Efficacy of Common Antimicrobial Interventions at and above Regulatory Allowable Pick-Up Levels on Pathogen Reduction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation for Pathogen Cocktails
2.2. Trim Preparation and Inoculation
2.3. Microbiological Enumeration
2.4. Statistical Analysis
3. Results and Discussion
Reduction of Pathogens on Beef Trim
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kamboj, S.; Gupta, N.; Bandral, J.D.; Gandotra, G.; Anjum, N. Food Safety and Hygiene: A Review. Int. J. Chem. Stud. 2020, 8, 358–368. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention Surveillance for Foodborne Disease Outbreaks-United States 2017: Annual Report. Available online: https://www.cdc.gov/fdoss/pdf/2017_FoodBorneOutbreaks_508.pdf (accessed on 29 January 2022).
- Al-Delaimy, K.S.; Stiles, M.E. Microbial quality and shelf-life of raw ground beef. Can. J. Public Health 1975, 66, 317–321. [Google Scholar] [PubMed]
- Bogard, A.K.; Fuller, C.C.; Radke, V.; Selman, C.A.; Smith, K.E. Ground Beef Handling and Cooking Practices in Restaurants in Eight States. J. Food Prot. 2013, 76, 2132–2140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sorensen, O.; van Donkersgoed, J.; McFALL, M.; Manninen, K.; Gensler, G.; Ollis, G. Salmonella spp. Shedding by Alberta Beef Cattle and the Detection of Salmonella spp. in Ground Beef. J. Food Prot. 2002, 65, 484–491. [Google Scholar] [CrossRef] [PubMed]
- Food Safety and Inspection Service. Ground Beef and Food Safety. 2016. Available online: https://www.fsis.usda.gov/food-safety/safe-food-handling-and-preparation/meat/ground-beef-and-food-safety (accessed on 30 June 2021).
- Arthur, T.M.; Brichta-Harhay, D.M.; Bosilevac, J.M.; Guerini, M.N.; Kalchayanand, N.; Wells, J.E.; Shackelford, S.D.; Wheeler, T.L.; Koohmaraie, M. Prevalence and Characterization of Salmonella in Bovine Lymph Nodes Potentially Destined for Use in Ground Beef. J. Food Prot. 2008, 71, 1685–1688. [Google Scholar] [CrossRef] [Green Version]
- Siriken, B. The Microbiological Quality of Ground Beef in Aydin and Afyon Provinces, Turkey. Revue Méd. Vét. 2004, 155, 632–636. [Google Scholar]
- Jimenez-Villarreal, J.R.; Pohlman, F.W.; Johnson, Z.B.; Brown Jr, A.H.; Baublits, R.T. The Impact of Single Antimicrobial Intervention Treatment with Cetylpyridinium Chloride, Trisodium Phosphate, Chlorine Dioxide or Lactic Acid on Ground Beef Lipid, Instrumental Color and Sensory Characteristics. Meat Sci. 2003, 65, 977–984. [Google Scholar] [CrossRef]
- Arthur, T.M.; Bosilevac, J.M.; Nou, X.; Shackelford, S.D.; Wheeler, T.L.; Kent, M.P.; Jaroni, D.; Pauling, B.; Allen, D.M.; Koohmaraie, M. Escherichia coli O157 Prevalence and Enumeration of Aerobic Bacteria, Enterobacteriaceae, and Escherichia coli O157 at Various Steps in Commercial Beef Processing Plants. J. Food Prot. 2004, 67, 658–665. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scanga, J.A.; Grona, A.D.; Belk, K.E.; Sofos, J.N.; Bellinger, G.R.; Smith, G.C. Microbiological Contamination of Raw Beef Trimmings and Ground Beef. Meat Sci. 2000, 56, 145–152. [Google Scholar] [CrossRef]
- Lee, G.Y.; Jang, H.I.; Hwang, I.G.; Rhee, M.S. Prevalence and Classification of Pathogenic Escherichia coli Isolated from Fresh Beef, Poultry, and Pork in Korea. Int. J. Food Microbiol. 2009, 134, 196–200. [Google Scholar] [CrossRef]
- Food Safety and Inspection Service. Risk Profile for Pathogenic Non-O157 Shiga Toxin-Producing Escherichia coli (Non-O157 STEC). 2012. Available online: https://www.fsis.usda.gov/sites/default/files/media_file/2020-07/Non_O157_STEC_Risk_Profile_May2012.pdf (accessed on 9 March 2022).
- Bosilevac, J.M.; Guerini, M.N.; Kalchayanand, N.; Koohmaraie, M. Prevalence and Characterization of Salmonellae in Commercial Ground Beef in the United States. Appl. Environ. Microbiol 2009, 75, 1892–1900. [Google Scholar] [CrossRef] [Green Version]
- Laufer, A.S.; Grass, J.; Holt, K.; Whichard, J.M.; Griffin, P.M.; Gould, L.H. Outbreaks of Salmonella Infections Attributed to Beef–United States, 1973–2011. Epidemiol. Infect. 2015, 143, 2003–2013. [Google Scholar] [CrossRef] [Green Version]
- Barkocy-Gallagher, G.A.; Arthur, T.M.; Rivera-Betancourt, M.; Nou, X.; Shackelford, S.D.; Wheeler, T.L.; Koohmaraie, M. Seasonal Prevalence of Shiga Toxin–Producing Escherichia coli, Including O157: H7 and Non-O157 Serotypes, and Salmonella in Commercial Beef Processing Plants. J. Food Prot. 2003, 66, 1978–1986. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koohmaraie, M.; Scanga, J.A.; de La Zerda, M.J.; Koohmaraie, B.; Tapay, L.; Beskhlebnaya, V.; Mai, T.; Greeson, K.; Samadpour, M. Tracking the Sources of Salmonella in Ground Beef Produced from Nonfed Cattle. J. Food Prot. 2012, 75, 1464–1468. [Google Scholar] [CrossRef] [PubMed]
- Lee, B. Food Safety Interventions. Natl. Collab. Cent. Environ. Health 2013, 1–53. [Google Scholar]
- Food and Drug Administration. Microbiological Considerations for Antimicrobial Agents Used in Food Applications: Guidance for Industry. 2021. Available online: https://www.fda.gov/media/83078/download (accessed on 12 March 2022).
- Food Safety and Inspection Service. Retained Water in Raw Meat and Poultry Products. J. Food Prot. 2002, 65, 567–570. [Google Scholar]
- Coban, H.B. Organic Acids as Antimicrobial Food Agents: Applications and Microbial Productions. Bioprocess. Biosyst. Eng. 2020, 43, 569–591. [Google Scholar] [CrossRef]
- Walsh, R.J.; White, B.; Hunker, L.; Leishman, O.; Hilgren, J.; Klein, D. Peracetic Acid and Hydrogen Peroxide Post-Dip Decay Kinetics on Red Meat and Poultry. Food Protect. Trends 2018, 38, 96–103. [Google Scholar]
- Alakomi, H.-L.; Skytta, E.; Saarela, M.; Mattila-Sandholm, T.; Latva-Kala, K.; Helander, I.M. Lactic Acid Permeabilizes Gram-Negative Bacteria by Disrupting the Outer Membrane. Appl. Environ. Microbiol. 2000, 66, 2001–2005. [Google Scholar] [CrossRef] [Green Version]
- Castillo, A.; Lucia, L.M.; Mercado, I.; Acuff, G.R. In-Plant Evaluation of a Lactic Acid Treatment for Reduction of Bacteria on Chilled Beef Carcasses. J. Food Prot. 2001, 64, 738–740. [Google Scholar] [CrossRef]
- Wolf, M.J.; Miller, M.F.; Parks, A.R.; Loneragan, G.H.; Garmyn, A.J.; Thompson, L.D.; Echeverry, A.; Brashears, M.M. Validation Comparing the Effectiveness of a Lactic Acid Dip with a Lactic Acid Spray for Reducing Escherichia coli O157: H7, Salmonella, and Non-O157 Shiga Toxigenic Escherichia coli on Beef Trim and Ground Beef. J. Food Prot. 2012, 75, 1968–1973. [Google Scholar] [CrossRef] [PubMed]
- ben Braïek, O.; Smaoui, S. Chemistry, Safety, and Challenges of the Use of Organic Acids and Their Derivative Salts in Meat Preservation. J. Food Qual. 2021, 2021. [Google Scholar] [CrossRef]
- Kang, D.-H.; Lee, S.-Y. Evaluating Commercial Spray Applications of Lactic Acid, Hot Water, and Acidified Sodium Chlorite for the Reduction of Escherichia coli on Beef Carcasses. Food Qual. Cult. 2008, 2, 55–60. [Google Scholar]
- Ransom, J.R.; Belk, K.E.; Sofos, J.N.; Stopforth, J.D.; Scanga, J.A.; Smith, G.C. Comparison of Intervention Technologies for Reducing Escherichia coli O157: H7 on Beef Cuts and Trimmings. Food Prot. Trends 2003, 23, 24–34. [Google Scholar]
- Brashears, M.M.; Amezquita, A.; Stratton, J. Validation of Methods Used To Recover Escherichia coli O157:H7 and Salmonella spp. Subjected to Stress Conditions. J. Food Prot. 2001, 64, 1466–1471. [Google Scholar] [CrossRef]
- Russell, A.D. Factors Influencing the Efficacy of Antimicrobial Agents. In Principles and Practice of Disinfection, Preservation and Sterilization; Blackwell: London, UK, 2008; pp. 98–127. [Google Scholar]
- McCarty, K.A. Antimicrobial Interventions Applied to Beef Sub-Primals for the Control of Escherichia coli and Their Impact on Ground Beef Quality; University of Nebraska: Lincoln, NB, USA, 2016. [Google Scholar]
- Signorini, M.; Costa, M.; Teitelbaum, D.; Restovich, V.; Brasesco, H.; García, D.; Superno, V.; Petroli, S.; Bruzzone, M.; Arduini, V.; et al. Evaluation of Decontamination Efficacy of Commonly Used Antimicrobial Interventions for Beef Carcasses against Shiga Toxin-Producing Escherichia coli. Meat Sci. 2018, 142, 44–51. [Google Scholar] [CrossRef] [PubMed]
- Koohmaraie, M.; Arthur, T.M.; Bosilevac, J.M.; Guerini, M.; Shackelford, S.D.; Wheeler, T.L. Post-Harvest Interventions to Reduce/Eliminate Pathogens in Beef. Meat Sci. 2005, 71, 79–91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harris, K.; Miller, M.F.; Loneragan, G.H.; Brashears, M.M. Validation of the Use of Organic Acids and Acidified Sodium Chlorite to Reduce Escherichia coli O157 and Salmonella Typhimurium in Beef Trim and Ground Beef in a Simulated Processing Environment. J. Food Prot. 2006, 69, 1802–1807. [Google Scholar] [CrossRef] [PubMed]
- Kang, D.-H.; Koohmaraie, M.; Siragusa, G.R. Application of Multiple Antimicrobial Interventions for Microbial Decontamination of Commercial Beef Trim. J. Food Prot. 2001, 64, 168–171. [Google Scholar] [CrossRef] [PubMed]
- Ellebracht, J.W. Evaluation of Peroxyacetic Acid as a Potential Pre-Grinding Treatment for Control of Enteric Pathogens on Fresh Beef Trim. Meat Sci. 2005, 70, 197–203. [Google Scholar] [CrossRef] [PubMed]
Model 1 | Model 2 | Model 3 | ||||
---|---|---|---|---|---|---|
Variable | Coefficient (Std. Error) | p-Value | Coefficient (Std. Error) | p-Value | Coefficient (Std. Error) | p-Value |
Intercept | 0.236 (0.051) | <0.0001 | 0.679 (0.072) | <0.0001 | 0.562 (0.091) | <0.0001 |
Uptake | 0.165 (0.020) | <0.0001 | 0.063 (0.021) | 0.0029 | 0.072 (0.023) | 0.0021 |
Acid a | 0.133 (0.037) | 0.0004 | 0.289 (0.062) | <0.0001 | ||
Method b | −0.265 (0.044) | <0.0001 | −0.170 (0.081) | 0.0363 | ||
Trim c | −0.285 (0.037) | <0.0001 | −0.159 (0.063) | 0.0126 | ||
Acid*Method | −0.122 (0.077) | 0.1136 | ||||
Acid*Trim | −0.196 (0.072) | 0.0071 | ||||
Method*Trim | −0.476 (0.074) | 0.5213 | ||||
Sample size | 240 | 240 | 240 | |||
0.2254 | 0.4436 | 0.4682 | ||||
Pr > F | <0.0001 | <0.0001 | <0.0001 |
Model 1 | Model 2 | Model 3 | ||||
---|---|---|---|---|---|---|
Variable | Coefficient (Std. Error) | p-Value | Coefficient (Std. Error) | p-Value | Coefficient (Std. Error) | p-Value |
Intercept | 0.146 (0.039) | <0.0001 | 0.381 (0.071) | <0.0001 | 0.408 (0.079) | <0.0001 |
Uptake | 0.161 (0.018) | <0.0001 | 0.125 (0.023) | <0.0001 | 0.112 (0.023) | <0.0001 |
Acid a | 0.046 (0.030) | 0.1206 | 0.089 (0.048) | 0.0670 | ||
Method b | −0.061 (0.042) | 0.1492 | 0.018 (0.062) | 0.7659 | ||
Trim c | −0.252 (0.030) | <0.0001 | −0.357 (0.052) | <0.0001 | ||
Acid*Method | −0.244 (0.056) | <0.0001 | ||||
Acid*Trim | 0.154 (0.056) | 0.0062 | ||||
Method*Trim | 0.051 (0.059) | 0.3847 | ||||
Sample size | 240 | 240 | 240 | |||
0.2558 | 0.4371 | 0.4965 | ||||
Pr > F | <0.0001 | <0.0001 | <0.0001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Blandon, S.E.; Vargas, D.A.; Casas, D.E.; Sarasty, O.; Woerner, D.R.; Echeverry, A.; Miller, M.F.; Carpio, C.E.; Sanchez-Plata, M.X.; Legako, J.F. Efficacy of Common Antimicrobial Interventions at and above Regulatory Allowable Pick-Up Levels on Pathogen Reduction. Foods 2023, 12, 883. https://doi.org/10.3390/foods12040883
Blandon SE, Vargas DA, Casas DE, Sarasty O, Woerner DR, Echeverry A, Miller MF, Carpio CE, Sanchez-Plata MX, Legako JF. Efficacy of Common Antimicrobial Interventions at and above Regulatory Allowable Pick-Up Levels on Pathogen Reduction. Foods. 2023; 12(4):883. https://doi.org/10.3390/foods12040883
Chicago/Turabian StyleBlandon, Sabrina E., David A. Vargas, Diego E. Casas, Oscar Sarasty, Dale R. Woerner, Alejandro Echeverry, Markus F. Miller, Carlos E. Carpio, Marcos X. Sanchez-Plata, and Jerrad F. Legako. 2023. "Efficacy of Common Antimicrobial Interventions at and above Regulatory Allowable Pick-Up Levels on Pathogen Reduction" Foods 12, no. 4: 883. https://doi.org/10.3390/foods12040883
APA StyleBlandon, S. E., Vargas, D. A., Casas, D. E., Sarasty, O., Woerner, D. R., Echeverry, A., Miller, M. F., Carpio, C. E., Sanchez-Plata, M. X., & Legako, J. F. (2023). Efficacy of Common Antimicrobial Interventions at and above Regulatory Allowable Pick-Up Levels on Pathogen Reduction. Foods, 12(4), 883. https://doi.org/10.3390/foods12040883