Heavy Metals Contamination in Shellfish: Benefit-Risk Evaluation in Central Italy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Source
2.2. Data Collections
2.3. Dietary Exposure and Risk Characterization
2.4. EPA and DHA in Seafood and Benefits-Risks Assessment
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Gall, J.E.; Boyd, R.S.; Rajakaruna, N. Transfer of heavy metals through terrestrial food webs: A review. Environ. Monit. Assess. 2015, 187, 201. [Google Scholar] [PubMed] [Green Version]
- European Food Safety Agency. Cadmium dietary exposure in the European population. EFSA J. 2012, 10, 2551. [Google Scholar]
- European Food Safety Agency. Lead dietary exposure in the European population. EFSA J. 2012, 10, 2831. [Google Scholar]
- European Food Safety Agency. Scientific opinion on the risk for public health related to the presence of mercury and methylmercury in food. EFSA J. 2012, 10, 2985. [Google Scholar]
- Kumar, S.; Sharma, A. Cadmium toxicity: Effects on human reproduction and fertility. Rev. Environ. Health 2015, 34, 327–338. [Google Scholar]
- Fatima, G.; Raza, A.M.; Hadi, N.; Nigam, N.; Mahdi, A.A. Cadmium in human diseases: It’s more than just a mere metal. Ind. J. Clin. Biochem. 2019, 34, 371–378. [Google Scholar]
- Genchi, G.; Sinicropi, M.S.; Lauria, G.; Carocci, A.; Catalano, A. The effects of cadmium toxicity. Int. J. Environ. Res. Pub. Health 2020, 17, 3782. [Google Scholar]
- Zahir, F.; Rizwi, S.J.; Haq, S.K.; Khan, R.H. Low dose mercury toxicity and human health. Environ. Toxicol. Pharmacol. 2005, 20, 351–360. [Google Scholar]
- Flora, G.; Gupta, D.; Tiwari, A. Toxicity of lead: A review with recent updates. Interdiscip. Toxicol. 2012, 5, 47–58. [Google Scholar]
- Ara, A.; Usmani, J.A. Lead toxicity: A review. Interdiscip. Toxicol. 2015, 8, 55–64. [Google Scholar]
- Bosch, A.C.; O’Neill, B.; Sigge, G.O.; Kerwath, S.E.; Hoffman, L.C. Heavy metals in marine fish meat and consumer health: A review. J. Sci. Food Agric. 2016, 96, 32–48. [Google Scholar] [PubMed]
- Rashed, M.N. Cadmium and lead levels in fish (Tilapia nilotica) tissues as biological indicator for lake water pollution. Environ. Monit. Assess. 2001, 68, 75–89. [Google Scholar] [PubMed]
- Jezierska, B.; Witeska, M. The metal uptake and accumulation in fish living in polluted waters. In Soil and Water Pollution Monitoring, Protection and Remediation; Twardowska, I., Allen, H.A., Häggblom, M.M., Stafaniak, S., Eds.; Springer: Dordrecht, The Netherlands, 2016; pp. 107–114. [Google Scholar]
- Castilhos, Z.C.; Rodrigues-Filho, S.; Rodrigues, A.P.C.; Villas-Bôas, R.C.; Siegel, S.; Veiga, M.M.; Beinhoff, C. Mercury contamination in fish from gold mining areas in Indonesia and human health risk assessment. Sci. Total Environ. 2006, 368, 320–325. [Google Scholar] [PubMed]
- UN Food and Agriculture Organization (FAO). Heavy Metals Regulations; Legal Notice No 66/2003; Food and Agriculture Organization (FAO): Rome, Italy, 2003. [Google Scholar]
- The Commission of the European Communities. Commission regulation (EC) No 1881/2006. Off. J. Eur. Union 2006, 364, 5–24. [Google Scholar]
- The Commission of the European Communities. Commission regulation (EC) no 629/2008. Off. J. Eur. Union 2008, 173, 6–9. [Google Scholar]
- South African Department of Health (DOH). Foodstuffs, cosmetics and disinfectants act, 1972 (Act no. 54 of 1972). Gov. Gaz. 2004, 500, 4–6. [Google Scholar]
- Gladyshev, M.I.; Sushchik, N.N.; Anishchenko, O.V.; Makhutova, O.N.; Kalachova, G.S.; Gribovskaya, I.V. Benefit-risk ratio of food fish intake as the source of essential fatty acids vs. heavy metals: A case study of Siberian grayling from the Yenisei River. Food Chem. 2009, 115, 545–550. [Google Scholar]
- Geng, J.J.; Li, H.; Liu, J.P.; Yang, Y.; Jin, Z.L.; Zhang, Y.N.; Zhang, M.L.; Chen, L.Q.; Du, Z.Y. Nutrients and contaminants in tissues of five fish species obtained from Shanghai markets: Risk–benefit evaluation from human health perspectives. Sci. Total Environ. 2015, 536, 933–945. [Google Scholar]
- Vilavert, L.; Borrell, F.; Nadal, M.; Jacobs, S.; Minnens, F.; Verbeke, W.; Marquez, A.; Domingo, J.L. Health risk/benefit information for consumers of fish and shellfish: FishChoice, a new online tool. Food Chem. Toxicol. 2017, 104, 79–84. [Google Scholar]
- Tan, K.; Ma, H.; Li, S.; Zheng, H. Bivalves as future source of sustainable natural omega-3 polyunsaturated fatty acids. Food Chem. 2020, 311, 125907. [Google Scholar]
- Zhang, T.T.; Xu, J.; Wang, Y.M.; Xue, C.H. Health benefits of dietary marine DHA/EPA-enriched glycerophospholipids. Prog. Lipid Res. 2019, 75, 100997. [Google Scholar] [PubMed]
- European Food Safety Authority. Scientific opinion on the tolerable upper intake level of Eicosapentaenoic Acid (EPA), Docosahexaenoic Acid (DHA) and Docosapentaenoic Acid (DPA). EFSA J. 2012, 10, 2815. [Google Scholar]
- Swanson, D.; Block, R.; Mousa, S.A. Omega-3 fatty acids EPA and DHA: Health benefits throughout life. Adv. Nutr. 2012, 3, 1–7. [Google Scholar]
- Lund, E.K. Health benefits of seafood; is it just the fatty acids? Food Chem. 2013, 140, 413–420. [Google Scholar] [PubMed]
- Cardoso, C.; Afonso, C.; Bandarra, N.M. Seafood lipids and cardiovascular health. Nutrire 2016, 41, 7. [Google Scholar]
- Branciari, R.; Ranucci, D.; Urbani, E.; Valiani, A.; Trabalza-Marinucci, M.; dal Bosco, A.; Franceschini, R. Freshwater fish burgers made from four different fish species as a valuable strategy appreciated by consumers for introducing EPA and DHA into a human diet. J. Aquat. Food Prod. Technol. 2017, 26, 686–694. [Google Scholar]
- Froehlich, H.E.; Gentry, R.R.; Halpern, B.S. Global change in marine aquaculture production potential under climate change. Nat. Ecol. Evol. 2018, 2, 1745–1750. [Google Scholar]
- Borsa Merci Telematica Italiana. Report Annual Sul Mercato Ittico—Anno 2018; Borsa Merci Telematica Italiana, Ed.; Borsa Merci Telematica Italiana: Roma, Italy, 2018.
- Venugopal, V.; Gopakumar, K. Shellfish: Nutritive value, health benefits, and consumer safety. Compr. Rev. Food Sci. Food Saf. 2017, 16, 1219–1242. [Google Scholar]
- Prato, E.; Biandolino, F.; Parlapiano, I.; Giandomenico, S.; Denti, G.; Calò, M.; Spada, L.; di Leo, A. Proximate, fatty acids and metals in edible marine bivalves from Italian market: Beneficial and risk for consumers health. Sci. Total Environ. 2019, 648, 153–163. [Google Scholar]
- The Commission of the European Communities. Commission regulation (EC) No 853/2004. Off. J. Eur. Union 2004, 139, 55–205. [Google Scholar]
- The Commission of the European Communities. Commission regulation (EC) No 854/2004. Off. J. Eur. Union 2004, 139, 206–320. [Google Scholar]
- International Standard Organization. General Requirements for the Competence of Testing and Calibration Laboratories; ISO/IEC 17025:2018; International Standard Organization: Geneva, Switzerland, 2018. [Google Scholar]
- The Commission of the European Communities. Commission regulation (EC) No 333/2007. Off. J. Eur. Union 2007, 88, 29–38. [Google Scholar]
- Branciari, R.; Franceschini, R.; Roila, R.; Valiani, A.; Pecorelli, I.; Piersanti, A.; Houet, N.; Framboas, M.; Ranucci, D. Nutritional value and contaminant risk assessment of some commercially important fishes and crawfish of Lake Trasimeno, Italy. Int. J. Environ. Res. Public Health 2020, 17, 2545. [Google Scholar]
- Società Italiana di Nutrizione Umana (SINU). Livelli di Assunzione di Riferimento di Nutrienti ed Energia per la Popolazione Italiana IV Revisione (LARN); Società Italiana di Comunicazione Scientifica e Sanitaria (SICS): Milan, Italy, 2014. [Google Scholar]
- Branciari, R.; Roila, R.; Ranucci, D.; Altissimi, M.S.; Mercuri, M.L.; Haouet, N.M. Estimation of acrylamide exposure in Italian schoolchildren consuming a canteen menu: Health concern in three age groups. Int. J. Food Sci. Nutr. 2020, 71, 122–131. [Google Scholar]
- European Food Safety Authority. Panel on contaminants in the food chain (CONTAM). Statement on tolerable weekly intake for cadmium. EFSA J. 2011, 9, 1975. [Google Scholar]
- Food and Agriculture Organization (FAO); World Health Organization (WHO). Joint FAO/WHO food standards programme, codex committee on food additives and contaminants. In Proceedings of the 33rd Session CODEX, Hague, The Netherlands, 12–16 March 2001; pp. 121–126. [Google Scholar]
- European Food Safety Authority. Panel on Contaminants in the food chain (CONTAM). Scientific opinion on the risk for public health related to the presence of mercury and methylmercury in food. EFSA J. 2018, 10, 2985. [Google Scholar]
- Benford, D.J. Risk assessment of chemical contaminants and residues in foods. In Persistent Organic Pollutants and Toxic Metals in Foods; Rose, M., Fernandez, A., Eds.; Woodhead Publishing: Cambridge, UK, 2013; pp. 173–187. [Google Scholar]
- Rincón-Cervera, M.Á.; González-Barriga, V.; Romero, J.; Rojas, R.; López-Arana, S. Quantification and distribution of omega-3 fatty acids in South Pacific fish and shellfish species. Foods 2020, 9, 233. [Google Scholar]
- Bille, L.; Binato, G.; Cappa, V.; Toson, M.; dalla Pozza, M.; Arcangeli, G.; Ricci, A.; Angeletti, R.; Piro, R. Lead, mercury and cadmium levels in edible marine molluscs and echinoderms from the Veneto region (north-western Adriatic Sea–Italy). Food Control 2015, 50, 362–370. [Google Scholar]
- Claisse, D. Accumulation des métauxlourds et polluants organiques par les coquillages. In Coquillages et Santé Publique. Durisque à la Prévention; Lesne, J., Ed.; ENS: Rennes, France, 1992; pp. 99–111. [Google Scholar]
- Olmedo, P.; Pla, A.; Hernández, A.F.; Barbier, F.; Ayouni, L.; Gil, F. Determination of toxic elements (mercury, cadmium, lead, tin and arsenic) in fish and shellfish samples. Risk assessment for the consumers. Environ. Int. 2013, 59, 63–72. [Google Scholar]
- María-Cervantes, A.; Jiménez-Cárceles, F.J.; Álvarez-Rogel, J. As, Cd, Cu, Mn, Pb, and Zn contents in sediments and mollusks (Hexaplextrunculus and Tapes decussatus) from coastal zones of a Mediterranean lagoon (Mar Menor, SE Spain) affected by mining wastes. Water Air Soil Pollut. 2009, 200, 289–304. [Google Scholar]
- Tamele, I.J.; Loureiro, P.V. Lead, mercury and cadmium in fish and shellfish from the Indian Ocean and Red Sea (African Countries): Public health challenges. J. Mar. Sci. 2020, 8, 344. [Google Scholar]
- Storelli, M.M.; Marcotrigiano, G.O. Cadmium and total mercury in some cephalopods from the South Adriatic Sea (Italy). Food Add. Contam. 1999, 16, 261–265. [Google Scholar]
- Primost, M.A.; Gil, M.N.; Bigatti, G. High bioaccumulation of cadmium and other metals in Patagonian edible gastropods. Mar. Biol. Res. 2017, 13, 774–781. [Google Scholar]
- Bigatti, G.; de Vivar, M.D.; Cumplido, M.; Vilela, R.N.; Avaro, M.; Sastre, V.; Gil, M. Fatty acids and contaminants in edible marine gastropods from Patagonia. J. Mar. Biolog. Assoc. UK 2018, 98, 1355–1363. [Google Scholar]
- Roméo, M.; Gharbi-Bouraoui, S.; Gnassia-Barelli, M.; Dellali, M.; Aïssa, P. Responses of Hexaplex (Murex) trunculus to selected pollutants. Sci. Total Environ. 2006, 359, 135–144. [Google Scholar]
- Millour, S.; Noël, L.; Kadar, A.; Chekri, R.; Vastel, C.; Sirot, V.; Leblanc, J.-C.; Guérin, T. Pb, Hg, Cd, As, Sb and Al levels in foodstuffs from the 2nd French total diet study. Food Chem. 2011, 126, 1787–1799. [Google Scholar]
- European Food Safety Authority. Statement on the benefits of fish/seafood consumption compared to the risks of methylmercury in fish/seafood. EFSA J. 2015, 13, 3982. [Google Scholar]
- Burger, J.; Gochfeld, M. Mercury in canned tuna: White versus light and temporal variation. Environ. Res. 2004, 96, 239–249. [Google Scholar]
- Noël, L.; Testu, C.; Chafey, C.; Velge, P.; Guérin, T. Contamination levels for lead, cadmium and mercury in marine gastropods, echinoderms and tunicates. Food Control 2011, 22, 433–437. [Google Scholar]
- Warnau, M.; Ledent, G.; Temara, A.; Bouquegneau, J.M.; Jangoux, M.; Dubois, P. Heavy metals in Posidoniaoceanica and Paracentrotuslividus from seagrass beds of the north-western Mediterranean. Sci. Total Environ. 1995, 171, 95–99. [Google Scholar]
- Warnau, M.; Biondo, R.; Temara, A.; Bouquegneau, J.M.; Jangoux, M.; Dubois, P. Distribution of heavy metals in the echinoid Paracentrotuslividus from the Mediterranean Posidoniaoceanica ecosystem: Seasonal and geographical variations. J. Sea Res. 1998, 39, 267–280. [Google Scholar]
- Muir, D.; Braune, B.; DeMarch, B.; Norstrom, R.; Wagemann, R.; Lockhart, L.; Hargrave, B.; Bright, D.; Addison, R.; Payne, J.; et al. Spatial and temporal trends and effects of contaminants in the Canadian Arctic marine ecosystem: A review. Sci. Total Environ. 1999, 230, 83–144. [Google Scholar] [PubMed]
- Houlbrèque, F.; Hervé-Fernández, P.; Teyssié, J.L.; Oberhaënsli, F.; Boisson, F.; Jeffree, R. Cooking makes cadmium contained in Chilean mussels less bioaccessible to humans. Food Chem. 2011, 126, 917–921. [Google Scholar]
- Moolman, L.J.H.J.; van Vuren, J.H.J.; Wepener, V. Comparative studies on the uptake and effects of cadmium and zinc on the cellular energy allocation of two freshwater gastropods. Ecotoxicol. Environ. Saf. 2007, 68, 443–450. [Google Scholar]
Classes | Species Scientific Name |
---|---|
Bivalve mollusks | |
Mussel | Mytilus galloprovincialis |
Mytilus edulis | |
Modiolus barbatus | |
Clam | Ruditapes decussatus |
Ruditapes phylippinarum | |
Chamelea gallina | |
Venus verrucosa | |
Oyster | Ostrea edulis |
Crassostrea gigas | |
Crassostrea angulata | |
Scallop | Flexopecten glaber |
Pecten spp. | |
Mimachlamys varia | |
Chlamys spp. | |
Brown venus | Callista chione |
Razor clam | Solen siliqua |
Other bivalves | Arca noae |
Cardium edule | |
Cerastoderma spp. | |
Donax trunculus | |
Marine Gastropods | |
Gastropods | Hexaplex trunculus |
Nassarius mutabilis | |
Muricidae | |
Bolinus brandaris | |
Buccinum undatum | |
Echinoderms | |
Sea urchins | Paracentrotus lividus |
Year | Classes | Analyzed Samples | Above LOQ Samples (%) | Min | Max | Average (MB) 1 |
---|---|---|---|---|---|---|
2017 | Mussel | 152 | 137/(90) | 0.030 | 1.150 | 0.099 |
Clam | 260 | 226/(87) | 0.010 | 0.140 | 0.035 | |
Oyster | 7 | 7/(100) | 0.130 | 0.530 | 0.240 | |
Scallop | 37 | 37/(100) | 0.050 | 0.370 | 0.100 | |
Brown venus | 36 | 36/(100) | 0.010 | 0.060 | 0.030 | |
Razor clam | 1 | 1/(100) | 0.003 | 0.003 | ||
Other bivalves | 28 | 9/(32) | 0.010 | 0.270 | 0.024 | |
Gastropods | 59 | 56/(95) | 0.010 | 0.770 | 0.228 | |
Echinoderms | 1 | 0/(0) | 0.003 | |||
2018 | Mussel | 301 | 287/(95) | 0.010 | 0.880 | 0.105 |
Clam | 308 | 267/(87) | 0.010 | 0.170 | 0.044 | |
Oyster | 47 | 46/(98) | 0.070 | 0.840 | 0.235 | |
Scallop | 38 | 38/(100) | 0.050 | 0.400 | 0.110 | |
Brown venus | 36 | 36/(100) | 0.010 | 0.080 | 0.040 | |
Razor clam | 16 | 16/(100) | 0.010 | 0.060 | 0.020 | |
Other bivalves | 30 | 6/(20) | 0.010 | 0.350 | 0.028 | |
Gastropods | 44 | 43/(98) | 0.010 | 1.880 | 0.303 | |
Echinoderms | 9 | 9/(100) | 0.020 | 0.300 | 0.060 | |
2019 | Mussel | 265 | 239/(90) | 0.020 | 1.000 | 0.108 |
Clam | 276 | 232/(84) | 0.010 | 0.180 | 0.034 | |
Oyster | 40 | 38/(95) | 0.060 | 0.880 | 0.181 | |
Scallop | 25 | 25/(100) | 0.060 | 0.400 | 0.140 | |
Brown venus | 26 | 26/(100) | 0.020 | 0.070 | 0.030 | |
Razor clam | 25 | 20/(80) | 0.010 | 0.340 | 0.033 | |
Other bivalves | 24 | 2/(8) | 0.010 | 0.280 | 0.014 | |
Gastropods | 17 | 17/(100) | 0.010 | 0.470 | 0.120 | |
Echinoderms | 8 | 8/(100) | 0.020 | 0.080 | 0.050 |
Year | Classes | Analyzed Samples | Above LOQ Samples (%) | Min | Max | Average(MB) 1 |
---|---|---|---|---|---|---|
2017 | Mussel | 185 | 71/(38) | 0.030 | 0.300 | 0.038 |
Clam | 260 | 64/(25) | 0.030 | 0.140 | 0.024 | |
Oyster | 7 | 2/(29) | 0.030 | 0.110 | 0.029 | |
Scallop | 37 | 0/(0) | 0.013 | |||
Brown venus | 36 | 13/(36) | 0.030 | 0.070 | 0.022 | |
Razor clam | 1 | 0/(0) | 0.010 | |||
Other bivalves | 28 | 9/(32) | 0.030 | 0.170 | 0.028 | |
Gastropods | 59 | 51/(86) | 0.030 | 0.100 | 0.045 | |
Echinoderms | 55 | 1/(20) | 0.063 | 0.024 | ||
2018 | Mussel | 302 | 104/(34) | 0.030 | 0.190 | 0.032 |
Clam | 308 | 89/(29) | 0.030 | 0.180 | 0.023 | |
Oyster | 47 | 17/(36) | 0.030 | 0.260 | 0.026 | |
Scallop | 38 | 0/(0) | 0.013 | |||
Brown venus | 36 | 27/(75) | 0.030 | 0.090 | 0.041 | |
Razor clam | 16 | 13/(81) | 0.070 | 0.210 | 0.108 | |
Other bivalves | 29 | 1/(3) | 0.040 | 0.013 | ||
Gastropods | 44 | 34/(77) | 0.030 | 0.100 | 0.034 | |
Echinoderms | 10 | 1/(10) | 0.040 | 0.015 | ||
2019 | Mussel | 265 | 34/(13) | 0.030 | 0.170 | 0.017 |
Clam | 276 | 70/(25) | 0.030 | 0.130 | 0.022 | |
Oyster | 40 | 7/(18) | 0.030 | 0.110 | 0.019 | |
Scallop | 25 | 0/(0) | 0.013 | |||
Brown venus | 26 | 19/(73) | 0.030 | 0.060 | 0.033 | |
Razor clam | 25 | 14/(56) | 0.700 | 0.230 | 0.084 | |
Other bivalves | 24 | 1/(4) | 0.040 | 0.014 | ||
Gastropods | 17 | 8/(47) | 0.030 | 0.100 | 0.030 | |
Echinoderms | 10 | 2/(20) | 0.030 | 0.040 | 0.018 |
Year | Classes | Analyzed Samples | Above LOQ Samples (%) | Min | Max | Average(MB) 1 |
---|---|---|---|---|---|---|
2017 | Mussel | 152 | 138/(91) | 0.040 | 0.560 | 0.128 |
Clam | 260 | 223/(86) | 0.020 | 0.350 | 0.078 | |
Oyster | 7 | 7/(100) | 0.090 | 0.400 | 0.190 | |
Scallop | 37 | 37/(100) | 0.020 | 0.500 | 0.150 | |
Brown venus | 36 | 36/(100) | 0.030 | 0.260 | 0.110 | |
Razor clam | 1 | 0 | 0.008 | |||
Other bivalves | 28 | 25/(89) | 0.030 | 0.450 | 0.117 | |
Gastropods | 59 | 44/(75) | 0.020 | 0.170 | 0.032 | |
Echinoderms | 4 | 4/(100) | 0.050 | 0.370 | 0.190 | |
2018 | Mussel | 302 | 285/(94) | 0.020 | 0.740 | 0.180 |
Clam | 308 | 267/(87) | 0.020 | 0.740 | 0.114 | |
Oyster | 47 | 47/(100) | 0.030 | 0.780 | 0.150 | |
Scallop | 38 | 37/(97) | 0.030 | 0.420 | 0.175 | |
Brown venus | 36 | 36/(100) | 0.050 | 0.360 | 0.150 | |
Razor clam | 16 | 16/(100) | 0.040 | 0.180 | 0.100 | |
Other bivalves | 29 | 27/(93) | 0.030 | 0.260 | 0.103 | |
Gastropods | 44 | 37/(84) | 0.020 | 0.410 | 0.052 | |
Echinoderms | 10 | 10/(100) | 0.040 | 0.400 | 0.200 | |
2019 | Mussel | 265 | 236/(89) | 0.020 | 1.070 | 0.215 |
Clam | 276 | 232/(84) | 0.020 | 1.080 | 0.136 | |
Oyster | 40 | 38/(95) | 0.030 | 0.370 | 0.124 | |
Scallop | 18 | 16/(89) | 0.020 | 0.660 | 0.250 | |
Brown venus | 26 | 26/(100) | 0.070 | 0.430 | 0.230 | |
Razor clam | 25 | 24/(96) | 0.070 | 0.590 | 0.212 | |
Other bivalves | 24 | 24/(100) | 0.040 | 0.530 | 0.130 | |
Gastropods | 17 | 16/(94) | 0.020 | 0.310 | 0.104 | |
Echinoderms | 10 | 10/(100) | 0.020 | 0.520 | 0.220 |
Cd | Hg | Pb | |
---|---|---|---|
Mussel | 0.33 | 0.01 | 0.05 |
Clam | 0.31 | 0.01 | 0.08 |
Oyster | 0.57 | 0.00 | 0.04 |
Scallop | 0.33 | 0.00 | 0.05 |
Brown venus | 0.23 | 0.01 | 0.10 |
Razor clam | 0.13 | 0.03 | 0.07 |
Other bivalves | 0.13 | 0.00 | 0.00 |
Gastropods | 3.46 | 0.00 | 0.00 |
Echinoderms | 0.12 | 0.00 | 0.06 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barchiesi, F.; Branciari, R.; Latini, M.; Roila, R.; Lediani, G.; Filippini, G.; Scortichini, G.; Piersanti, A.; Rocchegiani, E.; Ranucci, D. Heavy Metals Contamination in Shellfish: Benefit-Risk Evaluation in Central Italy. Foods 2020, 9, 1720. https://doi.org/10.3390/foods9111720
Barchiesi F, Branciari R, Latini M, Roila R, Lediani G, Filippini G, Scortichini G, Piersanti A, Rocchegiani E, Ranucci D. Heavy Metals Contamination in Shellfish: Benefit-Risk Evaluation in Central Italy. Foods. 2020; 9(11):1720. https://doi.org/10.3390/foods9111720
Chicago/Turabian StyleBarchiesi, Francesca, Raffaella Branciari, Mario Latini, Rossana Roila, Giuseppe Lediani, Giovanni Filippini, Giampiero Scortichini, Arianna Piersanti, Elena Rocchegiani, and David Ranucci. 2020. "Heavy Metals Contamination in Shellfish: Benefit-Risk Evaluation in Central Italy" Foods 9, no. 11: 1720. https://doi.org/10.3390/foods9111720
APA StyleBarchiesi, F., Branciari, R., Latini, M., Roila, R., Lediani, G., Filippini, G., Scortichini, G., Piersanti, A., Rocchegiani, E., & Ranucci, D. (2020). Heavy Metals Contamination in Shellfish: Benefit-Risk Evaluation in Central Italy. Foods, 9(11), 1720. https://doi.org/10.3390/foods9111720