Exploring the Benefits of Nutritional and Chemical Characteristics of Touriga Nacional and Arinto Varieties (Vitis vinifera L.)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Grape Pomace Samples
2.2. Chemical and Nutritional Composition of Grape Pomace Flour
2.2.1. Nutritional Composition of Grape Pomace Flour
2.2.2. Metals and Semi-Metal Composition of Grape Pomace Flour
2.2.3. Polyphenolic Composition of Grape Pomace Flour
2.2.4. Nitrogen and Extractable Phosphorus Composition
2.3. Statistical Analysis
3. Results and Discussion
3.1. Nutritional Composition of Grape Pomace Flour
3.2. Metals and Semi-Metal Composition of Grape Pomace Flour
3.3. Polyphenolic Composition of Grape Pomace Flour
3.3.1. Anthocyanins Composition of Grape Pomace Flour
3.3.2. Proanthocyanidins and Flavonols Composition of Grape Pomace Flour
3.4. Nitrogen and Phosphorus Composition
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Council of Europe’s Contribution to the United Nations 2030 Agenda for Sustainable Development Goals. Available online: https://www.coe.int/en/web/programmes/un-2030-agenda (accessed on 17 July 2023).
- United Nations, Peace, Dignity, and Equality on a Healthy Planet. Available online: https://www.un.org/EN/global-issues/population (accessed on 17 July 2023).
- Food Agriculture Organization of the United Nations. Available online: https://www.fao.org/nutrition/education/food-dietary-guidelines/background/sustainable-dietary-guidelines/en/ (accessed on 17 July 2023).
- Zhou, D.-D.; Li, J.; Xiong, R.-G.; Saimaiti, A.; Huang, S.-Y.; Wu, S.-X.; Yang, Z.-J.; Shang, A.; Zhao, C.-N.; Gan, R.-Y.; et al. Bioactive Compounds, Health Benefits and Food Applications of Grape. Foods 2022, 11, 2755. [Google Scholar] [CrossRef] [PubMed]
- Ueda, J.M.; Griebler, K.R.; Finimundy, T.C.; Rodrigues, D.B.; Veríssimo, L.; Pires, T.C.S.P.; Gonçalves, J.; Fer-nandes, I.P.; Pereira, E.; Barros, L.; et al. Polyphenol Composition by HPLC-DAD-(ESI-)MS/MS and Bioactivities of Extracts from Grape Agri-Food Wastes. Molecules 2023, 28, 7368. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Chen, C.; Ni, D.; Yang, Y.; Tian, J.; Li, Y.; Chen, S.; Ye, X.; Wang, L. Effects of Fermentation on Bioactivity and the Composition of Polyphenols Contained in Polyphenol-Rich Foods: A Review. Foods 2023, 12, 3315. [Google Scholar] [CrossRef] [PubMed]
- Pan, F.; Liu, Y.; Liu, J.; Wang, E. Stability of blueberry anthocyanin, anthocyanidin and pyranoanthocyanidin pigments and their inhibitory effects and mechanisms in human cervical cancer HeLa cells. RSC Adv. 2019, 9, 10842–10853. [Google Scholar] [CrossRef] [PubMed]
- Caponio, G.R.; Minervini, F.; Tamma, G.; Gambacorta, G.; De Angelis, M. Promising Application of Grape Pomace and Its Agri-Food Valorization: Source of Bioactive Molecules with Beneficial Effects. Sustainability 2023, 15, 9075. [Google Scholar] [CrossRef]
- Ju, Y.-L.; Liu, M.; Zhao, H.; Meng, J.-F.; Fang, Y.-L. Effect of Exogenous Abscisic Acid and Methyl Jasmonate on Anthocyanin Composition, Fatty Acids, and Volatile Compounds of Cabernet Sauvignon (Vitis vinifera L.) Grape Berries. Molecules 2016, 21, 1354. [Google Scholar] [CrossRef]
- Kokkinomagoulos, E.; Kandylis, P. Grape pomace, an undervalued by-product: Industrial reutilization with-in a circular economy vision. Rev. Environ. Sci. Biotechnol. 2023, 22, 739–773. [Google Scholar] [CrossRef]
- Costa, G.N.; Tonon, R.V.; Mellinger-Silva, C.; Galdeano, M.C.; Iacomini, M.; Santiago, M.C.; Almeida, E.L.; Freitas, S.P. Grape seed pomace as a valuable source of antioxidant fibers. J. Sci. Food Agric. 2019, 99, 4593–4601. [Google Scholar] [CrossRef] [PubMed]
- Pereira, P.; Palma, C.; Ferreira-Pêgo, C.; Amaral, O.; Amaral, A.; Rijo, P.; Gregório, J.; Palma, L.; Nicolai, M. Grape Pomace: A Potential Ingredient for the Human Diet. Foods 2020, 9, 1772. [Google Scholar] [CrossRef]
- Silva, A.; Silva, V.; Igrejas, G.; Aires, A.; Falco, V.; Valentão, P.; Poeta, P. Phenolic compounds classification and their distribution in winemaking by-products. Eur. Food Res. Technol. 2023, 249, 207–239. [Google Scholar]
- Vitousek, P.M.; Naylor, R.; Crews, T.; David, M.B.; Drinkwater, L.E.; Holland, E.; Johnes, P.J.; Katzenberger, J.; Martinelli, L.A.; Matson, P.A.; et al. Agriculture. Nutrient imbalances in agricultural development. Science 2009, 324, 1519–1520. [Google Scholar] [CrossRef]
- Instituto Português da Qualidade. Norma NP 875; Comissão Técnica: C 370/CT 37. Alimentos Para Animais. Determinação do Teor de Humidade (3ª edição); Instituto Português da Qualidade: Lisboa, Portugal, 1994. [Google Scholar]
- Instituto Português da Qualidade. Norma NP 518 Comissão Técnica; C410/CT41—Cereais e Leguminosas. Determinação do Teor de cinza. Processo de Incineração a 550 °C; Instituto Português da Qualidade: Lisboa, Portugal, 1986. [Google Scholar]
- ISO 1871:2009; Food and Feed Products—General Guidelines for the Determination of Nitrogen by the Kjeldahl Method Comissão Técnica ISO/TC34(ICS67.050). Organization for Standardization (ISO): Geneva, Switzerland, 2009.
- ISO 8292:2008; Animal and Vegetable Fats and oils—Determination of Solid Fat Content by Pulsed NMR—Part 1: Direct Method. International Organization for Standardization (ISO): Geneva, Switzerland, 2008.
- Goering, H.R.; Van Soest, P.J. Forage Fiber Analyses. In Agricultural Handbook No. 379; United States Department of Agricultural: Washington, DC, USA, 1970; pp. 1–20. [Google Scholar]
- Mongeau, R.; Brooks, S.P.J. Dietary Fiber: Determination. In Encyclopedia of Food and Health; Caballero, B., Finglas, P.M., Toldrá, F., Eds.; Academic Press: Cambridge, MA, USA, 2016; pp. 383–391. [Google Scholar] [CrossRef]
- Sanders, P.; Ernste-Nota, V.; Visser, K.; van Soest, J.; Brunt, K. The Determination of Sugars in Dairy Products: Development of a New Standard Method for the International Dairy Federation and the Internal Organization for Standardization. J. AOAC Int. 2017, 100, 1577–1581. [Google Scholar] [CrossRef]
- Instituto Português da Qualidade. Norma NP-1419. Comissão Técnica: C 310/CT 31. Frutos, Produtos Hortícolas e Seus Derivados. Determinação de Açúcares Totais, dos Açúcares Redutores e dos Açúcares não Redutores (Sacarose). Técnica de Munson and Walker; Instituto Português da Qualidade: Lisboa, Portugal, 1987. [Google Scholar]
- Element, C.A.S. Method 3051 A microwave assisted acid digestion of sediments, sludges, soils, and oils. Z. Für Anal. Chem. 2007, 111, 362–366. [Google Scholar]
- Palma, C.; Morgado, V.; Bettencourt da Silva, R.J.N.B. Top-down evaluation of matrix effects uncertainty. Talanta 2019, 192, 278–287. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Ramírez, I.F.; Reynoso-Camacho, R.; Saura-Calixto, F.; Pérez-Jiménez, J. Comprehensive Characterization of Extractable and Nonextractable Phenolic Compounds by High-Performance Liquid Chromatography–Electrospray Ionization–Quadrupole Time-of-Flight of a Grape/Pomegranate Pomace Dietary Supplement. J. Agric. Food Chem. 2018, 66, 661–673. [Google Scholar] [CrossRef] [PubMed]
- Muchagato Maurício, E.; Rosado, C.; Duarte, M.P.; Fernando, A.L.; Díaz-Lanza, A.M. Evaluation of Industrial Sour Cherry Liquor Wastes as an Ecofriendly Source of Added Value Chemical Compounds and Energy. Waste Biomass Valor. 2020, 11, 201–210. [Google Scholar] [CrossRef]
- Şen, U.; Viegas, C.; Duarte, M.P.; Maurício, E.M.; Nobre, C.; Correia, R.; Pereira, H.; Gonçalves, M. Maceration of Waste Cork in Binary Hydrophilic Solvents for the Production of Functional Extracts. Environments 2023, 10, 142. [Google Scholar] [CrossRef]
- Correia, P.; Araújo, P.; Ribeiro, C.; Oliveira, H.; Pereira, A.R.; Mateus, N.; de Freitas, V.; Brás, N.F.; Ga-meiro, P.; Coelho, P.; et al. Anthocyanin-Related Pigments: Natural Allies for Skin Health Maintenance and Protection. Antioxidants 2021, 10, 1038. [Google Scholar] [CrossRef]
- Teixeira, N.; Mateus, N.; de Freitas, V.; Oliveira, J. Wine industry by-product: Full polyphenolic characterization of grape stalks. Food Chem. 2018, 268, 110–117. [Google Scholar] [CrossRef]
- Strickland, J.D.H.; Parsons, T.R. A Practical Handbook of Seawater Analysis. 2nd edition. Ottawa, Canada, Fisheries Research Board of Canada. Bull. Fish. Res. Board. Can. 1972, 167, 310. [Google Scholar] [CrossRef]
- Koroleff, F. Determination of ammonia and Determination of silicon. In Methods of Seawater Analysis; Grasshoff, K., Ed.; Verlag Chemie: New York, NY, USA, 1976; pp. 126–158. [Google Scholar]
- International Organization for Standardization. ISO/TS14256-1 Soil quality—Determination of Nitrate, Nitrite and Ammonium in Field-Moist Soils by Extraction with Potassium Chloride Solution; ISO: Geneva, Switzerland, 2003. [Google Scholar]
- Murphy, J.; Riley, J.P. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta 1962, 27, 31–36. [Google Scholar]
- Olsen, S.R.; Cole, C.V.; Watanabe, F.S.; Dean, L.A. Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate; USDA Circular No. 939; US Government Printing Office: Washington DC, USA, 1954; p. 939.
- ISO/IEC 17025:2017; General Requirements for the Competence of Testing and Calibration Laboratories. International Organization for Standardization: Geneva, Switzerland, 2017.
- NP EN ISO/IEC 17025:2018; Requisitos Gerais de Competência para Laboratórios de Ensaio e Calibração. Instituto Português da Qualidade: Lisboa, Portugal, 2018.
- Mortensen, A.B.; Wallin, H. Gravimetric Determination of Ash in Foods: NMKL Collaborative Study. J. AOAC Int. 1989, 72, 481–483. [Google Scholar] [CrossRef]
- Alfaia, C.M.; Costa, M.M.; Lopes, P.A.; Pestana, J.M.; Prates, J.A.M. Use of Grape By-Products to Enhance Meat Quality and Nutritional Value in Monogastrics. Foods 2022, 11, 2754. [Google Scholar] [CrossRef] [PubMed]
- Corbin, K.R.; Hsieh, Y.S.Y.; Betts, N.S.; Byrt, C.S.; Henderson, M.; Stork, J.; DeBolt, S.; Fincher, G.B.; Burton, R.A. Grape Marc as a Source of Carbohydrates for Bioethanol: Chemical Composition, Pre-Treatment and Saccharification. Bioresour. Technol. 2015, 193, 76–83. [Google Scholar] [CrossRef] [PubMed]
- Mangione, R.; Simões, R.; Pereira, H.; Catarino, S.; Ricardo-da-Silva, J.; Miranda, I.; Ferreira-Dias, S. Potential Use of Grape Stems and Pomaces from Two Red Grapevine Cultivars as Source of Oligosaccharides. Processes 2022, 10, 1896. [Google Scholar] [CrossRef]
- Troilo, M.; Difonzo, G.; Paradiso, V.M.; Pasqualone, A.; Caponio, F. Grape Pomace as Innovative Flour for the Formulation of Functional Muffins: How Particle Size Affects the Nutritional, Textural and Sensory Properties. Foods 2022, 11, 1799. [Google Scholar] [CrossRef] [PubMed]
- Rockenbach, I.I.; Gonzaga, L.V.; Rizelio, V.M.; Gonçalves, A.E.D.S.S.; Genovese, M.I.; Fett, R. Phenolic compounds content and antioxidant activity in seed and skin of grape pomace from four grape varieties cultivated in Southern Brazil. Food Chem. 2011, 127, 174–179. [Google Scholar] [CrossRef]
- Zhao, L.; Huang, Y.; Du, M. Farm animals for studying muscle development and metabolism: Dual purposes for animal production and human health. Anim. Front. 2019, 9, 21–27. [Google Scholar] [CrossRef] [PubMed]
- Kafantaris, I.; Stagos, D.; Kotsampasi, B.; Hatzis, A.; Kypriotakis, A.; Gerasopoulos, K.; Makri, S.; Goutzourelas, N.; Mitsagga, C.; Giavasis, I.; et al. Grape pomace improves performance, antioxidant status, fecal microbiota and meat quality of piglets. Anim. 2018, 12, 246–255. [Google Scholar] [CrossRef]
- Gerardi, C.; D’Amico, L.; Durante, M.; Tufariello, M.; Giovinazzo, G. Whole Grape Pomace Flour as Nutritive Ingredient for Enriched Durum Wheat Pasta with Bioactive Potential. Foods. 2023, 12, 2593. [Google Scholar] [CrossRef]
- Sousa, E.C.; Uchôa-Thomaz, A.M.A.; Carioca, J.O.B.; Morais, S.M.D.; Lima, A.D.; Martins, C.G.; Alexandrino, C.D.; Ferreira, P.A.T.; Rodrigues, A.L.M.; Rodrigues, S.P.; et al. Chemical Composition and Bioactive Compounds of Grape Pomace (Vitis Vinifera L.), Benitaka Variety, Grown in the Semiarid Region of Northeast Brazil. Food Sci. Technol. Camp. 2014, 34, 135–142. [Google Scholar] [CrossRef]
- Taladrid, D.; Rebollo-Hernanz, M.; Martin-Cabrejas, M.A.; Moreno-Arribas, M.V.; Bartolomé, B. Grape Pomace as a Cardiometabolic Health-Promoting Ingredient: Activity in the Intestinal Environment. Antioxidants 2023, 12, 979. [Google Scholar] [CrossRef] [PubMed]
- Jha, R.; Mishra, P. Dietary fiber in poultry nutrition and their effects on nutrient utilization, performance, gut health, and on the environment: A review. J. Animal Sci. Biotechnol. 2021, 12, 51. [Google Scholar] [CrossRef] [PubMed]
- Antonić, B.; Jančíková, S.; Dordević, D.; Tremlová, B. Grape Pomace Valorization: A Systematic Review and Meta-Analysis. Foods 2020, 9, 1627. [Google Scholar] [CrossRef] [PubMed]
- Guaita, M.; Motta, S.; Messina, S.; Casini, F.; Bosso, A. Polyphenolic Profile and Antioxidant Activity of Green Extracts from Grape Pomace Skins and Seeds of Italian Cultivars. Foods 2023, 12, 3880. [Google Scholar] [CrossRef] [PubMed]
- Almanza-Oliveros, A.; Bautista-Hernández, I.; Castro-López, C.; Aguilar-Zárate, P.; Meza-Carranco, Z.; Rojas, R.; Michel, M.R.; Martínez-Ávila, G.C.G. Grape Pomace—Advances in Its Bioactivity, Health Benefits, and Food Applications. Foods 2024, 13, 580. [Google Scholar] [CrossRef]
- Manolescu, B.N.; Oprea, E.; Mititelu, M.; Ruta, L.L.; Farcasanu, I.C. Dietary Anthocyanins and Stroke: A Review of Pharmacokinetic and Pharmacodynamic Studies. Nutrients 2019, 11, 1479. [Google Scholar] [CrossRef]
- Wallace, T.C. Anthocyanins in Cardiovascular Disease. Adv. Nutr. 2011, 2, 1–7. [Google Scholar] [CrossRef]
- Negro, C.; Aprile, A.; Luvisi, A.; De Bellis, L.; Miceli, A. Antioxidant Activity and Polyphenols Characterization of Four Monovarietal Grape Pomaces from Salento (Apulia, Italy). Antioxidants 2021, 10, 1406. [Google Scholar] [CrossRef]
- Gil-Sánchez, I.; Ayuda-Durán, B.; González-Manzano, S.; Santos-Buelga, C.; Cueva, C.; Martín-Cabrejas, M.A.; Sanz-Buenhombre, M.; Guadarrama, A.; Moreno-Arribas, M.V.; Bartolomé, B. Chemical Characterization and in Vitro Colonic Fermentation of Grape Pomace Extracts. J. Sci. Food Agric. 2017, 97, 3433–3444. [Google Scholar] [CrossRef]
- Kozłowska, A.; Szostak-Węgierek, D. Targeting Cardiovascular Diseases by Flavonols: An Update. Nutrients 2022, 14, 1439. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, A.; Baenas, N.; Dominguez-Perles, R.; Barros, A.; Rosa, E.; Moreno, D.; Garcia-Viguera, C. Natural Bioactive Compounds from Winery By-Products as Health Promoters: A Review. Int. J. Mol. Sci. 2014, 15, 15638–15678. [Google Scholar] [CrossRef] [PubMed]
- Dimitrovska, M.; Bocevska, M.; Dimitrovski, D.; Murkovic, M. Anthocyanin Composition of Vranec, Cabernet Sauvignon, Merlot and Pinot Noir Grapes as Indicator of Their Varietal Differentiation. Eur. Food Res. Technol. 2011, 232, 591–600. [Google Scholar] [CrossRef]
- Yang, C.; Han, Y.; Tian, X.; Sajid, M.; Mehmood, S.; Wang, H.; Li, H. Phenolic Composition of Grape Pomace and Its Metabolism. Crit. Rev. Food Sci. Nutr. 2022, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Moutinho, J.; Gouvinhas, I.; Domínguez-Perles, R.; Barros, A. Optimization of the Extraction Methodology of Grape Pomace Polyphenols for Food Applications. Molecules 2023, 28, 3885. [Google Scholar] [CrossRef]
- Rustioni, L.; Rocchi, L.; Failla, O. Effect of Anthocyanin Absence on White Berry Grape (Vitis vinifera L.). Vitis 2015, 54, 239–242. [Google Scholar]
- Liobikas, J.; Skemiene, K.; Trumbeckaite, S.; Borutaite, V. Anthocyanins in Cardioprotection: A Path through Mitochondria. Pharmacol. Res. 2016, 113, 808–815. [Google Scholar] [CrossRef]
- Zhao, X.; Zhang, N.; Wu, G.-F.; He, F.; Lan, Y.-B.; Duan, C.-Q. Intermolecular Copigmentation between Anthocyanidin-3,5-O-Diglucosides and Three Phenolic Compounds: Insights from Experimental and Theoretical Studies. Food Chem. Adv. 2022, 1, 100111. [Google Scholar] [CrossRef]
- Chang, C.-I.; Chien, W.-C.; Huang, K.-X.; Hsu, J.-L. Anti-Inflammatory Effects of Vitisinol A and Four Other Oligostilbenes from Ampelopsis Brevipedunculata Var. Hancei. Molecules 2017, 22, 1195. [Google Scholar] [CrossRef]
- González-Arenzana, L.; Santamaría, R.; Escribano-Viana, R.; Portu, J.; Garijo, P.; López-Alfaro, I.; López, R.; Santamaría, P.; Gutiérrez, A.R. Influence of the Carbonic Maceration Winemaking Method on the Physicochemical, Colour, Aromatic and Microbiological Features of Tempranillo Red Wines. Food Chem. 2020, 319, 126569. [Google Scholar] [CrossRef]
- Fontana, M.; Murowaniecki Otero, D.; Pereira, A.M.; Santos, R.B.; Gularte, M.A. Grape Pomace Flour for Incorporation into Cookies: Evaluation of Nutritional, Sensory and Technological Characteristics. J. Culin. Sci. Technol. 2022, 1–20. [Google Scholar] [CrossRef]
- Mohamed Ahmed, I.A.; Özcan, M.M.; Al Juhaimi, F.; Babiker, E.F.E.; Ghafoor, K.; Banjanin, T.; Osman, M.A.; Gassem, M.A.; Alqah, H.A.S. Chemical Composition, Bioactive Compounds, Mineral Contents, and Fatty Acid Composition of Pomace Powder of Different Grape Varieties. J. Food Process. Preserv. 2020, 44, 14539. [Google Scholar] [CrossRef]
- Campos, F.; Peixoto, A.F.; Fernandes, P.A.R.; Coimbra, M.A.; Mateus, N.; De Freitas, V.; Fernandes, I.; Fernandes, A. The Antidiabetic Effect of Grape Pomace Polysaccharide-Polyphenol Complexes. Nutrients 2021, 13, 4495. [Google Scholar] [CrossRef] [PubMed]
- European Union, Regulation No. 1333/2008 on food additives. Regulation—1333/2008—EN—additives—EUR-Lex (europa.eu). Available online: https://eur-lex.europa.eu/eli/reg/2008/1333/oj (accessed on 17 July 2023).
Composition (% w/w ± SD) | Arinto | Touriga Nacional |
---|---|---|
Moisture | 8.88 ± 0.04 b | 3.99 ± 0.14 a |
Dry matter | ||
Ash | 4.0 ± 0.03 b | 5.49 ± 0.03 a |
Proteins | 8.38 ± 0.07 b | 10.13 ± 0.07 a |
Fats/lipids | 8.22 ± 0.13 b | 10.29 ± 0.07 a |
Saturated fatty acids | 1.28 ± 0.49 b | 0.70 ± 0.35 b |
Monounsaturated fatty acids | 1.73 ± 0.49 b | 2.19 ± 0.26 b |
Polyunsaturated fatty acids | 5.18 ± 0.72 b | 6.66 ± 0.53 a |
Dietary fibers | ||
Soluble fibers | 1.7 ± 0.4 b | 14.3 ± 0.1 a |
Insoluble fibers | 46.4 ± 0.6 b | 55.1 ± 0.1 a |
Hemicellulose | 5.7 ± 0.1 b | 8.4 ± 0.1 a |
Cellulose | 15.1 ± 0.4 b | 16.7 ± 0.3 a |
Lignin | 25.6 ± 0.2 b | 30.0 ± 0.3 a |
Total sugars | 31.3 ± 0.4 a | 4.7 ± 0.1 b |
Composition | Arinto | Touriga Nacional |
---|---|---|
(mg/kg dry sample ± U) | ||
Al | 120 ± 24 | 130 ± 26 |
As | 0.05 ± 0.001 | 0.10 ± 0.02 |
Cd | 0.12 ± 0.03 | 0.05 ± 0.01 |
Cr | 0.90 ± 0.15 | 2.12 ± 0.34 |
Cu | 10.5 ± 1.3 | 20.8 ± 2.6 |
Fe | 112± 27 | 146 ± 36 |
Hg | <0.008 | <0.008 |
Li | n.d. | n.d. |
Mn | 16.0 ± 1.9 | 19.8 ± 2.3 |
Ni | 3.36 ± 0.54 | 0.26 ± 0.04 |
Pb | 0.15 ± 0.02 | 0.082 ±0.001 |
Zn | 7.27 ± 1.1 | 8.52 ± 1.2 |
Composition | Arinto | Touriga Nacional |
---|---|---|
Extractable polyphenolics (mg GAE/g DW) | 25.9 ± 0.3 a | 17.1 ± 0.6 b |
Anthocyanins (mg Mv3Glc equivalents/g DW) | - | 1.62± 0.07 |
Proanthocyanidins (mg catechin equivalents/g DW) | 2.9 ± 0.1 a | 0.8± 0.1 b |
Flavonols (mg quercetin-3-O-Glc equivalents/g DW) | 0.20 ± 0.02 a | 0.18 ± 0.04 a |
Composition (mg/kg Dry Sample ± U) | Arinto | Touriga Nacional |
---|---|---|
Nitrate and nitrite (mg-NO3/kg) | 45 ± 11 | 58 ± 14 |
Ammonia (mg-NH3/kg) | 104 ± 26 | 166 ± 41 |
Extractable phosphorus (mg-P/kg) | 0.83 ± 0.21 | 101 ± 25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pereira, P.; Palma, M.L.; Palma, C.; Borges, C.; Maurício, E.; Fernando, A.L.; Duarte, M.P.; Lageiro, M.; Fernandes, A.; Mateus, N.; et al. Exploring the Benefits of Nutritional and Chemical Characteristics of Touriga Nacional and Arinto Varieties (Vitis vinifera L.). Foods 2024, 13, 1535. https://doi.org/10.3390/foods13101535
Pereira P, Palma ML, Palma C, Borges C, Maurício E, Fernando AL, Duarte MP, Lageiro M, Fernandes A, Mateus N, et al. Exploring the Benefits of Nutritional and Chemical Characteristics of Touriga Nacional and Arinto Varieties (Vitis vinifera L.). Foods. 2024; 13(10):1535. https://doi.org/10.3390/foods13101535
Chicago/Turabian StylePereira, Paula, Maria Lídia Palma, Carla Palma, Carlos Borges, Elisabete Maurício, Ana Luísa Fernando, Maria Paula Duarte, Manuela Lageiro, Ana Fernandes, Nuno Mateus, and et al. 2024. "Exploring the Benefits of Nutritional and Chemical Characteristics of Touriga Nacional and Arinto Varieties (Vitis vinifera L.)" Foods 13, no. 10: 1535. https://doi.org/10.3390/foods13101535
APA StylePereira, P., Palma, M. L., Palma, C., Borges, C., Maurício, E., Fernando, A. L., Duarte, M. P., Lageiro, M., Fernandes, A., Mateus, N., & Nicolai, M. (2024). Exploring the Benefits of Nutritional and Chemical Characteristics of Touriga Nacional and Arinto Varieties (Vitis vinifera L.). Foods, 13(10), 1535. https://doi.org/10.3390/foods13101535