The Effects of Assisted Freezing with Different Ultrasound Power Rates on the Quality and Flavor of Braised Beef
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sample Preparation
2.3. Moisture Content
2.4. Cooking Loss
2.5. Color Determination
2.6. Texture Profile Analysis
2.7. Thiobarbituric Acid Reactive Substances (TBARSs)
2.8. Electronic Nose
2.9. Electronic Tongue
2.10. Amino Acid Analysis
2.11. Statistical Analysis
3. Results and Analysis
3.1. The Effect of UIF on the Moisture Content of Braised Beef
3.2. Effect of UIF on the Cooking Loss of Braised Beef
3.3. Thiobarbituric Acid Reactive Substances (TBARSs)
3.4. The Effect of UIF on the Color of Braised Beef
3.5. Effect of UIF on the Texture of Braised Beef
3.6. The Effect of UIF on the Volatile Flavor Components of Braised Beef
3.7. The Effect of UIF on the Taste of Braised Beef
3.8. Amino Acid Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hu, R.; Zhang, M.; Liu, W.C.; Mujumdar, A.S.; Bai, B.S. Novel synergistic freezing methods and technologies for enhanced food product quality: A critical review. Compr. Rev. Food Sci. Food Saf. 2022, 21, 1979–2001. [Google Scholar] [CrossRef]
- Cheng, X.F.; Zhang, M.; Xu, B.G.; Adhikari, B.; Sun, J.C. The principles of ultrasound and its application in freezing related processes of food materials: A review. Ultrason. Sonochem. 2015, 27, 576–585. [Google Scholar] [CrossRef] [PubMed]
- Li, J.G.; Ma, X.Y.; Wang, Y.; Du, M.T.; Wang, Y.T.; Du, J.; Li, K.; Bai, Y.H. Effects of immersion freezing on the conformational changes of myofibrillar proteins in pork under ultrasonic power densities of 0, 15, 30 and 45 W L−1. Int. J. Food Sci. Technol. 2022, 57, 2896–2905. [Google Scholar] [CrossRef]
- Wang, B.; Du, X.; Kong, B.H.; Liu, Q.; Li, F.F.; Pan, N.; Xia, X.F.; Zhang, D.J. Effect of ultrasound thawing, vacuum thawing, and microwave thawing on gelling properties of protein from porcine longissimus dorsi. Ultrason. Sonochem. 2020, 64, 104860. [Google Scholar] [CrossRef] [PubMed]
- Damodaran, S.; Wang, S.Y. Ice crystal growth inhibition by peptides from fish gelatin hydrolysate. Food Hydrocoll. 2017, 70, 46–56. [Google Scholar] [CrossRef]
- Zhang, M.C.; Niu, H.L.; Chen, Q.; Xia, X.F.; Kong, B.H. Influence of ultrasound–assisted immersion freezing on the freezing rate and quality of porcine longissimus muscles. Meat Sci. 2018, 136, 1–8. [Google Scholar] [CrossRef]
- Zhang, M.C.; Xia, X.F.; Liu, Q.; Chen, Q.; Kong, B.H. Changes in microstructure, quality and water distribution of porcine longissimus muscles subjected to ultrasound–assisted immersion freezing during frozen storage. Meat Sci. 2019, 151, 24–32. [Google Scholar] [CrossRef]
- Sun, Q.X.; Zhao, X.X.; Zhang, C.; Xia, X.F.; Sun, F.D.; Kong, B.H. Ultrasound–assisted immersion freezing accelerates the freezing process and improves the quality of common carp (Cyprinus carpio) at different power levels. LWT–Food Sci. Technol. 2019, 108, 106–112. [Google Scholar] [CrossRef]
- Wang, Q.; Li, J.; Li, K.K.; Li, C.M. Effects of turmeric on reducing heterocyclic aromatic amines in Chinese tradition braised meat products and the underlying mechanism. Food Sci. Nutr. 2021, 9, 5575–5582. [Google Scholar] [CrossRef]
- Wang, J.F.; Yang, P.; Liu, J.M.; Yang, W.F.; Qiang, Y.; Jia, W.; Han, D.; Zhang, C.H.; Purcaro, G.; Fauconnier, M. Study of the flavor dissipation mechanism of soy–sauce–marinated beef using flavor matrices. Food Chem. 2023, 437, 137890. [Google Scholar] [CrossRef]
- Han, D.; Zhang, C.H.; Fauconnier, M.L.; Jia, W.; Wang, J.F.; Hu, F.F.; Xie, D.W. Characterization and comparison of flavor compounds in stewed pork with different processing methods. LWT–Food Sci. Technol. 2021, 144, 111229. [Google Scholar] [CrossRef]
- Li, D.N.; Zhao, H.H.; Muhammad, A.I.; Song, L.Y.; Guo, M.M.; Liu, D.H. The comparison of ultrasound–assisted thawing, air thawing and water immersion thawing on the quality of slow/fast freezing bighead carp (Aristichthys nobilis) fillets. Food Chem. 2020, 320, 126614. [Google Scholar] [CrossRef]
- Sam, A.D.; Li, C.; Xu, B.C. Effect of frozen storage on the lipid oxidation, protein oxidation, and flavor profile of marinated raw beef meat. Food Chem. 2022, 376, 131881. [Google Scholar] [CrossRef] [PubMed]
- Kang, D.C.; Zou, Y.H.; Cheng, Y.P.; Xing, L.J.; Zhou, G.H.; Zhang, W.G. Effects of power ultrasound on oxidation and structure of beef proteins during curing processing. Ultrason. Sonochem. 2016, 33, 47–53. [Google Scholar] [CrossRef] [PubMed]
- Qi, J.; Xu, Y.; Zhang, W.W.; Xie, X.F.; Xiong, G.Y.; Xu, X.L. Short–term frozen storage of raw chicken meat improves its flavor traits upon stewing. LWT–Food Sci. Technol. 2021, 142, 111029. [Google Scholar] [CrossRef]
- Han, D.; Zhang, C.H.; Fauconnier, M.L.; Mi, S. Characterization and differentiation of boiled pork from Tibetan, Sanmenxia and Duroc×(Landrac×Yorkshire) pigs by volatiles profiling and chemometrics analysis. Food Res. Int. 2020, 130, 108910. [Google Scholar] [CrossRef] [PubMed]
- Hou, M.M.; Liu, D.M.; Xu, X.L.; Zhou, G.H.; Li, C.B. Effect of postmortem aging time on flavor profile of stewed pork rib broth. Int. J. Food Prop. 2018, 21, 1449–1462. [Google Scholar] [CrossRef]
- Liu, F.; Yang, N.; Zhang, L.T.; Jin, Y.M.; Jin, Z.Y.; Xu, X.M. Effect of weak magnetic field on the water–holding properties, texture, and volatile compounds of pork and beef during frozen storage. Food Biosci. 2023, 53, 102667. [Google Scholar] [CrossRef]
- Mungure, T.E.; Bekhit, A.E.D.A.; Birch, E.J.; Stewart, I. Effect of rigor temperature, ageing and display time on the meat quality and lipid oxidative stability of hot boned beef Semimembranosus muscle. Meat Sci. 2016, 114, 146–153. [Google Scholar] [CrossRef]
- Li, J.G.; Yue, X.N.; Zhang, X.Y.; Chen, B.; Han, Y.; Zhao, J.S.; Bai, Y.H. Effect of deacetylated konjac glucomannan on the 3D printing properties of minced pork. J. Sci. Food Agric. 2024. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, Y.Q.; Zou, Y.H.; Zhang, W.G. Effects of ultrasound–assisted cooking on quality characteristics of spiced beef during cold storage. LWT–Food Sci. Technol. 2020, 136, 110359. [Google Scholar] [CrossRef]
- Bao, G.L.; Niu, J.; Li, S.B.; Zhang, L.; Luo, Y.Z. Effects of ultrasound pretreatment on the quality, nutrients and volatile compounds of dry–cured yak meat. Ultrason. Sonochem. 2021, 82, 105864. [Google Scholar] [CrossRef]
- Du, H.Z.; Chen, Q.; Liu, Q.; Wang, Y.; Kong, B.H. Evaluation of flavor characteristics of bacon smoked with different woodchips by HS–SPME–GC–MS combined with an electronic tongue and electronic nose. Meat Sci. 2021, 182, 108626. [Google Scholar] [CrossRef] [PubMed]
- Fu, B.F.; Wu, D.; Cheng, S.Z.; Xu, X.B.; Zhang, L.; Wang, L.S.; El–Seedi, H.R.; Liu, H.X.; Du, M. Three novel umami peptides derived from the alcohol extract of the Pacific oyster (Crassostrea gigas): Identification, characterizations and interactions with T1R1/T1R3 taste receptors. Food Sci. Hum. Well. 2024, 13, 146–153. [Google Scholar] [CrossRef]
- Oh, M.; Kim, E.K.; Jeon, B.T.; Tang, Y.J.; Kim, M.S.; Seong, H.J.; Moon, S.H. Chemical compositions, free amino acid contents and antioxidant activities of Hanwoo (Bos taurus coreanae) beef by cut. Meat Sci. 2016, 119, 16–21. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Tian, X.J.; Liu, X.Z.; Zhang, Y.F.; Zhao, K.X.; Zhang, K.; Wang, W.H. Effects of different cooking methods on physicochemical, textural properties of yak meat and its changes with intramuscular connective tissue during in vitro digestion. Food Chem. 2023, 422, 136188. [Google Scholar] [CrossRef]
- Sun, H.M.; Wang, J.Z.; Zhang, C.H.; Li, X.; Xu, X.; Dong, X.B.; Hu, L.; Li, C.H. Changes of flavor compounds of hydrolyzed chicken bone extracts during Maillard reaction. J. Food Sci. 2014, 79, 2415–2426. [Google Scholar] [CrossRef]
- Zhao, Z.R.; Wang, S.J.; Li, D.Y.; Zhou, Y.J. Effect of xanthan gum on the quality of low sodium salted beef and property of myofibril proteins. Food Sci. Hum. Well. 2021, 10, 112–118. [Google Scholar] [CrossRef]
- Qi, J.; Li, X.; Zhang, W.W.; Wang, H.H.; Zhou, G.H.; Xu, X.L. Influence of stewing time on the texture, ultrastructure and in vitro digestibility of meat from the yellow–feathered chicken breed. Anim. Sci. J. 2018, 89, 474–482. [Google Scholar] [CrossRef]
- Qian, S.Y.; Li, X.; Zhang, C.H.; Blecker, C. Effects of initial freezing rate on the changes in quality, myofibrillar protein characteristics and myowater status of beef steak during subsequent frozen storage. Int. J. Refrig. 2022, 143, 148–156. [Google Scholar] [CrossRef]
- Domínguez, R.; Pateiro, M.; Gagaoua, M.; Barba, F.J.; Zhang, W.G.; Lorenzo, J.M. A comprehensive review on lipid oxidation in meat and meat products. Antioxidants 2019, 8, 429. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.X.; Lin, H.X.; Guan, W.Q.; Song, Y.; He, X.X.; Zhang, D.Q. Effect of static magnetic field–assisted thawing on the quality, water status, and myofibrillar protein characteristics of frozen beef steaks. Food Chem. 2023, 436, 137709. [Google Scholar] [CrossRef] [PubMed]
- Lorenzo, J.M.; Cittadini, A.; Munekata, P.E.; Domínguez, R. Physicochemical properties of foal meat as affected by cooking methods. Meat Sci. 2015, 108, 50–54. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.L.; Ge, X.Z.; Yang, L.H.; Ma, G.Y.; Ma, J.B.; Yu, Q.L.; Han, L. Ultrasound–assisted thawing of frozen white yak meat: Effects on thawing rate, meat quality, nutrients, and microstructure. Ultrason. Sonochem. 2021, 70, 105345. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhang, W.G.; Zhou, G.H. Effects of ultrasound–assisted frying on the physiochemical properties and microstructure of fried meatballs. Int. J. Food Sci. Technol. 2019, 54, 2915–2926. [Google Scholar] [CrossRef]
- Li, J.G.; Ma, X.Y.; Zhang, J.W.; Wang, Y.; Du, M.T.; Xiang, Q.S.; Wang, Y.T.; Du, J.; Li, K.; Bai, Y.H. Insight into the mechanism of the quality improvement of porcine after ultrasound–assisted immersion freezing. Int. J. Food Sci. Technol. 2022, 57, 5068–5077. [Google Scholar] [CrossRef]
- Li, Y.Q.; Li, C.B.; Li, H.; Lin, X.S.; Deng, S.L.; Zhou, G.H. Physicochemical and fatty acid characteristics of stewed pork as affected by cooking method and time. Int. J. Food Sci. Technol. 2016, 51, 359–369. [Google Scholar] [CrossRef]
- Liu, D.S.; Liang, L.; Xia, W.S.; Regenstein, J.M.; Zhou, P. Biochemical and physical changes of grass carp (Ctenopharyngodon idella) fillets stored at −3 and 0 °C. Food Chem. 2013, 140, 105–114. [Google Scholar] [CrossRef]
- Wang, Y.; Tian, X.J.; Liu, X.Z.; Xing, J.F.; Guo, C.; Du, Y.H.; Zhang, H.; Wang, W.H. Focusing on intramuscular connective tissue: Effect of cooking time and temperature on physical, textual, and structural properties of yak meat. Meat Sci. 2021, 184, 108690. [Google Scholar] [CrossRef]
- Sun, Q.X.; Sun, F.D.; Xia, X.F.; Xu, H.H.; Kong, B.H. The comparison of ultrasound–assisted immersion freezing, air freezing and immersion freezing on the muscle quality and physicochemical properties of common carp (Cyprinus carpio) during freezing storage. Ultrason. Sonochem. 2019, 51, 281–291. [Google Scholar] [CrossRef]
- Bian, C.H.; Cheng, H.; Yu, H.J.; Mei, J.; Xie, J. Effect of multi–frequency ultrasound assisted thawing on the quality of large yellow croaker (Larimichthys crocea). Ultrason. Sonochem. 2021, 82, 105907. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Cao, H.J.; Wei, W.Y.; Ying, X.G. Influence of temperature fluctuations on growth and recrystallization of ice crystals in frozen peeled shrimp (Litopenaeus vannamei) pre–soaked with carrageenan oligosaccharide and xylooligosaccharide. Food Chem. 2020, 306, 125641. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.J.; Yu, J.; Pei, F.; Mariga, A.M.; Ma, N.; Fang, Y.; Hu, Q.H. Effect of hot air drying on volatile compounds of Flammulina velutipes detected by HS–SPME–GC–MS and electronic nose. Food Chem. 2016, 196, 860–866. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Nian, Y.Q.; Da, D.D.; Xu, X.L.; Zhou, G.H.; Zhao, D.; Li, C.B. Characterization of flavor volatile compounds in sauce spareribs by gas chromatography–mass spectrometry and electronic nose. LWT–Food Sci. Technol. 2020, 124, 109182. [Google Scholar] [CrossRef]
- Jiang, F.Y.; Zhang, J.; Zhang, R.Y.; Zhang, W.G. Effects of ultrasound–assisted vacuum tumbling on the flavor of spiced beef. Food Biosci. 2024, 58, 103652. [Google Scholar] [CrossRef]
- Hwang, Y.H.; Ismail, I.; Joo, S.T. Identification of umami taste in sous–vide beef by chemical analyses, equivalent umami concentration, and electronic tongue system. Foods 2020, 9, 251. [Google Scholar] [CrossRef]
- Baldwin, E.A.; Bai, J.H.; Plotto, A.; Dea, S. Electronic Noses and Tongues: Applications for the Food and Pharmaceutical Industries. Sensors 2011, 11, 4744–4766. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Yin, M.Y.; Wang, X.C. Meat texture, muscle histochemistry and protein composition of Eriocheir sinensis with different size traits. Food Chem. 2021, 338, 127632. [Google Scholar] [CrossRef] [PubMed]
- Yin, M.Y.; Matsuoka, R.; Yanagisawa, T.; Xi, Y.C.; Zhang, L.; Wang, X.C. Effect of different drying methods on free amino acid and flavor nucleotides of scallop (Patinopecten yessoensis) adductor muscle. Food Chem. 2022, 396, 133620. [Google Scholar] [CrossRef]
- Moerdijk–Poortvliet, T.C.; de Jong, D.L.; Fremouw, R.; de Reu, S.; de Winter, J.M.; Timmermans, K.; Mol, G.; Reuter, N.; Derksen, G.C. Extraction and analysis of free amino acids and 5′–nucleotides, the key contributors to the umami taste of seaweed. Food Chem. 2022, 370, 131352. [Google Scholar] [CrossRef]
- Yang, J.; Huang, Y.R.; Cui, C.; Dong, H.; Zeng, X.F.; Bai, W.D. Umami–enhancing effect of typical kokumi–active γ–glutamyl peptides evaluated via sensory analysis and molecular modeling approaches. Food Chem. 2021, 338, 128018. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.R.; You, M.C.; Song, H.L.; Gong, L.; Pan, W.Q. Investigation of umami and kokumi taste–active components in bovine bone marrow extract produced during enzymatic hydrolysis and Maillard reaction. Int. J. Food Sci. Technol. 2018, 53, 2465–2481. [Google Scholar] [CrossRef]
- Anson, L. The bitter–sweet taste of amino acids. Nature 2002, 416, 136. [Google Scholar] [CrossRef] [PubMed]
- Zamora, R.A.; Fuentes–Lemus, E.; Barrias, P.; Herrera–Morande, A.; Mura, F.; Guixé, V.; Castro–Fernandez, V.; Rojas, T.; López–Alarcón, C.; Aguirre, P.; et al. Free radicals derived from γ–radiolysis of water and AAPH thermolysis mediate oxidative crosslinking of eGFP involving Tyr–Tyr and Tyr–Cys bonds: The fluorescence of the protein is conserved only towards peroxyl radicals. Free. Radic. Biol. Med. 2020, 150, 40–52. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Arunkumar, A.; Etzel, M.R. Kinetics of whey protein glycation using dextran and the dry–heating method. Foods 2019, 8, 528. [Google Scholar] [CrossRef]
- Lin, Q.Z.; Li, M.; Xiong, L.; Qiu, L.Z.; Bian, X.L.; Sun, C.R.; Sun, Q.J. Characterization and antioxidant activity of short linear glucan–lysine nanoparticles prepared by Maillard reaction. Food Hydrocolloid. 2019, 92, 86–93. [Google Scholar] [CrossRef]
Group | L* | a* | b* |
---|---|---|---|
Control | 47.78 ± 0.08 e | 9.86 ± 0.07 b | 11.14 ± 0.07 a |
AF | 38.63 ± 0.08 a | 9.58 ± 0.16 a | 11.26 ± 0.14 ab |
IF | 40.81 ± 0.11 b | 9.43 ± 0.06 a | 11.23 ± 0.08 ab |
UIF–200 W | 46.91 ± 0.21 d | 10.00 ± 0.14 b | 11.31 ± 0.05 b |
UIF–400 W | 47.67 ± 0.08 e | 9.84 ± 0.14 b | 11.14 ± 0.07 a |
UIF–600 W | 46.42 ± 0.20 c | 9.95 ± 0.08 b | 11.23 ± 0.08 ab |
Control | AF | IF | UIF–200 W | UIF–400 W | UIF–600 W | |
---|---|---|---|---|---|---|
Hardness (g) | 1562.01 ± 75.85 e | 5601.50 ± 456.39 a | 4857.15 ± 106.49 ab | 3570.63 ± 301.95 cd | 2849.46 ± 35.42 d | 4197.88 ± 74.53 bc |
Springiness (cm) | 0.52 ± 0.02 b | 0.67 ± 0.01 a | 0.66 ± 0.01 a | 0.63 ± 0.01 a | 0.55 ± 0.02 b | 0.62 ± 0.01 a |
Cohesiveness (N/mm2) | 0.51 ± 0.03 b | 0.61 ± 0.03 a | 0.56 ± 0.01 ab | 0.56 ± 0.02 ab | 0.53 ± 0.01 ab | 0.56 ± 0.02 ab |
Gumminess | 894.56 ± 30.84 d | 3184.33 ± 108.45 a | 2720.98 ± 97.01 ab | 1847.04 ± 114.27 c | 1528.44 ± 41.13 c | 2488.24 ± 67.12 b |
Chewiness | 527.36 ± 36.24 e | 2142.04 ± 130.74 a | 1810.66 ± 78.79 ab | 1166.38 ± 123.44 cd | 802.16 ± 59.89 de | 1565.63 ± 21.21 bc |
Resilience | 0.22 ± 0.02 a | 0.21 ± 0.01 a | 0.22 ± 0.01 a | 0.18 ± 0.02 a | 0.19 ± 0.01 a | 0.20 ± 0.01 a |
Amino Acid (mg/100 g Meat) | Different Processing Groups | Threshold (mg/100 g Meat) | TVA | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Control | AF | IF | UIF–200 W | UIF–400 W | UIF–600 W | Control | AF | IF | UIF–200 W | UIF–400 W | UIF–600 W | ||
Thr | 12.21 ± 0.02 a | 9.71 ± 0.03 c | 8.54 ± 0.02 d | 7.92 ± 0.03 e | 11.83 ± 0.01 b | 11.83 ± 0.01 b | 260 | 0.05 | 0.04 | 0.03 | 0.03 | 0.05 | 0.05 |
Val | 14.54 ± 0.01 a | 13.51 ± 0.02 b | 10.71 ± 0.02 f | 11.57 ± 0.01 d | 12.70 ± 0.01 c | 11.16 ± 0.04 e | 40 | 0.36 | 0.34 | 0.27 | 0.29 | 0.32 | 0.28 |
Met | 6.85 ± 0.02 a | 6.61 ± 0.03 b | 5.32 ± 0.03 d | 6.66 ± 0.03 b | 4.64 ± 0.01 e | 6.35 ± 0.05 c | 30 | 0.23 | 0.22 | 0.18 | 0.22 | 0.15 | 0.21 |
Ile | 8.72 ± 0.01 b | 5.73 ± 0.02 e | 5.58 ± 0.02 e | 17.13 ± 0.02 a | 8.12 ± 0.11 c | 7.35 ± 0.04 d | 90 | 0.10 | 0.06 | 0.06 | 0.19 | 0.09 | 0.08 |
Leu | 14.28 ± 0.07 a | 11.59 ± 0.03 e | 9.00 ± 0.03 f | 13.24 ± 0.3 c | 13.63 ± 0.07 b | 12.74 ± 0.025 d | 190 | 0.08 | 0.06 | 0.05 | 0.07 | 0.07 | 0.07 |
Phe | 12.43 ± 0.08 a | 8.44 ± 0.01 d | 10.13 ± 0.04 c | 11.22 ± 0.02 b | 12.28 ± 0.17 a | 10.95 ± 0.035 b | 90 | 0.14 | 0.09 | 0.11 | 0.12 | 0.13 | 0.12 |
His | 37.04 ± 0.14 e | 45.22 ± 0.01 a | 44.26 ± 0.01 b | 44.15 ± 0.02 b | 41.80 ± 0.07 c | 40.51 ± 0.01 d | 20 | 1.86 | 2.26 | 2.21 | 2.21 | 2.09 | 2.03 |
Lys | 9.78 ± 0.14 a | 6.95 ± 0.02 d | 5.82 ± 0.01 e | 7.13 ± 0.03 d | 8.41 ± 0.02 b | 7.84 ± 0.04 c | 50 | 0.20 | 0.14 | 0.12 | 0.14 | 0.17 | 0.16 |
Arg | 8.28 ± 0.06 a | 5.76 ± 0.02 b | 5.34 ± 0.02 c | 4.62 ± 0.01 e | 4.22 ± 0.01 f | 5.15 ± 0.03 d | 50 | 0.17 | 0.11 | 0.11 | 0.09 | 0.08 | 0.10 |
ΣEAA | 124.63 ± 0.52 a | 113.57 ± 0.18 c | 104.70 ± 0.01 d | 123.58 ± 0.15 a | 117.62 ± 0.12 b | 113.57 ± 0.06 c | |||||||
Asp | 10.17 ± 0.01 a | 6.27 ± 0.06 e | 5.69 ± 0.01 f | 8.48 ± 0.02 c | 7.53 ± 0.12 d | 8.85 ± 0.04 b | 100 | 0.10 | 0.06 | 0.06 | 0.08 | 0.08 | 0.09 |
Ser | 14.74 ± 0.02 b | 12.71 ± 0.04 c | 14.78 ± 0.10 b | 10.62 ± 0.01 d | 14.64 ± 0.05 b | 17.00 ± 0.00 a | 150 | 0.10 | 0.08 | 0.10 | 0.07 | 0.10 | 0.11 |
Glu | 118.6 ± 0.10 b | 73.50 ± 0.02 d | 40.75 ± 0.06 f | 84.56 ± 0.01 c | 129.55 ± 0.03 a | 67.90 ± 0.07 e | 30 | 3.99 | 2.45 | 1.36 | 2.82 | 4.32 | 2.26 |
Gly | 9.87 ± 0.10 a | 9.14 ± 0.04 b | 7.23 ± 0.035 d | 8.17 ± 0.02 c | 9.85 ± 0.01 a | 9.64 ± 0.14 a | 130 | 0.07 | 0.07 | 0.06 | 0.06 | 0.08 | 0.08 |
Ala | 19.74 ± 0.2 a | 16.34 ± 0.05 f | 17.19 ± 0.03 d | 16.67 ± 0.02 e | 17.95 ± 0.10 c | 18.76 ± 0.02 b | 60 | 0.33 | 0.27 | 0.28 | 0.28 | 0.29 | 0.31 |
Cys–s | 22.73 ± 0.1 d | 23.19 ± 0.05 c | 25.23 ± 0.04 b | 22.67 ± 0.07 d | 22.83 ± 0.05 d | 26.39 ± 0.08 a | – | – | – | – | – | – | – |
Pro | 8.32 ± 0.7 b | 7.75 ± 0.035 cd | 10.02 ± 0.05 a | 7.85 ± 0.02 c | 7.67 ± 0.31 d | 4.49 ± 0.01 e | 300 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.01 |
ΣNEAA | 203.88 ± 0.84 b | 148.89 ± 0.09 e | 121.66 ± 0.20 f | 159.09 ± 0.12 c | 209.26 ± 0.30 a | 153.06 ± 0.16 d |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Sun, C.; Ma, W.; Wen, K.; Wang, Y.; Yue, X.; Wang, Y.; Bai, Y. The Effects of Assisted Freezing with Different Ultrasound Power Rates on the Quality and Flavor of Braised Beef. Foods 2024, 13, 1566. https://doi.org/10.3390/foods13101566
Li J, Sun C, Ma W, Wen K, Wang Y, Yue X, Wang Y, Bai Y. The Effects of Assisted Freezing with Different Ultrasound Power Rates on the Quality and Flavor of Braised Beef. Foods. 2024; 13(10):1566. https://doi.org/10.3390/foods13101566
Chicago/Turabian StyleLi, Junguang, Chenhao Sun, Wuchao Ma, Kexin Wen, Yu Wang, Xiaonan Yue, Yuntao Wang, and Yanhong Bai. 2024. "The Effects of Assisted Freezing with Different Ultrasound Power Rates on the Quality and Flavor of Braised Beef" Foods 13, no. 10: 1566. https://doi.org/10.3390/foods13101566
APA StyleLi, J., Sun, C., Ma, W., Wen, K., Wang, Y., Yue, X., Wang, Y., & Bai, Y. (2024). The Effects of Assisted Freezing with Different Ultrasound Power Rates on the Quality and Flavor of Braised Beef. Foods, 13(10), 1566. https://doi.org/10.3390/foods13101566