Characterization of Durum-Wheat Pasta Containing Resistant Starch from Debranched Waxy Rice Starch
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials and Ingredient Preparation
2.2. Pasta Preparation
2.3. Chemical Composition
2.4. Colour Evaluation
2.5. Thermal Properties, Pasta Quality, and Texture
2.6. In Vitro Starch Digestion of Cooked Pasta
2.7. Sensory Analysis
2.8. Statistical Analyses
3. Results
3.1. Chemical Composition and Resistant Starch Content
3.2. Colour of Pasta Samples before and after Cooking
3.3. Thermal Properties and Pasta Quality
3.4. In Vitro Starch Digestion of Cooked Pasta
3.5. Sensory Analysis
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dello Russo, M.; Spagnuolo, C.; Moccia, S.; Angelino, D.; Pellegrini, N.; Martini, D. Nutritional quality of pasta sold on the Italian market: The food labelling products (FLIP) study. Nutrients 2021, 13, 171. [Google Scholar] [CrossRef] [PubMed]
- Bresciani, A.; Pagani, M.A.; Marti, A. Pasta-making process: A narrative review on the relation between process variable and pasta quality. Foods 2022, 11, 256. [Google Scholar] [CrossRef] [PubMed]
- Bianchi, F.; Tolve, R.; Rainero, G.; Bordiga, M.; Brennan, C.S.; Simonato, B. Technological, nutritional and sensory properties of pasta fortified with agro-industrial by-products: A review. Int. J. Food Sci. Technol. 2021, 56, 4356–4366. [Google Scholar] [CrossRef]
- Sissons, M. Development of novel pasta products with evidence-based impact on health: A review. Foods 2022, 11, 123. [Google Scholar] [CrossRef]
- Romano, A.; Ferranti, P.; Gallo, V.; Masi, P. New ingredients and alternatives to durum wheat semolina for a high quality dried pasta. Curr. Opin. Food Sci. 2021, 41, 249–259. [Google Scholar] [CrossRef]
- Dziki, D. Current trends in enrichment of wheat pasta: Quality, nutritional value and antioxidant properties. Processes 2021, 9, 1280. [Google Scholar] [CrossRef]
- Raungrusmee, S.; Shrestha, S.; Sadiq, M.B.; Anal, A.K. Influence of resistant starch, xanthan gum, inulin and defatted rice bran on the physicochemical, functional and sensory properties of low glycemic gluten-free noodles. LWT 2020, 126, 109279. [Google Scholar] [CrossRef]
- Birt, D.F.; Boylston, T.; Hendrich, S.; Jane, J.L.; Hollis, J.; Li, L.; McClelland, J.; Moore, S.; Phillips, G.J.; Rowling, M.; et al. Resistant starch: Promise for improving human health. Adv. Nutr. 2013, 4, 587–601. [Google Scholar] [CrossRef] [Green Version]
- Aravind, N.; Sissons, M.; Fellows, C.M.; Blazek, J.; Gilbert, E.P. Optimisation of resistant starch II and III levels in durum wheat pasta to reduce in vitro digestibility while maintaining processing and sensory characteristics. Food Chem. 2013, 136, 1100–1109. [Google Scholar] [CrossRef]
- Gelencsér, T.; Gál, V.; Salgó, A. Effects of applied process on the in vitro digestibility and resistant starch content of pasta products. Food Bioprocess Technol. 2010, 3, 491–497. [Google Scholar] [CrossRef]
- Vernaza, M.G.; Biasutti, E.; Schmiele, M.; Jaekel, L.Z.; Bannwart, A.; Chang, Y.K. Effect of supplementation of wheat flour with resistant starch and monoglycerides in pasta dried at high temperatures. Int. J. Food Sci. Technol. 2012, 47, 1302–1312. [Google Scholar] [CrossRef]
- Tolve, R.; Simonato, S.; Rainero, G.; Bianchi, F.; Rizzi, C.; Cervini, M.; Giuberti, G. Wheat bread fortification by grape pomace powder: Nutritional, technological, antioxidant, and sensory properties. Foods 2021, 10, 75. [Google Scholar] [CrossRef] [PubMed]
- Giuberti, G.; Marti, A.; Gallo, A.; Grassi, S.; Spigno, G. Resistant starch from isolated white sorghum starch: Functional and physicochemical properties and resistant starch retention after cooking. A comparative study. Starch-Stärke 2019, 71, 1800194. [Google Scholar] [CrossRef]
- Foschia, M.; Beraldo, P.; Peressini, D. Evaluation of the physicochemical properties of gluten-free pasta enriched with resistant starch. J. Sci. Food Agric. 2017, 97, 572–577. [Google Scholar] [CrossRef] [PubMed]
- Rocchetti, G.; Senizza, A.; Gallo, A.; Lucini, L.; Giuberti, G.; Patrone, V. In vitro large intestine fermentation of gluten-free rice cookies containing alfalfa seed (Medicago sativa L.) flour: A combined metagenomic/metabolomic approach. Food Res. Int. 2019, 120, 312–321. [Google Scholar] [CrossRef]
- Jiang, F.; Du, C.; Jiang, W.; Wang, L.; Du, S.K. The preparation, formation, fermentability, and applications of resistant starch. Int. J. Biol. Macromol. 2020, 150, 1155–1161. [Google Scholar] [CrossRef]
- Gelencsér, T.; Gál, V.; Hódsági, M.; Salgó, A. Evaluation of quality and digestibility characteristics of resistant starch-enriched pasta. Food Bioprocess Technol. 2008, 1, 171–179. [Google Scholar] [CrossRef]
- Bangar, S.P.; Ashogbon, A.O.; Singh, A.; Chaudhary, V.; Whiteside, W.S. Enzymatic modification of starch: A green approach for starch applications. Carbohydr. Polym. 2022, 287, 119265. [Google Scholar] [CrossRef]
- Shi, M.; Gao, Q. Physicochemical properties, structure and in vitro digestion of resistant starch from waxy rice starch. Carbohydr. Polym. 2011, 84, 1151–1157. [Google Scholar] [CrossRef]
- Liu, W.; Hong, Y.; Gu, Z.; Cheng, L.; Li, Z.; Li, C. In structure and in vitro digestibility of waxy corn starch debranched by pullulanase. Food Hydrocoll. 2017, 67, 104–110. [Google Scholar] [CrossRef]
- Giuberti, G.; Marti, A.; Fortunati, P.; Gallo, A. Gluten free rice cookies with resistant starch ingredients from modified waxy rice starches: Nutritional aspects and textural characteristics. J. Cereal Sci. 2017, 76, 157–164. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis, 17th ed.; Association of Official Analytical Chemists: Gaithersburg, MD, USA, 2000. [Google Scholar]
- Laguna, L.; Salvador, A.; Sanz, T.; Fiszman, S.M. Performance of a resistant starch rich ingredient in the baking and eating quality of short-dough biscuits. LWT-Food Sci. Technol. 2011, 44, 737–746. [Google Scholar] [CrossRef]
- Cervini, M.; Gruppi, A.; Bassani, A.; Spigno, G.; Giuberti, G. Potential application of resistant starch sorghum in gluten-free pasta: Nutritional, structural and sensory evaluations. Foods 2021, 10, 908. [Google Scholar] [CrossRef] [PubMed]
- AACC. Approved Methods of the AACC, 10th ed.; Method 66-50; American Association of Cereal Chemists: St. Paul, MN, USA, 2000. [Google Scholar]
- Giuberti, G.; Gallo, A.; Cerioli, C.; Fortunati, P.; Masoero, F. Cooking quality and starch digestibility of gluten free pasta using new bean flour. Food Chem. 2015, 175, 43–49. [Google Scholar] [CrossRef]
- Meilgaard, M.C.; Carr, B.T.; Civille, G.V. Sensory Evaluation Techniques; CRC Press: Boca Raton, FL, USA, 2006. [Google Scholar]
- McCleary, B.V. An integrated procedure for the measurement of total dietary fibre (including resistant starch), non-digestible oligosaccharides and available carbohydrates. Anal. Bioanal. Chem. 2007, 389, 291–308. [Google Scholar] [CrossRef]
- McCleary, B.V.; De Vries, J.W.; Rader, J.I.; Cohen, G.; Prosky, L.; Mugford, D.C.; Champ, M.; Okuma, K. Determination of total dietary fiber (CODEX definition) by enzymatic-gravimetric method and liquid chromatography: Collaborative study. J. AOAC Int. 2010, 93, 221–233. [Google Scholar] [CrossRef] [Green Version]
- Betteridge, V. Dietary fibre: An evolving definition? Nutr. Bull. 2009, 34, 122–125. [Google Scholar]
- Halajzadeh, J.; Milajerdi, A.; Reiner, Ž.; Amirani, E.; Kolahdooz, F.; Barekat, M.; Mirzaei, H.; Mirhashemi, S.M.; Asemi, Z. Effects of resistant starch on glycemic control, serum lipoproteins and systemic inflammation in patients with metabolic syndrome and related disorders: A systematic review and meta-analysis of randomized controlled clinical trials. Crit. Rev. Food Sci. Nutr. 2020, 60, 3172–3184. [Google Scholar] [CrossRef]
- Tian, S.; Sun, Y. Influencing factor of resistant starch formation and application in cereal products: A review. Int. J. Biol. Macromol. 2020, 149, 424–431. [Google Scholar] [CrossRef]
- Precha-Atsawanan, S.; Puncha-Arnon, S.; Wandee, Y.; Uttapap, D.; Puttanlek, C.; Rungsardthong, V. Physicochemical properties of partially debranched waxy rice starch. Food Hydrocoll. 2018, 79, 71–80. [Google Scholar] [CrossRef]
- Tarahi, M.; Shahidi, F.; Hedayati, S. A novel starch from bitter vetch (Vicia ervilia) seeds: A comparison of its physicochemical, structural, thermal, rheological, and pasting properties with conventional starches. Int. J. Food Sci. Technol. 2022, 57, 6833–6842. [Google Scholar] [CrossRef]
- Wang, D.; Zhao, M.; Wang, Y.; Mu, H.; Sun, C.; Chen, H.; Sun, Q. Research progress on debranched starch: Preparation, characterization, and application. Food Rev. Int. 2022, 1–21. [Google Scholar] [CrossRef]
- Aribas, M.; Kahraman, K.; Koksel, H. Effects of resistant starch type 4 supplementation of bread on in vitro glycemic index value, bile acid-binding capacity, and mineral bioavailability. Cereal Chem. 2020, 97, 163–171. [Google Scholar] [CrossRef]
- Namir, M.; Iskander, A.; Alyamani, A.; Sayed-Ahmed, E.T.A.; Saad, A.M.; Elsahy, K.; El-Tarabily, K.A.; Conte-Junior, C.A. Upgrading common wheat pasta by fiber-rich fraction of potato peel byproduct at different particle sizes: Effects on physicochemical, thermal, and sensory properties. Molecules 2022, 27, 2868. [Google Scholar] [CrossRef] [PubMed]
- Cao, C.; Shen, M.; Hu, M.; Qi, J.; Xie, P.; Zhou, Y. Comparative study on the structure-properties relationships of native and debranched rice starch. CyTA J. Food 2020, 18, 84–93. [Google Scholar] [CrossRef] [Green Version]
- Sozer, N.; Dalgıc, A.C.; Kaya, A. Thermal, textural and cooking properties of spaghetti enriched with resistant starch. J. Food Eng. 2007, 81, 476–484. [Google Scholar] [CrossRef]
- Renoldi, N.; Brennan, C.S.; Lagazio, C.; Peressini, D. Evaluation of technological properties, microstructure and predictive glycaemic response of durum wheat pasta enriched with psyllium seed husk. LWT 2021, 151, 112203. [Google Scholar] [CrossRef]
- Sajilata, M.G.; Singhal, R.S.; Kulkarni, P.R. Resistant starch—A review. Compr. Rev. Food Sci. Food Saf. 2006, 5, 1–17. [Google Scholar] [CrossRef]
- Bustos, M.C.; Perez, G.T.; Leon, A.E. Sensory and nutritional attributes of fibre-enriched pasta. LWT—Food Sci. Technol. 2011, 44, 1429–1434. [Google Scholar] [CrossRef]
- European Commission. Commission Regulation (EC) No. 1924/2006, of 20 December 2006 on nutrition and health claims made on foods. Off. J. Eur. Union 2006, 404, 9–25. [Google Scholar]
Pasta Samples | ||||
---|---|---|---|---|
Control 1 | 5-DWRS 2 | 10-DWRS 3 | 15-DWRS 4 | |
Humidity (g water/100 g) | 10.4 ± 0.21 a | 10.2 ± 0.42 a | 10.6 ± 0.56 a | 10.2 ± 0.07 a |
Total starch | 73.4 ± 2.37 a | 70.1 ± 1.45 b | 68.6 ± 1.98 c | 65.8 ± 2.10 d |
Crude protein | 11.4 ± 0.13 a | 10.1 ± 0.35 b | 9.0 ± 0.32 c | 8.3 ± 0.77 d |
Crude lipid | 1.2 ± 0.01 a | 1.3 ± 0.05 a | 1.3 ± 0.19 a | 1.2 ± 0.04 a |
Ash | 0.6 ± 0.02 a | 0.5 ± 0.02 a | 0.4 ± 0.05 a | 0.3 ± 0.02 b |
Total dietary fiber | 2.4 ± 0.27 d | 6.4 ± 0.71 c | 8.8 ± 0.71 b | 12.9 ± 1.31 a |
RS (uncooked sample) | 1.9 ± 0.11 d | 5.1 ± 0.27 c | 7.3 ± 0.43 b | 11.4 ± 1.04 a |
RS (cooked sample) | 0.2 ± 0.01 d | 4.3 ± 0.68 c | 5.9 ± 0.49 b | 9.3 ± 0.67 a |
Pasta Samples | ||||
---|---|---|---|---|
Control 1 | 5-DWRS 2 | 10-DWRS 3 | 15-DWRS 4 | |
Uncooked | ||||
Lightness L* | 75.4 ± 0.21 d | 76.4 ± 1.32 c | 81.2 ± 0.43 b | 83.8 ± 1.27 a |
Redness a* | 1.4 ± 0.32 b | 1.5 ± 0.01 b | 1.5 ± 0.12 b | 1.7 ± 0.18 a |
Yellowness b* | 57.5 ± 1.15 a | 54.0 ± 0.84 b | 51.1 ± 1.73 c | 49.3 ± 2.01 d |
ΔE* | - | 2.1 | 4.3 | 5.8 |
Cooked to optimum | ||||
Lightness L* | 71.8 ± 1.48 d | 73.1 ± 1.51 c | 76.4 ± 1.14 b | 79.6 ± 1.77 a |
Redness a* | 1.1 ± 0.01 a | 0.9 ± 0.01 a | 1.0 ± 0.02 a | 1.1 ± 0.01 a |
Yellowness b* | 53.4 ± 0.11 a | 49.3 ± 0.43 b | 44.9 ± 0.21 c | 40.4 ± 0.51 d |
ΔE* | - | 1.6 | 3.9 | 5.2 |
Pasta Samples | ||||
---|---|---|---|---|
Control 1 | 5-DWRS 2 | 10-DWRS 3 | 15-DWRS 4 | |
Thermal properties | ||||
Onset temperature To (°C) | 59.7 ± 1.56 d | 61.9 ± 1.43 c | 66.2 ± 1.03 a | 67.2 ± 1.47 a |
Peak temperature Tp (°C) | 64.3 ± 1.42 c | 67.5 ± 0.95 b | 71.8 ± 1.27 a | 72.4 ± 2.17 a |
Conclusion temperature Tc (°C) | 69.5 ± 1.61 c | 73.4 ± 1.04 b | 76.2 ± 1.82 a | 77.2 ± 1.31 a |
Gelatinization enthalpy ΔH (J/g dry starch) | 6.2 ± 0.98 c | 7.4 ± 0.91 b | 8.8 ± 0.61 a | 9.2 ± 0.75 a |
Pasta quality parameters | ||||
Optimal cooking time (min) | 11.2 ± 0.28 a | 10.7 ± 0.43 b | 10.1 ± 0.17 b | 9.5 ± 0.24 c |
Cooking loss (%) | 5.5 ± 0.23 c | 5.7 ± 0.49 c | 6.4 ± 0.49 b | 7.3 ± 0.66 a |
Water absorption capacity (%) | 154.4 ± 4.42 a | 149.9 ± 3.21 a | 137.5 ± 3.61 b | 119.1 ± 4.11 c |
Firmness (N) | 2.8 ± 0.18 a | 2.6 ± 0.41 a | 2.1 ± 0.16 b | 1.7 ± 0.08 c |
Stickiness (N) | 1.5 ± 0.10 c | 1.6 ± 0.14 c | 1.8 ± 0.11 b | 2.0 ± 0.08 a |
In vitro starch digestion | ||||
Starch hydrolysis index 5 | 76.1 ± 2.13 a | 71.6 ± 3.01 b | 65.5 ± 2.31 c | 61.9 ± 2.01 d |
Pasta Samples | ||||
---|---|---|---|---|
Control 1 | 5-DWRS 2 | 10-DWRS 3 | 15-DWRS 4 | |
Colour | 7.4 ± 0.94 a | 6.8 ± 0.72 b | 6.3 ± 0.94 c | 5.4 ± 0.54 b |
Appearance | 7.1 ± 0.62 a | 7.2 ± 0.14 a | 7.0 ± 0.93 a | 7.1 ± 0.11 a |
Texture | 7.8 ± 0.13 a | 6.8 ± 0.56 b | 6.2 ± 0.93 c | 5.5 ± 0.62 d |
Aroma | 6.9 ± 0.16 a | 7.0 ± 0.18 a | 7.1 ± 0.33 a | 6.9 ± 0.48 a |
Taste | 7.0 ± 0.11 a | 7.1 ± 0.67 a | 7.1 ± 0.61 a | 6.9 ± 0.96 a |
Overall acceptance | 8.2 ± 0.89 a | 7.6 ± 0.65 b | 6.7 ± 2.01 c | 6.4 ± 1.16 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cervini, M.; Gabrielli, M.; Spigno, G.; Giuberti, G. Characterization of Durum-Wheat Pasta Containing Resistant Starch from Debranched Waxy Rice Starch. Foods 2023, 12, 327. https://doi.org/10.3390/foods12020327
Cervini M, Gabrielli M, Spigno G, Giuberti G. Characterization of Durum-Wheat Pasta Containing Resistant Starch from Debranched Waxy Rice Starch. Foods. 2023; 12(2):327. https://doi.org/10.3390/foods12020327
Chicago/Turabian StyleCervini, Mariasole, Mario Gabrielli, Giorgia Spigno, and Gianluca Giuberti. 2023. "Characterization of Durum-Wheat Pasta Containing Resistant Starch from Debranched Waxy Rice Starch" Foods 12, no. 2: 327. https://doi.org/10.3390/foods12020327
APA StyleCervini, M., Gabrielli, M., Spigno, G., & Giuberti, G. (2023). Characterization of Durum-Wheat Pasta Containing Resistant Starch from Debranched Waxy Rice Starch. Foods, 12(2), 327. https://doi.org/10.3390/foods12020327