Physicochemical and Nutritional Properties of Vegetable Oils from Brazil Diversity and Their Applications in the Food Industry
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Fatty Acid and Triacylglycerol Compositions
2.3. Atherogenicity and Thrombogenicity Indexes
2.4. Oil Quality Parameters
2.5. FTIR-ATR
2.6. Thermogravimetry
3. Results and Discussion
3.1. Fatty Acid Composition, Nutritional Quality Indexes and Triacylglycerol Profile
3.2. Oily Quality Parameters
3.3. FTIR-ATR
3.4. Thermal Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pereira, E.; Ferreira, M.C.; Sampaio, K.A.; Grimaldi, R.; de Almeida Meirelles, A.J.; Maximo, G.J. Physical Properties of Amazonian Fats and Oils and Their Blends. Food Chem. 2019, 278, 208–215. [Google Scholar] [CrossRef]
- Serra, J.L.; da Cruz Rodrigues, A.M.; de Freitas, R.A.; de Almeida Meirelles, A.J.; Darnet, S.H.; da Silva, L.H.M. Alternative Sources of Oils and Fats from Amazonian Plants: Fatty Acids, Methyl Tocols, Total Carotenoids and Chemical Composition. Food Res. Int. 2019, 116, 12–19. [Google Scholar] [CrossRef] [PubMed]
- Bezerra, C.V.; da Cruz Rodrigues, A.M.; de Oliveira, P.D.; da Silva, D.A.; da Silva, L.H.M. Technological Properties of Amazonian Oils and Fats and Their Applications in the Food Industry. Food Chem. 2017, 221, 1466–1473. [Google Scholar] [CrossRef] [PubMed]
- Calder, P.C. Functional Roles of Fatty Acids and Their Effects on Human Health. J. Parenter. Enter. Nutr. 2015, 39, 18S–32S. [Google Scholar] [CrossRef] [PubMed]
- Martin, C.A.; de Almeida, V.V.; Ruiz, M.R.; Visentainer, J.E.L.; Matshushita, M.; de Souza, N.E.; Visentainer, J.V. Ácidos graxos poliinsaturados ômega-3 e ômega-6: Importância e ocorrência em alimentos. Rev. Nutr. 2006, 19, 761–770. [Google Scholar] [CrossRef]
- Lopez-Huertas, E. Health Effects of Oleic Acid and Long Chain Omega-3 Fatty Acids (EPA and DHA) Enriched Milks. A Review of Intervention Studies. Pharmacol. Res. 2010, 61, 200–207. [Google Scholar] [CrossRef] [PubMed]
- Tureck, C.; Retondario, A.; de Moura Souza, A.; Barboza, B.P.; Bricarello, L.P.; de Almeida Alves, M.; de Vasconcelos, F.D.A.G. Omega-3 and Omega-6 Fatty Acids Food Intake and Metabolic Syndrome in Adolescents 12 to 17 Years Old: A School-Based Cross-Sectional Study. Clin. Nutr. ESPEN 2023, 58, 178–185. [Google Scholar] [CrossRef] [PubMed]
- Alves, A.M.; Fernandes, D.C.; de O. Sousa, A.G.; Naves, R.V.; Naves, M.M.V. Características físicas e nutricionais de pequis oriundos dos estados de Tocantins, Goiás e Minas Gerais. Braz. J. Food Technol. 2014, 17, 198–203. [Google Scholar] [CrossRef]
- Leão, D.P.; Franca, A.S.; Oliveira, L.S.; Bastos, R.; Coimbra, M.A. Physicochemical Characterization, Antioxidant Capacity, Total Phenolic and Proanthocyanidin Content of Flours Prepared from Pequi (Caryocar brasilense Camb.) Fruit by-Products. Food Chem. 2017, 225, 146–153. [Google Scholar] [CrossRef]
- Pinto, M.R.M.R.; de A. Paula, D.; Alves, A.I.; Rodrigues, M.Z.; Vieira, É.N.R.; Fontes, E.A.F.; Ramos, A.M. Encapsulation of Carotenoid Extracts from Pequi (Caryocar brasiliense Camb) by Emulsification (O/W) and Foam-Mat Drying. Powder Technol. 2018, 339, 939–946. [Google Scholar] [CrossRef]
- da Silveira, J.T.; da Rosa, A.P.C.; de Morais, M.G.; Victoria, F.N.; Costa, J.A.V. An Integrative Review of Açaí (Euterpe oleracea and Euterpe precatoria): Traditional Uses, Phytochemical Composition, Market Trends, and Emerging Applications. Food Res. Int. 2023, 173, 113304. [Google Scholar] [CrossRef] [PubMed]
- Loureiro Contente, D.M.; Pereira, R.R.; Rodrigues, A.M.C.; da Silva, E.O.; Ribeiro-Costa, R.M.; Carrera Silva-Júnior, J.O. Nanoemulsions of Acai Oil: Physicochemical Characterization for the Topical Delivery of Antifungal Drugs. Chem. Eng. Technol. 2020, 43, 1424–1432. [Google Scholar] [CrossRef]
- Silva, J.J.M.D.; Rogez, H. Avaliação da estabilidade oxidativa do óleo bruto de açaí (Euterpe oleracea) na presença de compostos fenólicos puros ou de extratos vegetais amazônicos. Quím. Nova 2013, 36, 400–406. [Google Scholar] [CrossRef]
- de L. Yamaguchi, K.K.; Pereira, L.F.R.; Lamarão, C.V.; Lima, E.S.; da Veiga-Junior, V.F. Amazon Acai: Chemistry and Biological Activities: A Review. Food Chem. 2015, 179, 137–151. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Tao, S.; Hou, G.; Zhao, F.; Meng, Q.; Tan, S. Phytochemistry, Nutritional Composition, Health Benefits and Future Prospects of Passiflora: A Review. Food Chem. 2023, 428, 136825. [Google Scholar] [CrossRef] [PubMed]
- de Francisco, L.M.B.; Rosseto, H.C.; de Alcântara Sica de Toledo, L.; dos Santos, R.S.; de Souza Ferreira, S.B.; Bruschi, M.L. Organogel Composed of Poloxamer 188 and Passion Fruit Oil: Sol-Gel Transition, Rheology, and Mechanical Properties. J. Mol. Liq. 2019, 289, 111170. [Google Scholar] [CrossRef]
- Mezzonato-Pires, A.; Mendonça, C.; Milward-de-Azevedo, M.; Gonçalves-Esteves, V. Distribution Extensions for Species of the Passiflora Subgenus Astrophea (DC.) Masters from Brazil (Passifloraceae s.s.). Check List 2017, 13, 467–473. [Google Scholar] [CrossRef]
- Pereira, Z.C.; dos Anjos Cruz, J.M.; Corrêa, R.F.; Sanches, E.A.; Campelo, P.H.; de Araújo Bezerra, J. Passion Fruit (Passiflora spp.) Pulp: A Review on Bioactive Properties, Health Benefits and Technological Potential. Food Res. Int. 2023, 166, 112626. [Google Scholar] [CrossRef]
- Tousif, M.I.; Nazir, M.; Saleem, M.; Tauseef, S.; Shafiq, N.; Hassan, L.; Hussian, H.; Montesano, D.; Naviglio, D.; Zengin, G.; et al. Psidium guajava L. An Incalculable but Underexplored Food Crop: Its Phytochemistry, Ethnopharmacology, and Industrial Applications. Molecules 2022, 27, 7016. [Google Scholar] [CrossRef]
- Gutiérrez, R.M.P.; Mitchell, S.; Solis, R.V. Psidium guajava: A Review of Its Traditional Uses, Phytochemistry and Pharmacology. J. Ethnopharmacol. 2008, 117, 1–27. [Google Scholar] [CrossRef]
- Kumar, M.; Kapoor, S.; Dhumal, S.; Tkaczewska, J.; Changan, S.; Saurabh, V.; Mekhemar, M.; Radha, N.; Rais, N.; Satankar, V.; et al. Guava (Psidium guajava L.) Seed: A Low-Volume, High-Value Byproduct for Human Health and the Food Industry. Food Chem. 2022, 386, 132694. [Google Scholar] [CrossRef] [PubMed]
- Pereira, R.R.; Gomes, A.T.A.; Testi, M.; Bianchera, A.; Ribeiro-Costa, R.M.; Padula, C.; Silva Júnior, J.O.C.; Sonvico, F. Ucuùba Fat Characterization and Use to Obtain Lipid Nanoparticles by High-Pressure Homogenization with Full Factorial Design. Chem. Eng. Technol. 2021, 44, 1009–1016. [Google Scholar] [CrossRef]
- Gomes, A.T.A.; Pereira, R.R.; Duarte Junior, A.P.; da Cruz Rodrigues, A.M.; Remédios, C.M.R.; Brasil, D.D.S.B.; Morais, L.R.B.; Silva-Júnior, J.O.C.; Ribeiro-Costa, R.M. Tucumã (Astrocaryum vulgare) Fat: An Amazonian Material as a Pharmaceutical Input for Lipid Nanoparticle Production. J. Therm. Anal. Calorim. 2022, 147, 355–365. [Google Scholar] [CrossRef]
- Darnet, S. Fatty acid profiles and tocopherol contents of buriti (Mauritia flexuosa), patawa (Oenocarpus bataua), tucuma (Astrocaryum vulgare), mari (Poraqueiba paraensis) and inaja (Maximiliana maripa) fruits. J. Braz. Chem. Soc. 2010, 21, 2000–2004. [Google Scholar] [CrossRef]
- Filho, N.R.A.; Mendes, O.L.; Lanças, F.M. Computer Prediction of Triacylglycerol Composition of Vegetable Oils by HRGC. Chromatographia 1995, 40, 557–562. [Google Scholar] [CrossRef]
- Santos, O.V.; Soares, S.D.; Dias, P.C.S.; Duarte, S.P.A.; Santos, M.P.L.; Nascimento, F.C.A.; Teixeira-Costa, B.E. Chemical-Functional Composition of Terminalia Catappa Oils from Different Varieties. Grasas Aceites 2022, 73, e454. [Google Scholar] [CrossRef]
- Ulbricht, T.L.; Southgate, D.A. Coronary Heart Disease: Seven Dietary Factors. Lancet 1991, 338, 985–992. [Google Scholar] [CrossRef]
- AOCS. Official Methods and Recommended Practices of the AOCS, 6th ed.; Firestone, D., Ed.; American Oil Chemists’ Society: Urbana, IL, USA, 2009. [Google Scholar]
- Revelou, P.-K.; Xagoraris, M.; Alexandropoulou, A.; Kanakis, C.D.; Papadopoulos, G.K.; Pappas, C.S.; Tarantilis, P.A. Chemometric Study of Fatty Acid Composition of Virgin Olive Oil from Four Widespread Greek Cultivars. Molecules 2021, 26, 4151. [Google Scholar] [CrossRef]
- Ahmad, S.N.S.; Tarmizi, A.H.A.; Razak, R.A.A.; Jinap, S.; Norliza, S.; Sulaiman, R.; Sanny, M. Selection of Vegetable Oils and Frying Cycles Influencing Acrylamide Formation in the Intermittently Fried Beef Nuggets. Foods 2021, 10, 257. [Google Scholar] [CrossRef]
- Foscolou, A.; Critselis, E.; Panagiotakos, D. Olive Oil Consumption and Human Health: A Narrative Review. Maturitas 2018, 118, 60–66. [Google Scholar] [CrossRef]
- Khalili Tilami, S.; Kouřimská, L. Assessment of the Nutritional Quality of Plant Lipids Using Atherogenicity and Thrombogenicity Indices. Nutrients 2022, 14, 3795. [Google Scholar] [CrossRef] [PubMed]
- Fonseca, H.; Gutierrez, L.E. Composição em ácidos graxos de óleos vegetais e gorduras animais. An. Esc. Super. Agric. Luiz de Queiroz 1974, 31, 485–490. [Google Scholar] [CrossRef]
- Silva, M.P.; Cunha, V.M.B.; Sousa, S.H.B.; Menezes, E.G.O.; Bezerra, P.D.N.; De Farias Neto, J.T.; Filho, G.N.R.; Araújo, M.E.; De Carvalho, R.N. Supercritical CO2 Extraction of Lyophilized Açaí (Euterpe Oleracea Mart.) Pulp Oil from Three Municipalities in the State of Pará, Brazil. J. CO2 Util. 2019, 31, 226–234. [Google Scholar] [CrossRef]
- Saraiva, S.A.; Cabral, E.C.; Eberlin, M.N.; Catharino, R.R. Amazonian Vegetable Oils and Fats: Fast Typification and Quality Control via Triacylglycerol (TAG) Profiles from Dry Matrix-Assisted Laser Desorption/Ionization Time-of-Flight (MALDI−TOF) Mass Spectrometry Fingerprinting. J. Agric. Food Chem. 2009, 57, 4030–4034. [Google Scholar] [CrossRef] [PubMed]
- Segall, S.D.; Artz, W.E.; Raslan, D.S.; Ferraz, V.P.; Takahashi, J.A. Triacylglycerol Analysis of Pequi (Caryocar brasiliensis Camb.) Oil by Electrospray and Tandem Mass Spectrometry. J. Sci. Food Agric. 2006, 86, 445–452. [Google Scholar] [CrossRef]
- Codex Alimentarius. Standard for Named Vegetabel Oils. Codex Stan 210. 1999. Available online: http://www.fao.org/fao-whoodexalimentari-us/shproxy/it/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodex%252FStandards%252FCODEX%2BSTAN%2B210-1999%252FCXS_210e.pdf (accessed on 10 March 2019).
- Ribeiro, M.C.; de B. Vilas Boas, E.V.; Riul, T.R.; Pantoja, L.; Marinho, H.A.; dos Santos, A.S. Influence of the Extraction Method and Storage Time on the Physicochemical Properties and Carotenoid Levels of Pequi (Caryocar brasiliense Camb.) Oil. Food Sci. Technol. 2012, 32, 386–392. [Google Scholar] [CrossRef]
- Pereira Lima, R.; Souza da Luz, P.T.; Braga, M.; dos Santos Batista, P.R.; Ferreira da Costa, C.E.; Zamian, J.R.; Santos do Nascimento, L.A.; da Rocha Filho, G.N. Murumuru (Astrocaryum Murumuru Mart.) Butter and Oils of Buriti (Mauritia Flexuosa Mart.) and Pracaxi (Pentaclethra Macroloba (Willd.) Kuntze) Can Be Used for Biodiesel Production: Physico-Chemical Properties and Thermal and Kinetic Studies. Ind. Crops Prod. 2017, 97, 536–544. [Google Scholar] [CrossRef]
- Jia, Z.; Wan, L.; Huang, Z.; Zhang, W. Quality Evaluation of Hainan Robusta Coffee Bean Oil Produced by Ultrasound Coupled with Coconut Oil Extraction. Foods 2023, 12, 2235. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira, J.B.; Michels, F.S.; Silva de Pádua Melo, E.; Nazário, C.E.D.; Caires, A.R.L.; Gonçalves, D.A.; Cardoso, C.A.L.; Aragão do Nascimento, V. Data on Mineral Composition, Fatty Acids, Oxidative Stability, UV-VIS Spectra and Fluorescence Emission of the Dersani® and Sunflower® Oils Used as a Cicatrizing Agent. Data Brief 2019, 26, 104427. [Google Scholar] [CrossRef]
- Melhaoui, R.; Kodad, S.; Houmy, N.; Belhaj, K.; Mansouri, F.; Abid, M.; Addi, M.; Mihamou, A.; Sindic, M.; Serghini-Caid, H.; et al. Characterization of Sweet Almond Oil Content of Four European Cultivars (Ferragnes, Ferraduel, Fournat, and Marcona) Recently Introduced in Morocco. Scientifica 2021, 2021, e9141695. [Google Scholar] [CrossRef]
- dos Santos Costa, M.N.F.; Muniz, M.A.P.; Negrão, C.A.B.; da Costa, C.E.F.; Lamarão, M.L.N.; Morais, L.; Silva Júnior, J.O.C.; Ribeiro Costa, R.M. Characterization of Pentaclethra Macroloba Oil. J. Therm. Anal. Calorim. 2014, 115, 2269–2275. [Google Scholar] [CrossRef]
- Oliveira, S.D.S.D.C.; Sarmento, E.d.S.; Marinho, V.H.; Pereira, R.R.; Fonseca, L.P.; Ferreira, I.M. Green Extraction of Annatto Seed Oily Extract and Its Use as a Pharmaceutical Material for the Production of Lipid Nanoparticles. Molecules 2022, 27, 5187. [Google Scholar] [CrossRef] [PubMed]
- Teklemariam, T.A.; Moisey, J.; Gotera, J. Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy Coupled with Chemometrics for the Rapid Detection of Coconut Water Adulteration. Food Chem. 2021, 355, 129616. [Google Scholar] [CrossRef] [PubMed]
- Pardauil, J.J.R.; de Molfetta, F.A.; Braga, M.; de Souza, L.K.C.; Filho, G.N.R.; Zamian, J.R.; da Costa, C.E.F. Characterization, Thermal Properties and Phase Transitions of Amazonian Vegetable Oils. J. Therm. Anal. Calorim. 2017, 127, 1221–1229. [Google Scholar] [CrossRef]
- Fontanari, G.G.; Kobelnik, M.; Marques, M.R.; Arêas, J.A.G.; Franzin, B.T.; Pastre, I.A.; Fertonani, F.L. Thermal and Kinetic Studies of White Lupin (Lupinus albus) Oil. J. Therm. Anal. Calorim. 2018, 131, 775–782. [Google Scholar] [CrossRef]
- Santos, J.C.O.; Santos, I.M.G.; Conceiçăo, M.M.; Porto, S.L.; Trindade, M.F.S.; Souza, A.G.; Prasad, S.; Fernandes, V.J.; Araújo, A.S. Thermoanalytical, Kinetic and Rheological Parameters of Commercial Edible Vegetable Oils. J. Therm. Anal. Calorim. 2004, 75, 419–428. [Google Scholar] [CrossRef]
- Timilsena, Y.P.; Vongsvivut, J.; Adhikari, R.; Adhikari, B. Physicochemical and Thermal Characteristics of Australian Chia Seed Oil. Food Chem. 2017, 228, 394–402. [Google Scholar] [CrossRef]
- Mba, O.I.; Dumont, M.-J.; Ngadi, M. Palm Oil: Processing, Characterization and Utilization in the Food Industry—A Review. Food Biosci. 2015, 10, 26–41. [Google Scholar] [CrossRef]
Fatty Acid | Açaí | Guava | Passion Fruit | Pequi |
---|---|---|---|---|
Caprylic acid (C 8:0) | 0.06 ± 0.01 | 0.03 ± 0.01 | - | - |
Capric acid (C 10:0) | 0.03 ± 0.00 | - | - | - |
Lauric acid (C 12:0) | 1.45 ± 0.02 | - | - | - |
Myristic acid (C 14:0) | 5.70 ± 0.05 | 0.05 ± 0.02 | - | 0.16 ± 0.04 |
Palmitic acid (C 16:0) | 18.52 ± 0.12 | 9.93 ± 0.01 | 9.23 ± 0.02 | 37.59 ± 0.01 |
Palmitoleic acid (C 16:1) | 1.53 ± 0.03 | 0.07 ± 0.04 | - | 0.68 ± 0.01 |
Stearic acid (C 18:0) | 7.05 ± 0.01 | 4.84 ± 0.02 | 3.68 ± 0.04 | 3.08 ± 0.02 |
Oleic acid (C 18:1) | 46.72 ± 0.02 | 37.90 ± 0.03 | 38.11 ± 0.31 | 38.80 ± 0.03 |
Linoleic acid (C18:2) | 18.83 ± 0.03 | 44.72 ± 0.05 | 47.63 ± 0.04 | 19.39 ± 0.02 |
Linolenic acid (C18:3) | - | 0.19 ± 0.00 | 0.14 ± 0.01 | - |
Behenic acid (C22:0) | - | 0.29 ± 0.04 | - | - |
SFA | 32.81 ± 0.20 | 15.14 ± 0.01 | 12.91 ± 0.08 | 40.83 ± 0.08 |
MUFA | 48.25 ± 0.05 | 37.97 ± 0.01 | 38.11 ± 0.44 | 39.48 ± 0.04 |
PUFA | 18.83 ± 0.03 | 44.91 ± 0.05 | 47.77 ± 0.06 | 19.39 ± 0.02 |
AI | 0.65 | 0.12 | 0.11 | 0.65 |
TI | 0.93 | 0.35 | 0.30 | 1.39 |
Identifier/Shorthand | Açaí | Guava | Passion Fruit | Pequi |
---|---|---|---|---|
LLL/54:6 | - | 10.201 | 11.424 | 0.942 |
MOO/50:2 | 5.350 | - | - | - |
OLL/54:5 | 7.179 | 25.716 | 27.191 | 5.896 |
OLO/54:4 | 17.740 | 21.608 | - | - |
OOO/54:3 | 14.611 | 6.052 | - | - |
PLL/52:4 | - | 6.630 | 6.585 | 4.254 |
PLO/52:3 | - | 11.142 | 10.449 | 17.743 |
PLP/50:2 | - | 1.436 | 1.265 | 6.401 |
PLS/52:2 | - | 1.422 | - | - |
PLS-POO/52:2 | - | - | 5.152 | 19.760 |
POO/52:2 | 17.270 | 4.681 | - | - |
POP/50:1 | 6.805 | - | 1.004 | 13.350 |
POS/52:1 | - | - | - | 2.619 |
PPP/48:0 | - | - | - | 3.210 |
PSP/50:0 | - | - | - | 0.945 |
SLL/54:4 | - | 3.281 | - | - |
SLL-OLO/54:4 | - | - | 24.193 | 12.714 |
SLO/54:3 | 5.318 | 5.515 | - | - |
SLO-OOO/54:3 | - | - | 9.863 | 10.290 |
SLS-SOO/54:2 | - | - | 1.849 | 1.877 |
SOO/54:2 | 6.570 | 2.317 | - | - |
SOP/52:1 | 5.177 | - | - | - |
Property | Açaí | Guava | Passion Fruit | Pequi |
---|---|---|---|---|
Acidity index (mg KOH/g) | 6.17 ± 0.03 | 2.12 ± 0.02 | 0.45 ± 0.01 | 5.25 ± 0.13 |
Peroxide index (meq/kg) | 9.778 ± 0.005 | 11.567 ± 0.029 | 7.905 ± 0.002 | 9.600 ± 0.005 |
Saponification index (mg KOH/g) | 184.50 | 191.01 | 181.26 | 184.54 |
Iodine index | 114.13 | 134.25 | 121.76 | 110.02 |
Refractive index | 1.463 ± 0.045 | 1.465 ± 0.005 | 1.464 ± 0.004 | 1.464 ± 0.045 |
Oxidative stability index (h) at 110 °C | 15.24 ± 0.01 | 16.04 ± 0.01 | 10.05 ± 0.04 | 15.49 ± 0.02 |
Kinematic viscosity (mm2/s) * | 43.0 ± 0.1 | 35.9 ± 0.1 | 32.8 ± 0.01 | 36.8 ± 0.02 |
Synthetic Air Atmosphere | Nitrogen Atmosphere | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
1st Step | 2nd Step | 3rd Step | 4th Step | 1st Step | |||||||
Oil | T range (°C) | Mass loss (%) | T range (°C) | Mass loss (%) | T range (°C) | Mass loss (%) | T range (°C) | Mass loss (%) | Oil | T range (°C) | Mass loss (%) |
Guava | 222.33–364.47 | 10.93 | 326.76–373.63 | 44.141 | 424.88–44385 | 27.775 | 528.96–563.5 | 0.518 | Guava | 311.8–495.83 | 96.75 |
Passion fruit | 218.99–269.73 | 8.745 | 330.59–387.59 | 45.729 | 420.30–452.19 | 28.9 | 531.29–580.39 | 12.373 | Passion fruit | 281.15–481 | 91.256 |
Pequi | 298.30–379.37 | 59.696 | 417.33–453.99 | 24.2 | 212.30–566.71 | 13.47 | - | - | Pequi | 343.6–482.85 | 99.33 |
Açaí | 382.60–443.41 | 96.309 | - | - | - | - | - | - | Açaí | 332.32–468.11 | 99.45 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Correa, K.L.; de Carvalho-Guimarães, F.B.; Mourão, E.S.; Oliveira Santos, H.C.; da Costa Sanches, S.C.; Lamarão, M.L.N.; Pereira, R.R.; Barbosa, W.L.R.; Ribeiro-Costa, R.M.; Converti, A.; et al. Physicochemical and Nutritional Properties of Vegetable Oils from Brazil Diversity and Their Applications in the Food Industry. Foods 2024, 13, 1565. https://doi.org/10.3390/foods13101565
Correa KL, de Carvalho-Guimarães FB, Mourão ES, Oliveira Santos HC, da Costa Sanches SC, Lamarão MLN, Pereira RR, Barbosa WLR, Ribeiro-Costa RM, Converti A, et al. Physicochemical and Nutritional Properties of Vegetable Oils from Brazil Diversity and Their Applications in the Food Industry. Foods. 2024; 13(10):1565. https://doi.org/10.3390/foods13101565
Chicago/Turabian StyleCorrea, Kamila Leal, Fernanda Brito de Carvalho-Guimarães, Erika Silva Mourão, Hellen Caroline Oliveira Santos, Suellen Christtine da Costa Sanches, Maria Louze Nobre Lamarão, Rayanne Rocha Pereira, Wagner Luiz Ramos Barbosa, Roseane Maria Ribeiro-Costa, Attilio Converti, and et al. 2024. "Physicochemical and Nutritional Properties of Vegetable Oils from Brazil Diversity and Their Applications in the Food Industry" Foods 13, no. 10: 1565. https://doi.org/10.3390/foods13101565
APA StyleCorrea, K. L., de Carvalho-Guimarães, F. B., Mourão, E. S., Oliveira Santos, H. C., da Costa Sanches, S. C., Lamarão, M. L. N., Pereira, R. R., Barbosa, W. L. R., Ribeiro-Costa, R. M., Converti, A., & Silva-Júnior, J. O. C. (2024). Physicochemical and Nutritional Properties of Vegetable Oils from Brazil Diversity and Their Applications in the Food Industry. Foods, 13(10), 1565. https://doi.org/10.3390/foods13101565