Crickets (Acheta domesticus) as Wheat Bread Ingredient: Influence on Bread Quality and Safety Characteristics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Information about the Survey
2.2. Cricket Flour Fermentation and Breadmaking
2.2.1. Cricket (Acheta domesticus) Flour and Lactic Acid Bacteria (LAB) Strain Used for Their Fermentation
2.2.2. Cricket Flour Fermentation
2.2.3. Analysis of pH, Color Characteristics, and Lactic Acid Bacteria (LAB) Viable Counts in the Cricket Flour and Total Color Change (ΔE) in the Cricket Flour and Bread
2.2.4. Analysis of Biogenic Amine (BA) Concentration in Cricket Flour
2.2.5. Analysis of Fatty Acid (FA) and Volatile Compound (VC) Profiles in the Cricket Flour
2.2.6. Breadmaking and Quality Evaluation
2.3. Statistical Analysis
3. Results and Discussion
3.1. Survey Results
3.2. Parameters of the Non-Treated and Fermented Cricket Flour
3.2.1. Fermented and Non-Treated Cricket Flour pH, Color Coordinates, total Color Change (ΔE), and Lactic Acid Bacteria (LAB) Viable Counts
3.2.2. Biogenic Amine (BA) Concentration in Non-Treated and Fermented Cricket Flour
3.2.3. Fatty Acid (FA) and Volatile Compound (VC) Profiles of Non-Treated and Fermented Cricket Flour
3.3. Bread Quality and Safety Characteristics
3.3.1. Influence of Cricket Flour on Bread Quality Characteristics
3.3.2. Bread Overall Acceptability (OA) and Induced Emotions in Trained Judges
3.3.3. Acrylamide Content in Bread with Cricket Flour
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- de Carvalho, N.M.; Madureira, A.R.; Pintado, M.E. The Potential of Insects as Food Sources–A Review. Crit. Rev. Food Sci. Nutr. 2020, 60, 3642–3652. [Google Scholar] [CrossRef] [PubMed]
- FAO. The Future of Food and Agriculture—Trends and Challenges; FAO: Rome, Italy, 2017. [Google Scholar]
- Kipkoech, C.; Kinyuru, J.N.; Imathiu, S.; Meyer-Rochow, V.B.; Roos, N. In Vitro Study of Cricket Chitosan’s Potential as a Prebiotic and a Promoter of Probiotic Microorganisms to Control Pathogenic Bacteria in the Human Gut. Foods 2021, 10, 2310. [Google Scholar] [CrossRef]
- Ercolini, D.; Fogliano, V. Food Design to Feed the Human Gut Microbiota. J. Agric. Food Chem. 2018, 66, 3754–3758. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- D’Antonio, V.; Battista, N.; Sacchetti, G.; Mattia, C.D.; Serafini, M. Functional Properties of Edible Insects: A Systematic Review. In Nutrition Research Reviews; Cambridge University Press: Cambridge, UK, 2021; pp. 1–22. [Google Scholar] [CrossRef]
- Cappelli, A.; Oliva, N.; Bonaccorsi, G.; Lorini, C.; Cini, E. Assessment of the Rheological Properties and Bread Characteristics Obtained by Innovative Protein Sources (Cicer Arietinum, Acheta Domesticus, Tenebrio Molitor): Novel Food or Potential Improvers for Wheat Flour? LWT 2020, 118, 108867. [Google Scholar] [CrossRef]
- Del Hierro, J.N.; Gutiérrez-Docio, A.; Otero, P.; Reglero, G.; Martin, D. Characterization, Antioxidant Activity, and Inhibitory Effect on Pancreatic Lipase of Extracts from the Edible Insects Acheta Domesticus and Tenebrio Molitor. Food Chem. 2020, 309, 125742. [Google Scholar] [CrossRef] [PubMed]
- Meticulous Market Research Pvt, Ltd., M.M.R.P. Report: Edible Insects Market by Product (Whole Insect, Insect Powder, Insect Meal, Insect Oil) Insect Type (Crickets, Black Soldier Fly, Mealworms), Application (Animal Feed, Protein Bar and Shakes, Bakery, Confectionery, Beverages)—Global Forecast to 2027—Meticulous Research® Analysis Pvt. Ltd. (Report ID:MRFB-104460); Meticulous Research® Analysis Pvt. Ltd.: Maharashtra, India, 2022; pp. 1–237. Available online: https://www.globenewswire.com/en/news-release/2021/01/12/2157080/0/en/Edible-Insects-Market-to-Reach-4-63-billion-by-2027-Growing-at-a-CAGR-of-26-5-from-2020-With-COVID-19-Impact-Meticulous-Research-Analysis.html (accessed on 6 December 2022).
- Mancini, S.; Sogari, G.; Espinosa Diaz, S.; Menozzi, D.; Paci, G.; Moruzzo, R. Exploring the Future of Edible Insects in Europe. Foods 2022, 11, 455. [Google Scholar] [CrossRef] [PubMed]
- Caparros Megido, R.; Gierts, C.; Blecker, C.; Brostaux, Y.; Haubruge, E.; Alabi, T.; Francis, F. Consumer Acceptance of Insect-Based Alternative Meat Products in Western Countries. Food Qual. Prefer. 2016, 52, 237–243. [Google Scholar] [CrossRef]
- Meyer-Rochow, V. Can Insects Help to Ease the Problem of World Food Shortage? Search 1975, 6, 261–262. [Google Scholar]
- Zielińska, E.; Pankiewicz, U.; Sujka, M. Nutritional, Physiochemical, and Biological Value of Muffins Enriched with Edible Insects Flour. Antioxidants 2021, 10, 1122. [Google Scholar] [CrossRef]
- González, C.M.; Garzón, R.; Rosell, C. Insects as Ingredients for Bakery Goods. A Comparison Study of H. Illucens, A. Domestica and T. Molitor Flours. Innov. Food Sci. Emerg. Technol. 2019, 51, 205–210. [Google Scholar] [CrossRef]
- Jakab, I.; Tormási, J.; Dhaygude, V.; Mednyánszky, Z.S.; Sipos, L.; Szedljak, I. Cricket Flour-Laden Millet Flour Blends’ Physical and Chemical Composition and Adaptation in Dried Pasta Products. Acta Aliment. 2020, 49, 4–12. [Google Scholar] [CrossRef] [Green Version]
- Rumpold, B.A.; Schlüter, O.K. Nutritional Composition and Safety Aspects of Edible Insects. Mol. Nutr. Food Res. 2013, 57, 802–823. [Google Scholar] [CrossRef] [PubMed]
- Halloran, A.; Roos, N.; Flore, R.; Hanboonsong, Y. The Development of the Edible Cricket Industry in Thailand. J. Insects Food Feed 2016, 2, 91–100. [Google Scholar] [CrossRef]
- Montowska, M.; Kowalczewski, P.Ł.; Rybicka, I.; Fornal, E. Nutritional Value, Protein and Peptide Composition of Edible Cricket Powders. Food Chem. 2019, 289, 130–138. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Yu, J.; Xin, Q.; Wang, S.; Copeland, L. Effects of Starch Damage and Yeast Fermentation on Acrylamide Formation in Bread. Food Control 2017, 73, 230–236. [Google Scholar] [CrossRef]
- Meybodi, N.M.; Mortazavian, A.M.; Mirmoghtadaie, L.; Hosseini, S.M.; Yasini, S.A.; Azizi, M.H.; Nodoushan, S.M. Effects of Microbial Transglutaminase and Fermentation Type on Improvement of Lysine Availability in Wheat Bread: A Response Surface Methodology. Appl. Food Biotechnol. 2019, 6, 151–164. [Google Scholar]
- Keramat, J.; LeBail, A.; Prost, C.; Jafari, M. Acrylamide in Baking Products: A Review Article. Food Bioprocess Technol. 2011, 4, 530–543. [Google Scholar] [CrossRef]
- EFSA Panel on Contaminants in the Food Chain (CONTAM). Scientific Opinion on Acrylamide in Food. Efsa J. 2015, 13, 4104. [Google Scholar]
- Mollakhalili-Meybodi, N.; Khorshidian, N.; Nematollahi, A.; Arab, M. Acrylamide in Bread: A Review on Formation, Health Risk Assessment, and Determination by Analytical Techniques. Environ. Sci. Pollut. Res. 2021, 28, 15627–15645. [Google Scholar] [CrossRef]
- Bartkiene, E.; Jakobsone, I.; Pugajeva, I.; Bartkevics, V.; Zadeike, D.; Juodeikiene, G. Reducing of Acrylamide Formation in Wheat Biscuits Supplemented with Flaxseed and Lupine. LWT—Food Sci. Technol. 2016, 65, 275–282. [Google Scholar] [CrossRef]
- Bartkiene, E.; Bartkevics, V.; Krungleviciute, V.; Pugajeva, I.; Zadeike, D.; Juodeikiene, G.; Cizeikiene, D. The Influence of Scalded Flour, Fermentation, and Plants Belonging to Lamiaceae Family on the Wheat Bread Quality and Acrylamide Content. J. Food Sci. 2018, 83, 1560–1568. [Google Scholar] [CrossRef] [PubMed]
- Bartkiene, E.; Jakobsone, I.; Juodeikiene, G.; Vidmantiene, D.; Pugajeva, I.; Bartkevics, V. Study on the Reduction of Acrylamide in Mixed Rye Bread by Fermentation with Bacteriocin-like Inhibitory Substances Producing Lactic Acid Bacteria in Combination with Aspergillus Niger Glucoamylase. Food Control 2013, 30, 35–40. [Google Scholar] [CrossRef]
- Sadd, P.A.; Hamlet, C.G.; Liang, L. Effectiveness of Methods for Reducing Acrylamide in Bakery Products. J. Agric. Food Chem. 2008, 56, 6154–6161. [Google Scholar] [CrossRef] [PubMed]
- Bartkiene, E.; Bartkevics, V.; Pugajeva, I.; Krungleviciute, V.; Mayrhofer, S.; Domig, K. Parameters of Rye, Wheat, Barley, and Oat Sourdoughs Fermented with Lactobacillus Plantarum LUHS135 That Influence the Quality of Mixed Rye–Wheat Bread, Including Acrylamide Formation. Int. J. Food Sci. Technol. 2017, 52, 1473–1482. [Google Scholar] [CrossRef]
- Guiné, R.P.F.; Florença, S.G.; Costa, C.A.; Correia, P.M.R.; Ferreira, M.; Duarte, J.; Cardoso, A.P.; Campos, S.; Anjos, O. Development of a Questionnaire to Assess Knowledge and Perceptions about Edible Insects. Insects 2022, 13, 47. [Google Scholar] [CrossRef]
- Likert, R. A Technique for the Measurement of Attitudes. Arch. Psychol. 1932, 22,140, 55. [Google Scholar]
- Bartkiene, E.; Lele, V.; Ruzauskas, M.; Domig, K.J.; Starkute, V.; Zavistanaviciute, P.; Bartkevics, V.; Pugajeva, I.; Klupsaite, D.; Juodeikiene, G.; et al. Lactic Acid Bacteria Isolation from Spontaneous Sourdough and Their Characterization Including Antimicrobial and Antifungal Properties Evaluation. Microorganisms 2020, 8, 64. [Google Scholar] [CrossRef] [Green Version]
- Wrolstad, R.E.; Smith, D.E. Color Analysis. In Food Analysis; Nielsen, S.S., Ed.; Food Science Text Series; Springer International Publishing: Cham, Switzerland, 2017; pp. 545–555. ISBN 978-3-319-45776-5. [Google Scholar]
- Bartkiene, E.; Starkute, V.; Katuskevicius, K.; Laukyte, N.; Fomkinas, M.; Vysniauskas, E.; Kasciukaityte, P.; Radvilavicius, E.; Rokaite, S.; Medonas, D.; et al. The Contribution of Edible Cricket Flour to Quality Parameters and Sensory Characteristics of Wheat Bread. Food Sci. Nutr. 2022, 10, 4319–4330. [Google Scholar] [CrossRef]
- Ben-Gigirey, B.; Vieites Baptista de Sousa, J.M.; Villa, T.G.; Barros-Velazquez, J. Changes in Biogenic Amines and Microbiological Analysis in Albacore (Thunnus Alalunga) Muscle during Frozen Storage. J. Food Prot. 1998, 61, 608–615. [Google Scholar] [CrossRef]
- Pérez-Palacios, T.; Ruiz-Carrascal, J.; Solomando, J.C.; Antequera, T. Strategies for Enrichment in ω-3 Fatty Acids Aiming for Healthier Meat Products. Food Rev. Int. 2019, 35, 485–503. [Google Scholar] [CrossRef]
- AACC Approved Methods of Analysis, 11th Edition—AACC Method 10-05.01. Guidelines for Measurement of Volume by Rapeseed Displacement. Available online: http://methods.aaccnet.org/summaries/10-05-01.aspx (accessed on 3 September 2021).
- McGuire, R.G. Reporting of Objective Color Measurements. HortScience 1992, 27, 1254–1255. [Google Scholar] [CrossRef] [Green Version]
- ICC Method, M. 110/1 Determination of the Moisture Content of Cereals and Cereal Products (Practical Method). Available online: https://icc.or.at/publications/icc-standards/standards-overview/110-1-standard-method (accessed on 6 December 2022).
- Zhang, Y.; Dong, Y.; Ren, Y.; Zhang, Y. Rapid Determination of Acrylamide Contaminant in Conventional Fried Foods by Gas Chromatography with Electron Capture Detector. J. Chromatogr. 2006, 1116, 209–216. [Google Scholar] [CrossRef] [PubMed]
- Barton, A.; Richardson, C.D.; McSweeney, M.B. Consumer Attitudes toward Entomophagy before and after Evaluating Cricket (Acheta Domesticus)-Based Protein Powders. J. Food Sci. 2020, 85, 781–788. [Google Scholar] [CrossRef] [PubMed]
- Tuccillo, F.; Marino, M.G.; Torri, L. Italian Consumers’ Attitudes towards Entomophagy: Influence of Human Factors and Properties of Insects and Insect-Based Food. Food Res. Int. Ott. Ont 2020, 137, 109619. [Google Scholar] [CrossRef] [PubMed]
- Reed, M.; Norwood, B.F.; Hoback, W.W.; Riggs, A. A Survey of Willingness to Consume Insects and a Measure of College Student Perceptions of Insect Consumption Using Q Methodology. Future Foods 2021, 4, 100046. [Google Scholar] [CrossRef]
- Lammers, P.; Ullmann, L.M.; Fiebelkorn, F. Acceptance of Insects as Food in Germany: Is It about Sensation Seeking, Sustainability Consciousness, or Food Disgust? Food Qual. Prefer. 2019, 77, 78–88. [Google Scholar] [CrossRef]
- Galli, V.; Venturi, M.; Pini, N.; Granchi, L. Technological Feature Assessment of Lactic Acid Bacteria Isolated from Cricket Powder’s Spontaneous Fermentation as Potential Starters for Cricket-Wheat Bread Production. Foods 2020, 9, 1322. [Google Scholar] [CrossRef]
- Osimani, A.; Milanović, V.; Cardinali, F.; Roncolini, A.; Garofalo, C.; Clementi, F.; Pasquini, M.; Mozzon, M.; Foligni, R.; Raffaelli, N.; et al. Bread Enriched with Cricket Powder (Acheta Domesticus): A Technological, Microbiological and Nutritional Evaluation. Innov. Food Sci. Emerg. Technol. 2018, 48, 150–163. [Google Scholar] [CrossRef]
- Vasilica, B.T.B.; Chiș, M.S.; Alexa, E.; Pop, C.; Păucean, A.; Man, S.; Igual, M.; Haydee, K.M.; Dalma, K.E.; Stănilă, S.; et al. The Impact of Insect Flour on Sourdough Fermentation-Fatty Acids, Amino-Acids, Minerals and Volatile Profile. Insects 2022, 13, 576. [Google Scholar] [CrossRef]
- Boontiam, W.; Hong, J.; Kitipongpysan, S.; Wattanachai, S. Full-Fat Field Cricket (Gryllus Bimaculatus) as a Substitute for Fish Meal and Soybean Meal for Weaning Piglets: Effects on Growth Performance, Intestinal Health, and Redox Status. J. Anim. Sci. 2022, 100, skac080. [Google Scholar] [CrossRef]
- Gänzle, M.G.; Zheng, J. Lifestyles of Sourdough Lactobacilli—Do They Matter for Microbial Ecology and Bread Quality? Int. J. Food Microbiol. 2019, 302, 15–23. [Google Scholar] [CrossRef] [PubMed]
- Rossi, S.; Parrotta, L.; Gottardi, D.; Glicerina, V.T.; Duca, S.D.; Rosa, M.D.; Patrignani, F.; Schlüter, O.; Lanciotti, R. Unravelling the Potential of Cricket-Based Hydrolysed Sourdough on the Quality of an Innovative Bakery Product. J. Insects Food Feed 2022, 8, 921–935. [Google Scholar] [CrossRef]
- Elias, M.; Fraqueza, M.J.; Laranjo, M. Biogenic Amines in Food: Presence and Control Measures. Available online: https://dspace.uevora.pt/rdpc/handle/10174/24309 (accessed on 6 December 2022).
- Fernandez-Cassi, X.; Supeanu, A.; Vaga, M.; Jansson, A.; Boqvist, S.; Vagsholm, I. The House Cricket (Acheta Domesticus) as a Novel Food: A Risk Profile. J. Insects Food Feed 2019, 5, 137–157. [Google Scholar] [CrossRef]
- Hong, J.; Kim, K.-J. Crystal Structure of γ-Aminobutyrate Aminotransferase in Complex with a PLP-GABA Adduct from Corynebacterium Glutamicum. Biochem. Biophys. Res. Commun. 2019, 514, 601–606. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Cao, Y. Lactic Acid Bacterial Cell Factories for Gamma-Aminobutyric Acid. Amino Acids 2010, 39, 1107–1116. [Google Scholar] [CrossRef] [PubMed]
- Kowalski, S.; Mikulec, A.; Mickowska, B.; Skotnicka, M.; Mazurek, A. Wheat Bread Supplementation with Various Edible Insect Flours. Influence of Chemical Composition on Nutritional and Technological Aspects. LWT 2022, 159, 113220. [Google Scholar] [CrossRef]
- da Silva Lucas, A.J.; de Oliveira, L.M.; Da Rocha, M.; Prentice, C. Edible Insects: An Alternative of Nutritional, Functional and Bioactive Compounds. Food Chem. 2020, 311, 126022. [Google Scholar] [CrossRef]
- Skotnicka, M.; Karwowska, K.; Kłobukowski, F.; Borkowska, A.; Pieszko, M. Possibilities of the Development of Edible Insect-Based Foods in Europe. Foods 2021, 10, 766. [Google Scholar] [CrossRef]
- Wu, R.A.; Ding, Q.; Yin, L.; Chi, X.; Sun, N.; He, R.; Luo, L.; Ma, H.; Li, Z. Comparison of the Nutritional Value of Mysore Thorn Borer (Anoplophora Chinensis) and Mealworm Larva (Tenebrio Molitor): Amino Acid, Fatty Acid, and Element Profiles. Food Chem. 2020, 323, 126818. [Google Scholar] [CrossRef]
- Pop, A.; Păucean, A.; Socaci, S.A.; Alexa, E.; Man, S.M.; Mureșan, V.; Chiş, M.S.; Salanță, L.; Popescu, I.; Berbecea, A.; et al. Quality Characteristics and Volatile Profile of Macarons Modified with Walnut Oilcake By-Product. Molecules 2020, 25, 2214. [Google Scholar] [CrossRef]
- Pico, J.; Bernal, J.; Gómez, M. Wheat Bread Aroma Compounds in Crumb and Crust: A Review. Food Res. Int. Ott. Ont 2015, 75, 200–215. [Google Scholar] [CrossRef] [PubMed]
- Villarino, C.B.J.; Jayasena, V.; Coorey, R.; Chakrabarti-Bell, S.; Johnson, S.K. Nutritional, Health, and Technological Functionality of Lupin Flour Addition to Bread and Other Baked Products: Benefits and Challenges. Crit. Rev. Food Sci. Nutr. 2016, 56, 835–857. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pareyt, B.; Finnie, S.M.; Putseys, J.A.; Delcour, J.A. Lipids in Bread Making: Sources, Interactions, and Impact on Bread Quality. J. Cereal Sci. 2011, 54, 266–279. [Google Scholar] [CrossRef]
- Sui, X.; Zhang, Y.; Zhou, W. Bread Fortified with Anthocyanin-Rich Extract from Black Rice as Nutraceutical Sources: Its Quality Attributes and in Vitro Digestibility. Food Chem. 2016, 196, 910–916. [Google Scholar] [CrossRef] [PubMed]
- DeFloor, I.; Nys, M.; Delcour, J.A. Wheat Starch, Cassava Starch, and Cassava Flour Impairment of the Breadmaking Potential of Wheat Flour. Cereal Chem. 1993, 70, 526–530. [Google Scholar]
- Hernández-Carrión, M.; Sanz, T.; Hernando, I.; Llorca, E.; Fiszman, S.M.; Quiles, A. New Formulations of Functional White Sauces Enriched with Red Sweet Pepper: A Rheological, Microstructural and Sensory Study. Eur. Food Res. Technol. 2015, 240, 1187–1202. [Google Scholar] [CrossRef]
- Godard, O.; Baudouin, J.-Y.; Schaal, B.; Durand, K. Affective Matching of Odors and Facial Expressions in Infants: Shifting Patterns between 3 and 7 Months. Dev. Sci. 2016, 19, 155–163. [Google Scholar] [CrossRef]
- Macht, M.; Dettmer, D. Everyday Mood and Emotions after Eating a Chocolate Bar or an Apple. Appetite 2006, 46, 332–336. [Google Scholar] [CrossRef]
- Macht, M.; Mueller, J. Immediate Effects of Chocolate on Experimentally Induced Mood States. Appetite 2007, 49, 667–674. [Google Scholar] [CrossRef]
- Pandolfi, E.; Sacripante, R.; Cardini, F. Food-Induced Emotional Resonance Improves Emotion Recognition. PLoS ONE 2016, 11, e0167462. [Google Scholar] [CrossRef]
- Rousmans, S.; Robin, O.; Dittmar, A.; Vernet-Maury, E. Autonomic Nervous System Responses Associated with Primary Tastes. Chem. Senses 2000, 25, 709–718. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Hu, H.; McClements, D.J.; Nie, S.; Shen, M.; Li, C.; Huang, Y.; Zhong, Y.; Chen, J.; Zeng, M.; et al. PH and Lipid Unsaturation Impact the Formation of Acrylamide and 5-Hydroxymethylfurfural in Model System at Frying Temperature. Food Res. Int. Ott. Ont 2019, 123, 403–413. [Google Scholar] [CrossRef] [PubMed]
- Slu, S.U. of A.S.; Department of Biomedical Sciences and Veterinary Public Health, Sweden; Fernandez-Cassi, X.; Supeanu, A.; Jansson, A.; Boqvist, S.; Vagsholm, I. Novel Foods: A Risk Profile for the House Cricket (Acheta Domesticus). EFSA J. 2018, 16, e16082. [Google Scholar] [CrossRef] [PubMed]
- ISO 6658; Sensory Analysis—Methodology—General Guidance. International Organization for Standardization Geneva: Geneva, Switzerland, 2005.
- ISO 8586; Sensory Analysis—General Guidelines for the Selection, Training and Monitoring of Selected Assessors and Expert Sensory Assessors. International Organization for Standardization: Geneva, Switzerland. Available online: https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/04/53/45352.html (accessed on 11 August 2022).
- ISO 5492:2008; Sensory Analysis—Vocabulary. International Organization for Standardization Geneva: Geneva, Switzerland, 2008.
- Torres, F.R.; Esmerino, E.A.; Carr, B.T.; Ferrão, L.L.; Granato, D.; Pimentel, T.C.; Bolini, H.M.A.; Freitas, M.Q.; Cruz, A.G. Rapid Consumer-Based Sensory Characterization of Requeijão Cremoso, a Spreadable Processed Cheese: Performance of New Statistical Approaches to Evaluate Check-All-That-Apply Data. J. Dairy Sci. 2017, 100, 6100–6110. [Google Scholar] [CrossRef]
- Gaze, L.V.; Oliveira, B.R.; Ferrao, L.L.; Granato, D.; Cavalcanti, R.N.; Conte Júnior, C.A.; Cruz, A.G.; Freitas, M.Q. Preference Mapping of Dulce de Leche Commercialized in Brazilian Markets. J. Dairy Sci. 2015, 98, 1443–1454. [Google Scholar] [CrossRef]
- Janiaski, D.R.; Pimentel, T.C.; Cruz, A.G.; Prudencio, S.H. Strawberry-Flavored Yogurts and Whey Beverages: What Is the Sensory Profile of the Ideal Product? J. Dairy Sci. 2016, 99, 5273–5283. [Google Scholar] [CrossRef]
Independent Variables/Factors | Dependent Variables/Observations |
---|---|
CRICKET FLOUR SAMPLES | |
Non-fermented (/non-treated/without pre-treatment) cricket flour [100 g of cricket flour/water, ratio 1:1 (w/w)] (control cricket flour) (CoCr) | pH Lactic acid bacteria (LAB) viable counts Color coordinates Total color change (ΔE) Fatty acids (FA) Volatile compounds (VC) Biogenic amines (BA) |
Fermented cricket flours (100 g of cricket flour/water, ratio 1:1 (w/w)) for 24 and 48 h (Cr122) | |
WHEAT BREAD SAMPLES WITH CRICKET FLOUR | |
Wheat bread (control bread) (Bc) [1.0 kg of wheat flour, 1.5% salt, 3% instant yeast and 1000 mL water] | Specific volume Crumb porosity Shape coefficient Mass loss after baking Crust and crumb color coordinates Total color change (ΔE) Overall acceptability (OA) Induced emotions Acrylamide concentration |
Wheat bread with 10% of non-fermented cricket flour (BCF10) | |
Wheat bread with 20% of non-fermented cricket flour (BCF20) | |
Wheat bread with 30% of non-fermented cricket flour (BCF30) | |
Wheat bread with 10% of fermented cricket flour (BCF10-F122) | |
Wheat bread with 20% of fermented cricket flour (BCF20-F122) | |
Wheat bread with 30% of fermented cricket flour (BCF30-F122) |
Samples | pH | Colour Coordinates, NBS | ΔE | LAB Count, log10 CFU/g (after 48 h) | ||||
---|---|---|---|---|---|---|---|---|
Duration of Fermentation, h | L* | a* | b* | |||||
0 | 24 | 48 | ||||||
CoCr | 5.94 ± 0.43 a | na | na | 53.4 ± 1.9 b | 2.25 ± 0.13 a | 15.7 ± 1.9 b | na | na |
Cr122 | 5.92 ± 0.55 a | 5.15 ± 0.03 | 4.26 ± 0.04 | 36.3 ± 1.12 a | 2.12 ± 0.17 a | 11.8 ± 1.0 a | 17.54 ± 1.93 | 8.24 ± 1.21 |
Biogenic Amines, mg/kg | Cricket Flour | ||
---|---|---|---|
CoCr | Cr122 | ||
Duration of Fermentation, h | |||
0 | 24 | 48 | |
Tryptamine (TRP) | 45.9 ± 4.15 c | 27.3 ± 3.55 b | 20.2 ± 1.39 a |
Phenylethylamine (PHE) | 30.2 ± 2.25 b | 20.7 ± 2.25 a | 40.8 ± 2.85 c |
Putrescine (PUT) | 40.8 ± 3.08 b | 46.2 ± 7.66 b | 15.2 ± 1.38 a |
Cadaverine (CAD) | 69.3 ± 4.76 b | 35.8 ± 3.91 a | nd |
Histamine (HIS) | nd | nd | nd |
Tyramine (TYR) | 15.4 ± 1.70 a | 199.6 ± 15.2 b | 291.0 ± 21.5 c |
Spermidine (SPRMD) | 284.7 ± 27.61 b | 138.3 ± 11.5 a | 150.3 ± 13.7 a |
Spermine (SPRM) | 307.2 ± 21.84 b | 161.7 ± 14.6 a | 172.2 ± 14.4 a |
Fatty Acid Composition, % from the Total Fat Content | Cricket Flour | ||
---|---|---|---|
CoCr | Cr122 | ||
Duration of Fermentation, h | |||
0 | 24 | 48 | |
C16:0 | 26.3 ± 0.11 b | 26.8 ± 0.13 c | 24.6 ± 0.11 a |
C16:1 | 0.138 ± 0.00 6 | nd | nd |
C18:0 | 8.72 ± 0.12 c | 8.40 ± 0.05 b | 7.81 ± 0.12 a |
C18:1 cis, trans | 27.4 ± 0.14 a | 28.9 ± 0.12 b | 30.5± 0.3 c |
C18:2 | 35.7 ± 0.16 b | 33.8 ± 0.14 a | 35.2 ± 0.4 b |
C18:3 α | 1.52 ± 0.03 a | 2.00 ± 0.06 b | 1.92 ± 0.04 b |
RT, min | Volatile Compounds | Cricket Flour | ||
---|---|---|---|---|
CoCr | Cr122 | |||
Duration of Fermentation, h | ||||
0 | 24 | 48 | ||
2.315 | Acetic acid | 17.7 ± 2.40 b | 6.82 ± 1.10 a | 7.76 ± 1.19 a |
3.754 | Acetoin | nd | 28.3 ± 5.44 | nd |
5.435 | 2,3-Butanediol | nd | 1.40 ± 0.190 | nd |
5.926 | Hexanal | 15.7 ± 2.31 b | 3.46 ± 0.604 a | nd |
6.171 | Butanoic acid | nd | nd | 0.766 ± 0.081 |
7.861 | 3-methylbutanoic acid | nd | 23.5 ± 4.53 b | 7.52 ± 0.056 a |
8.048 | 2-methylbutanoic acid | nd | 1.88± 0.185 b | 1.11 ± 0.119 a |
8.089 | 1-Hexanol | nd | 4.09 ± 0.914 | nd |
8.765 | 2-Heptanone | 6.18 ± 1.05 b | 2.44 ± 0.494 a | 35.4 ± 4.82 c |
9.342 | 2,6-dimethylpyrazine | nd | 0.310 ± 0.036 a | 3.29 ± 0.452 b |
10.512 | 2,2-Dimethyl-3-heptanone | nd | 0.974 ± 0.137 a | 0.817 ± 0.164 a |
10.683 | 2,6-dimethyl-4-heptanol | nd | 3.20 ± 0.408 b | 1.17 ± 0.127 a |
10.93 | 2-hydroxy-3-methylpentanoic acid methyl ester | nd | 0.506 ± 0.071 a | 0.532 ± 0.099 a |
11.12 | Benzaldehyde | nd | 1.09 ± 0.106 a | 1.17 ± 0.240 a |
11.755 | 1-Octen-3-ol | 2.29 ± 0.161 b | 0.311 ± 0.051 a | 0.388 ± 0.033 a |
11.88 | Phenol | nd | nd | 1.53 ± 0.143 a |
12.207 | 2-pentylfuran | 2.95 ± 0.352 b | 1.43 ± 0.184 a | 1.52 ± 0.115 a |
12.493 | Decane | 28.1 ± 2.64 c | 7.34 ± 0.777 a | 13.29 ± 1.28 b |
13.269 | 4-methyldecane | 1.62 ± 0.313 c | 0.511 ± 0.058 b | 0.420 ± 0.034 a |
13.896 | Benzeneacetaldehyde | nd | 0.577 ± 0.088 a | 0.932 ± 0.083 b |
14.42 | 3,6-dimethyldecane | 2.92 ± 0.284 c | 0.945 ± 0.075 a | 1.36 ± 0.140 b |
15.071 | 3-ethyl-2,5-dimethylpyrazine | nd | 0.519 ± 0.044 a | 1.45 ± 0.132 b |
15.313 | Tetramethylpyrazine | 0.928 ± 0.093 b | 0.405 ± 0.032 a | 1.64 ± 0.141 c |
15.518 | 2-Nonanone | 1.55 ± 0.197 b | 0.419 ± 0.037 a | 6.18 ± 0.557 c |
15.886 | 5-methylundecane | 1.42 ± 0.247 b | nd | 0.554 ± 0.056 a |
15.94 | Nonanal | nd | 0.596 ± 0.052 | nd |
16.264 | Phenylethyl Alcohol | nd | 1.41 ± 0.270 | nd |
18.081 | 3-methylundecane | 1.26 ± 0.114 c | 0.323 ± 0.033 b | 0.208 ± 0.040 a |
18.909 | Ethyl octanoate | 1.43 ± 0.133 c | 0.629 ± 0.069 b | 0.573 ± 0.022 a |
18.967 | Dodecane | 9.75 ± 0.88 c | 2.87 ± 0.221 a | 4.09 ± 0.075 b |
Bread Samples | Specific Volume, cm3/g | Shape Coefficient | Porosity, % | Moisture Content, % | Mass Loss after Baking, % | |||
---|---|---|---|---|---|---|---|---|
BC | 2.31 ± 0.23 a | 1.82 ± 0.12 a | 62.8 ± 1.36 a | 21.5 ± 1.14 a | 11.3 ± 1.05 a | |||
BCF10 | 2.43 ± 0.15 a,b | 1.91 ± 0.11 a | 64.4 ± 2.36 a | 22.6 ± 0.98 a | 11.6 ± 1.21 a | |||
BCF20 | 2.56 ± 0.18 b,c | 1.93 ± 0.08 a | 65.6 ± 2.55 a,b | 22.4 ± 1.02 a | 11.8 ± 1.13 a | |||
BCF30 | 2.71 ± 0.21 c | 1.96 ± 0.11 a | 68.3 ± 1.98 b | 22.8 ± 1.30 a | 12.0 ± 1.11 a | |||
BCF10-F122 | 2.88 ± 0.24 c,d | 2.01 ± 0.13 a | 70.3 ± 3.61 b | 21.9 ± 1.25 a | 12.5 ± 1.36 a | |||
BCF20-F122 | 3.05 ± 0.29 c,d | 2.05 ± 0.15 a | 73.5 ± 2.87 b,c | 21.6 ± 1.56 a | 12.4 ± 1.23 a | |||
BCF30-F122 | 3.26 ± 0.30 d | 2.03 ± 0.10 a | 75.3 ± 1.59 c | 21.7 ± 1.36 a | 11.9 ± 1.14 a | |||
Color coordinates, NBS | ||||||||
Bread samples | Crust | Crumb | ||||||
L* | a* | b* | ΔE | L* | a* | b* | ΔE | |
BC | 81.0 ± 0.23 e | 0.513 ± 0.026 a | 19.4 ± 0.13 f | na | 58.9 ± 0.32 e | 13.05 ± 0.11 f | 21.0 ± 0.20 e | na |
BCF10 | 60.8 ± 0.54 c | 2.97 ± 0.14 e | 14.0 ± 0.12 c | 21.05 ± 0.21 b | 51.4 ± 0.41 d | 8.86 ± 0.19 a | 18.7 ± 0.17 c | 8.89 ± 0.16 a |
BCF20 | 55.2 ± 0.32 a | 2.53 ± 0.32 d,e | 12.9 ± 0.11 a | 26.68 ± 0.18 c | 45.1 ± 0.23 b | 10.9 ± 0.15 b | 16.0 ± 0.15 b | 14.83 ± 0.11 c |
BCF30 | 49.9 ± 0.26 a | 2.81 ± 0.15 e | 14.9 ± 0.13 d | 31.51 ± 0.14 d | 45.4 ± 0.39 b | 12.6 ± 0.13 e | 15.4 ± 0.14 a | 14.62 ± 0.14 c |
BCF10-F122 | 67.1 ± 0.41 d | 1.72 ± 0.11 c | 16.2 ± 0.14 e | 14.31 ± 0.22 a | 47.7 ± 0.28 c | 11.1 ± 0.10 c | 18.9 ± 0.17 c | 11.56 ± 0.10 b |
BCF20-F122 | 58.2 ± 0.28 b | 1.49 ± 0.09 b | 14.2 ± 0.13 c | 23.41 ± 0.19 b | 44.6 ± 0.31 a | 12.0 ± 0.14 d | 20.1 ± 0.19 d | 14.37 ± 0.16 c |
BCF30-F122 | 58.1 ± 0.39 b | 2.32 ± 0.16 d | 13.9 ± 0.12 b | 23.62 ± 0.20 b | 44.5 ± 0.42 a | 12.6 ± 0.16 e | 20.5 ± 0.18 d | 14.42 ± 0.13 c |
Emotions and OA | Bread Samples | ||||||
---|---|---|---|---|---|---|---|
BC | BCF10 | BCF20 | BCF30 | BCF10-F122 | BCF20-F122 | BCF30-F122 | |
Neutral | 0.839 ± 0.085 a | 0.789 ± 0.079 a | 0.837 ± 0.081 a | 0.870 ± 0.088 a | 0.830 ± 0.084 a | 0.782 ± 0.079 a | 0.856 ± 0.086 a |
Happy | 0.082 ± 0.009 b | 0.044 ± 0.005 a | 0.053 ± 0.006 c | 0.173 ± 0.016 d | 0.291 ± 0.030 e | 0.264 ± 0.029 e | 0.432 ± 0.052 f |
OA | 8.00 ± 1.95 a | 8.03 ± 1.90 a | 7.13 ± 2.56 a | 8.38 ± 1.61 a | 7.50 ± 2.30 a | 7.88 ± 2.11 a | 8.38 ± 1.50 a |
Bread Samples | Acrylamide Concentration µg/kg | Image |
---|---|---|
BC | 21.2 ± 1.92 a | |
BCF10 | 37.6 ± 2.12 c | |
BCF20 | 45.4 ± 3.14 d | |
BCF30 | 43.1 ± 3.25 d | |
BCF10-F122 | 25.1 ± 1.98 a | |
BCF20-F122 | 31.0 ± 1.18 b | |
BCF30-F122 | 42.3 ± 3.28 d |
Bread Parameters | Pearson’s Correlation between Acrylamide Content and Analysed Bread Parameters | p |
---|---|---|
Bread porosity | 0.903 ** | 0.0001 |
Bread moisture content | 0.655 ** | 0.001 |
Bread mass loss after baking | 0.897 ** | 0.0001 |
Crust L* | 0.760 ** | 0.0001 |
Crust b* | 0.782 ** | 0.0001 |
Crumb L* | 0.825 ** | 0.0001 |
Crust a* | 0.606 ** | 0.004 |
Crumb b* | 0.854 ** | 0.0001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bartkiene, E.; Zokaityte, E.; Starkute, V.; Zokaityte, G.; Kaminskaite, A.; Mockus, E.; Klupsaite, D.; Cernauskas, D.; Rocha, J.M.; Özogul, F.; et al. Crickets (Acheta domesticus) as Wheat Bread Ingredient: Influence on Bread Quality and Safety Characteristics. Foods 2023, 12, 325. https://doi.org/10.3390/foods12020325
Bartkiene E, Zokaityte E, Starkute V, Zokaityte G, Kaminskaite A, Mockus E, Klupsaite D, Cernauskas D, Rocha JM, Özogul F, et al. Crickets (Acheta domesticus) as Wheat Bread Ingredient: Influence on Bread Quality and Safety Characteristics. Foods. 2023; 12(2):325. https://doi.org/10.3390/foods12020325
Chicago/Turabian StyleBartkiene, Elena, Egle Zokaityte, Vytaute Starkute, Gintare Zokaityte, Aura Kaminskaite, Ernestas Mockus, Dovile Klupsaite, Darius Cernauskas, João Miguel Rocha, Fatih Özogul, and et al. 2023. "Crickets (Acheta domesticus) as Wheat Bread Ingredient: Influence on Bread Quality and Safety Characteristics" Foods 12, no. 2: 325. https://doi.org/10.3390/foods12020325
APA StyleBartkiene, E., Zokaityte, E., Starkute, V., Zokaityte, G., Kaminskaite, A., Mockus, E., Klupsaite, D., Cernauskas, D., Rocha, J. M., Özogul, F., & Guiné, R. P. F. (2023). Crickets (Acheta domesticus) as Wheat Bread Ingredient: Influence on Bread Quality and Safety Characteristics. Foods, 12(2), 325. https://doi.org/10.3390/foods12020325