7.73 (±0.36) | 0.235 (±0.28) | 22.38 (±12.57) | 11.18 (±0.11) |
BOCCUCCIA SPINOSA | 9.80 (±0.21) | 0.134 (±0.04) | 22.020 (±9.32) | 9.32 (±0.15) |
CAMPANA | 5.72 (±0.22) | 0.134 (±0.06) | 19.96 (±10.67) | 7.46 (±0.07) |
DIAVOLA | 3.58 (±0.38) | 0.126 (±0.03) | 16.728 (±1.82) | 11.49 (±0.10) |
FRACASSO | 9.27 (±0.21) | 0.088 (±0.02) | 20.168 (±8.43) | 8.96 (±0.15) |
FRONNE FRESCHE | 4.07 (±0.10) | 0.100 (±0.04) | 9.952 (±3.31) | 11.54 (±0.20) |
LISANDRINA | 8.79 (±0.10) | 0.062 (±0.02) | 12.821 (±2.21) | 9.49 (±0.31) |
MAGNOLONA | 10.08 (±0.02) | 0.152 (±0.04) | 22.983 (±2.87) | 8.41 (±0.03) |
MONTEDORO | 4.2 (±0.21) | 0.06 (±0.02) | 10.574 (±0.64) | 14.87 (±0.47) |
NONNO | 5.24 (±0.16) | 0.089 (±0.08) | 17.173 (±2.90) | 8.14 (±0.45) |
PANZONA | 3.56 (±0.35) | 0.314 (±0.04) | 9.142 (±0.92) | 17.14 (±0.09) |
PAOLONA | 4.20 (±0.19) | 0.271 (±0.07) | 11.281 (±1.55) | 12.27 (±0.15) |
PAZZA | 4.25 (±0.19) | 0.147 (±0.03) | 20.753 (±2.89) | 10.12 (±0.33) |
POLLASTRELLA | 4.86 (±0.12) | 0.134 (±0.05) | 7.532 (±1.78) | 13.49 (±0.25) |
PUZO | 3.59 (±0.20) | 0.057 (±0.02) | 17.433 (±2.86) | 11.52 (±0.41) |
SAN FRANCESCO | 5.64 (±0.33) | 0.092 (±0.02) | 27.879 (±0.79) | 6.88 (±0.22) |
SCASSULILLO | 8.92 (±0.17) | 0.114 (±0.02) | 8.303 (±2.65) | 10.58 (±0.23) |
SCASSULILLO GRANDE | 9.85 (±0.24) | 0.100 (±0.03) | 24.424 (±3.87) | 8.42 (±0.13) |
SIGNORA | 3.47 (±0.26) | 0.208 (±0.03) | 17.075 (±7.73) | 9.26 (±0.10) |
ZEPPONA | 4.86 (±0.12) | 0.112 (±0.05) | 26.329 (±11.60) | 7.62 (±0.08) |
tipo 35 | 4.42 (±0.43) | 0.194 (±0.03) | 13.789 (±3.53) | 8.98 (±0.23) |
QUE | CAF | GAL | CHLO | CAT | EPIC | COUM | RUT | FER | LUT | API | |
---|---|---|---|---|---|---|---|---|---|---|---|
Baracca | 0.286 (±0.03) | 8.77 (±0.65) | 11.70 (±0.91 | 55.07 (±4.24) | 89.66 (±6.54) | 36.34 (±3.27) | 1.81 (±0.04) | 39.54 (±3.74) | 4.44 (±0.57) | 0.00 (±0.00) | 0.24 (±0.01) |
Boccuccia Eboli | 1.83 (±0.05) | 27.16 (±1.67) | 8.45 (±1.13) | 53.40 (±2.67) | 96.15 (±4.37) | 40.88 (±3.33) | 4.69 (±0.73) | 53.76 (±4.57) | 7.78 (±0.64) | 4.75 (±0.21) | 2.27 (±0.14) |
Boccuccia Grossa | 0.00 (±0.00) | 13.97 (±1.13) | 6.30 (±0.57) | 46.50 (±4.67) | 50.16 (±4.67) | 28.09 (±1.57) | 6.34 (±0.23) | 19.92 (±1.23) | 11.07 (±1.02) | 2.70 (±0.97) | 0.00 (±0.00) |
Boccuccia Liscia | 0.00 (±0.00) | 20.26 (±1.57) | 7.29 (±1.23) | 48.12 (±2.67) | 51.39 (±2.67) | 30.31 (±3.09) | 3.84 (±0.44) | 20.86 (±1.13) | 5.71 (±0.94) | 2.14 (±0.07) | 0.00 (±0.00) |
Campana | 2.82 (±0.03) | 9.98 (±1.12) | 5.34 (±1.07) | 34.87 (±3.47) | 55.64 (±3.35) | 32.41 (±4.04) | 1.93 (±0.06) | 22.26 (±1.66) | 2.78 (±0.67) | 0.00 (±0.00) | 0.00 (±0.00) |
Diavola | 0.00 (±0.00) | 9.69 (±0.57) | 7.71 (±1.44) | 32.33 (±2.67) | 42.88 (±1.57) | 18.47 (±1.57) | 2.64 (±023) | 23.42 (±0.03) | 3.36 (±0.03) | 0.45 (±0.05) | 0.00 (±0.00) |
Fracasso | 0.00 (±0.00) | 15.80 (±0.57) | 8.00 (±1.23) | 38.18 (±2.12) | 42.63 (±3.44) | 11.17 (±0.97) | 2.09 (±0.21) | 42.89 (±1.67) | 6.34 (±1.12) | 2.99 (±0.45) | 0.00 (±0.00) |
Fronne Fresche | 0.00 (±0.00) | 2.46 (±0.43) | 4.51 (±1.05) | 20.09 (±1.54) | 19.52 (±1.47) | 7.19 (±1.02) | 0.82 (±0.04) | 26.19 (±2.01) | 1.42 (±0.22) | 2.39 (±0.37) | 0.00 (±0.00) |
Lisandrina | 0.00 (±0.00) | 11.08 (±0.84) | 5.14 (±0.63) | 14.24 (±1.02) | 49.29 (±2.04) | 12.57 (±1.02) | 2.44 (±0.14) | 9.62 (±0.67) | 1.89 (±0.57) | 2.69 (±0.08) | 0.00 (±0.00) |
Magnolona | 0.00 (±0.00) | 11.21 (±1.04) | 7.02 (±0.97) | 40.76 (±1.33) | 51.17 (±2.04) | 42.02 (±1.44) | 2.80 (±0.73) | 31.49 (±2.67) | 2.30 (±0.13) | 1.51 (±0.12) | 0.00 (±0.00) |
Montedoro | 0.00 (±0.00) | 10.50 (±1.34) | 6.39 (±0.37) | 29.97 (±2.67) | 17.20 (±1.57) | 8.06 (±1.36) | 0.80 (±0.04) | 15.47 (±1.03) | 1.93 (±0.21) | 0.00 (±0.00) | 0.00 (±0.00) |
Nonno | 0.00 (±0.00) | 9.83 (±0.57) | 4.66 (±0.57) | 42.55 (±1.15) | 38.62 (±1.67) | 19.61 (±1.33) | 1.13 (±0.08) | 24.15 (±1.05) | 2.72 (±0.14) | 3.25 (±0.45) | 0.00 (±0.00) |
Panzona | 0.00 (±0.00) | 2.86 (±0.44) | 5.38 (±0.52) | 17.01 (±1.23) | 13.00 (±1.44) | 16.93 (±1.06) | 1.25 (±0.15) | 19.19 (±0.81) | 0.83 (±0.03) | 1.07 (±0.02) | 0.00 (±0.00) |
Paolona | 0.00 (±0.00) | 7.96 (±0.70) | 5.75 (±0.12) | 22.12 (±1.44) | 28.09 (±1.67) | 8.30 (±0.74) | 1.97 (±0.12) | 25.16 (±1.67) | 1.33 (±0.02) | 3.51 (±0.43) | 0.00 (±0.00) |
Pazza | 0.00 (±0.00) | 10.59 (±0.77) | 10.36 (±0.57) | 14.73 (±0.67) | 77.50 (±2.67) | 16.68 (±1.23) | 3.89 (±0.73) | 32.77 (±1.52) | 2.59 (±0.08) | 5.91 (±0.57) | 0.00 (±0.00) |
Puzo | 0.00 (±0.00) | 12.84 (±0.62) | 6.76 (±0.14) | 33.29 (±2.23) | 47.12 (±2.54) | 21.36 (±1.57) | 1.87 (±0.54) | 17.76 (±1.24) | 3.17 (±1.04) | 2.50 (±0.15) | 0.00 (±0.00) |
San Francesco | 0.00 (±0.00) | 38.77 (±2.04) | 7.24 (±1.07) | 22.26 (±1.57) | 65.55 (±2.06) | 49.03 (±1.52) | 4.83 (±1.04) | 42.94 (±2.67) | 1.77 (±0.12) | 2.61 (±0.15) | 0.00 (±0.00) |
Scassulillo | 0.00 (±0.00) | 5.64 (±0.03) | 5.83 (±0.03) | 15.28 (±0.03) | 24.04 (±0.03) | 9.34 (±0.03) | 1.16 (±0.03) | 7.55 (±0.03) | 1.26 (±0.03) | 0.31 (±0.08) | 0.00 (±0.03) |
Scassulillo Grande | 0.00 (±0.00) | 12.28 (±0.81) | 11.52 (±1.03) | 32.61 (±0.45) | 60.56 (±3.06) | 38.76 (±2.67) | 3.34 (±1.13) | 45.95 (±2.55) | 2.84 (±0.12) | 0.00 (±0.00) | 0.00 (±0.00) |
Signora | 0.00 (±0.00) | 13.81 (±0.84) | 4.18 (±0.12) | 28.69 (±1.21) | 54.92 (±3.67) | 11.7 (±0.89) | 1.61 (±0.04) | 27.39 (±2.02) | 1.76 (±0.02) | 0.59 (±0.03) | 0.00 (±0.00) |
Zeppona | 0.00 (±0.00) | 20.43 (±1.67) | 8.19 (±0.62) | 30.09 (±2.14) | 78.96 (±2.67) | 48.02 (±1.57) | 2.66 (±0.05) | 30.32 (±2.05) | 2.91 (±0.16) | 1.93 (±0.02) | 0.00 (±0.00) |
Pollastrella | 0.00 (±0.00) | 4.43 (±0.57) | 4.00 (±0.67) | 9.94 (±1.01) | 16.75 (±1.57) | 13.73 (±1.23) | 1.36 (±0.16) | 12.55 (±1.15) | 1.15 (±0.05) | 0.00 (±0.00) | 0.00 (±0.00) |
Boccuccia Spinosa | 0.00 (±0.00) | 12.54 (±1.02) | 7.03 (±0.21) | 48.45 (±2.57) | 52.14 (±2.23) | 24.72 (±1.57) | 2.17 (±0.04) | 26.76 (±1.54) | 6.94 (±0.32) | 4.47 (±0.21) | 0.00 (±0.00) |
Tipo 35 | 0.00 (±0.00) | 13.51 (±1.02) | 5.32 (±0.87) | 11.62 (±0.97) | 39.92 (±2.05) | 11.28 (±0.84) | 1.74 (±0.04) | 28.95 (±2.23) | 2.43 (±0.04) | 2.91 (±0.03) | 0.00 (±0.00) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fratianni, F.; d’Acierno, A.; Albanese, D.; Matteo, M.D.; Coppola, R.; Nazzaro, F. Biochemical Characterization of Traditional Varieties of Apricots (Prunus armeniaca L.) of the Campania Region, Southern Italy. Foods 2022, 11, 100. https://doi.org/10.3390/foods11010100
Fratianni F, d’Acierno A, Albanese D, Matteo MD, Coppola R, Nazzaro F. Biochemical Characterization of Traditional Varieties of Apricots (Prunus armeniaca L.) of the Campania Region, Southern Italy. Foods. 2022; 11(1):100. https://doi.org/10.3390/foods11010100
Chicago/Turabian StyleFratianni, Florinda, Antonio d’Acierno, Donatella Albanese, Marisa Di Matteo, Raffaele Coppola, and Filomena Nazzaro. 2022. "Biochemical Characterization of Traditional Varieties of Apricots (Prunus armeniaca L.) of the Campania Region, Southern Italy" Foods 11, no. 1: 100. https://doi.org/10.3390/foods11010100
APA StyleFratianni, F., d’Acierno, A., Albanese, D., Matteo, M. D., Coppola, R., & Nazzaro, F. (2022). Biochemical Characterization of Traditional Varieties of Apricots (Prunus armeniaca L.) of the Campania Region, Southern Italy. Foods, 11(1), 100. https://doi.org/10.3390/foods11010100