Bioactivity and Sensory Properties of Probiotic Yogurt Fortified with Apple Pomace Flour
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Production of APF
2.3. APF Water Extract Preparation
2.4. Production of Probiotic Yogurt Fortified with Apple Pomace Flours
2.4.1. pH Measurement
2.4.2. Syneresis of Yogurt
2.5. Textural Properties
2.6. Sensory Analysis
2.7. Preparation of Yogurt Supernatants
2.8. The TPC and Antioxidant Assays
2.9. Microbiological Analysis of Yogurts
2.9.1. Bacterial Counts
2.9.2. Disc Diffusion Assay
2.10. Cell Culture Maintenance and Cytotoxicity Assay
2.11. Statistical Analysis
3. Results and Discussion
3.1. Production of Novel Probiotic Yogurt Fortified with APF
3.2. Quality Assessment of Novel Probiotic Yogurt Fortified with APF
3.2.1. Influence of APF Addition on Yogurt pH and Syneresis
3.2.2. Texture
3.2.3. Sensory Evaluation
3.3. Biochemical Properties: TPC and AO Activity
3.4. Biological Properties
3.4.1. Bacterial Viable Counts
3.4.2. Antimicrobial Activity
3.4.3. Cytotoxic Properties
4. Conclusions
5. Patents
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kitson, J.A.; Lackey, C.L.; Coltart, M.L. Dry sauces, soup mixes reap benefits of new ingredient: Low moisture apple solids. Food Prod. Dev. 1972, 6, 36–38. [Google Scholar]
- Kennedy, M.; List, D.; Lu, Y.; Foo, L.Y.; Newman, R.H.; Sims, I.M.; Bain, P.J.S.; Hamilton, B.; Fenton, G. Apple pomace and products derived from apple pomace: Uses, composition and analysis. In Analysis of Plant Waste Materials; Springer: Berlin/Heidelberg, Germany, 1999; pp. 75–119. [Google Scholar]
- Majerska, J.; Michalska, A.; Figiel, A. A review of new directions in managing fruit and vegetable processing by-products. Trends Food Sci. Technol. 2019, 88, 207–219. [Google Scholar] [CrossRef]
- Wang, X.; Kristo, E.; LaPointe, G. The effect of apple pomace on the texture, rheology and microstructure of set type yogurt. Food Hydrocoll. 2019, 91, 83–91. [Google Scholar] [CrossRef]
- Fernandes, P.A.; Ferreira, S.S.; Bastos, R.; Ferreira, I.; Cruz, M.T.; Pinto, A.; Coelho, E.; Passos, C.P.; Coimbra, M.A.; Cardoso, S.M.; et al. Apple pomace extract as a sustainable food ingredient. Antioxidants 2019, 8, 189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barreira, J.C.; Arraibi, A.A.; Ferreira, I.C. Bioactive and functional compounds in apple pomace from juice and cider manufacturing: Potential use in dermal formulations. Trends Food Sci. Technol. 2019, 90, 76–87. [Google Scholar] [CrossRef]
- Skinner, R.C.; Gigliotti, J.C.; Ku, K.M.; Tou, J.C. A comprehensive analysis of the composition, health benefits, and safety of apple pomace. Nutr. Rev. 2018, 76, 893–909. [Google Scholar] [CrossRef] [PubMed]
- Wilkowska, A.; Nowak, A.; Antczak-Chrobot, A.; Motyl, I.; Czyżowska, A.; Paliwoda, A. Structurally Different Pectic Oligosaccharides Produced from Apple Pomace and Their Biological Activity In Vitro. Foods 2019, 8, 365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yadav, S.; Malik, A.; Pathera, A.; Islam, R.U.; Sharma, D. Development of dietary fibre enriched chicken sausages by incorporating corn bran, dried apple pomace and dried tomato pomace. Food Sci. Nutr. 2016, 46, 16–29. [Google Scholar] [CrossRef]
- Kırbaş, Z.; Kumcuoglu, S.; Tavman, S. Effects of apple, orange and carrot pomace powders on gluten-free batter rheology and cake properties. J. Food Sci. Technol. 2019, 56, 914–926. [Google Scholar] [CrossRef]
- Zlatanović, S.; Kalušević, A.; Micić, D.; Laličić-Petronijević, J.; Tomić, N.; Ostojić, S.; Gorjanović, S. Functionality and Storability of Cookies Fortified at the Industrial Scale with up to 75% of Apple Pomace Flour Produced by Dehydration. Foods 2019, 8, 561. [Google Scholar] [CrossRef] [Green Version]
- Gumul, D.; Korus, J.; Ziobro, R.; Kruczek, M. Enrichment of wheat bread with apple pomace as a way to increase pro-health constituents. Qual. Assur. Saf. Crop. 2019, 11, 231–240. [Google Scholar] [CrossRef]
- Singha, P.; Singh, S.K.; Muthukumarappan, K. Textural and structural characterization of extrudates from apple pomace, defatted soy flour and corn grits. J. Food Process. Eng. 2019, 42, e13046. [Google Scholar] [CrossRef]
- O’sullivan, A.M.; O’grady, M.N.; O’callaghan, Y.C.; Smyth, T.J.; O’brien, N.M.; Kerry, J.P. Seaweed extracts as potential functional ingredients in yogurt. Innov. Food Sci. Emerg. Technol. 2016, 37, 293–299. [Google Scholar] [CrossRef]
- Staffolo, M.D.; Bertola, N.; Martino, M. Influence of dietary fiber addition on sensory and rheological properties of yogurt. Int. Dairy J. 2004, 14, 263–268. [Google Scholar] [CrossRef]
- Samedi, L.; Charles, A.L. Viability of 4 Probiotic Bacteria Microencapsulated with Arrowroot Starch in the Simulated Gastrointestinal Tract (GIT) and Yoghurt. Foods 2019, 8, 175. [Google Scholar] [CrossRef] [Green Version]
- Zlatanović, S.; Gorjanović, S.; Ostojić, S.; Micić, D.; Pastor, F.; Kalušević, A.; Laličić-Petronijević, J. Method for Producing Gluten-Free Flour Made of Apple Pomace. International Patent Application RS P20180918 PCT/RS2019/000019, 3 August 2019. [Google Scholar]
- Zlatanović, S.; Ostojić, S.; Micić, D.; Rankov, S.; Dodevska, M.; Vukosavljević, P.; Gorjanović, S. Thermal behaviour and degradation kinetics of apple pomace flours. Thermochim. Acta 2019, 673, 17–25. [Google Scholar] [CrossRef]
- Gorjanović, S.; Micić, D.; Pastor, F.; Tosti, T.; Kalušević, A.; Ristić, S.; Zlatanović, S. Evaluation of Apple Pomace Flour Obtained Industrially by Dehydration as a Source of Biomolecules with Antioxidant, Antidiabetic and Antiobesity Effects. Antioxidants 2020, 9, 413. [Google Scholar] [CrossRef]
- Wang, X.; Kristo, E.; LaPointe, G. Adding apple pomace as a functional ingredient in stirred-type yogurt and yogurt drinks. Food Hydrocoll. 2020, 100, 105453. [Google Scholar] [CrossRef]
- Issar, K.; Sharma, P.C.; Gupta, A. Utilization of Apple Pomace in the Preparation of Fiber-Enriched Acidophilus Yoghurt. J. Food Process. Preserv. 2017, 41, e13098. [Google Scholar] [CrossRef]
- do Espírito Santo, A.P.; Cartolano, N.S.; Silva, T.F.; Soares, F.A.; Gioielli, L.A.; Perego, P.; Converti, A.; Oliveira, M.N. Fibers from fruit by-products enhance probiotic viability and fatty acid profile and increase CLA content in yoghurts. Int. J. Food Microbiol. 2012, 154, 135–144. [Google Scholar] [CrossRef]
- Abdel-Hamid, M.; Romeih, E.; Huang, Z.; Enomoto, T.; Huang, L.; Li, L. Bioactive properties of probiotic set-yogurt supplemented with Siraitia grosvenorii fruit extract. Food Chem. 2020, 303, 125400. [Google Scholar] [CrossRef]
- Petrovic, M.; Suznjevic, D.; Pastor, F.; Veljovic, M.; Pezo, L.; Antic, M.; Gorjanovic, S. Antioxidant Capacity Determination of Complex Samples and Individual Phenolics-Multilateral Approach. Comb. Chem. High Throughput Screen. 2016, 19, 58–65. [Google Scholar] [CrossRef] [PubMed]
- Mitić-Ćulafić, D.S.; Pavlović, M.; Ostojić, S.; Knezević-Vukčević, J. Antimicrobial Effect of Natural Food Preservatives in Fresh Basil-Based Pesto Spreads. J. Food Process. Preserv. 2014, 38, 1298–1306. [Google Scholar] [CrossRef]
- Jovanović, M.; Srdić-Rajić, T.; Svirčev, E.; Jasnić, N.; Nikolić, B.; Bojić, S.; Stević, T.; Knežević-Vukčević, J.; Mitić-Ćulafić, D. Evaluation of anticancer and antimicrobial activities of the Polygonum maritimum ethanol extract. Arch. Biol. Sci. 2018, 70, 665–673. [Google Scholar] [CrossRef] [Green Version]
- Rabetafika, H.N.; Bchir, B.; Blecker, C.; Richel, A. Fractionation of apple by-products as source of new ingredients: Current situation and perspectives. Trends Food Sci. Technol. 2014, 40, 99–114. [Google Scholar] [CrossRef]
- Sodini, I.; Remeuf, F.; Haddad, S.; Corrieu, G. The relative effect of milk base, starter, and process on yogurt texture: A review. Crit. Rev. Food Sci. Nutr. 2004, 44, 113–137. [Google Scholar] [CrossRef] [PubMed]
- Miocinovic, J.; Tomic, N.; Dojnov, B.; Tomasevic, I.; Stojanovic, S.; Djekic, I.; Vujcic, Z. Application of new insoluble dietary fibres from triticale as supplement in yoghurt—effects on physico-chemical, rheological and quality properties. J. Sci. Food Agric. 2018, 98, 1291–1299. [Google Scholar] [CrossRef]
- Sendra, E.; Kuri, V.; Fernández-López, J.; Sayas-Barberá, E.; Navarro, C.; Pérez-Alvarez, J.A. Viscoelastic properties of orange fiber enriched yogurt as a function of fiber dose, size and thermal treatment. LWT –Food Sci. Technol. 2010, 43, 708–714. [Google Scholar] [CrossRef]
- do Espírito Santo, A.P.; Perego, P.; Converti, A.; Oliveira, M.N.D. Influence of milk type and addition of passion fruit peel powder on fermentation kinetics, texture profile and bacterial viability in probiotic yoghurts. LWT 2012, 47, 393–399. [Google Scholar] [CrossRef]
- Puvanenthiran, A.; Stevovitch-Rykner, C.; McCann, T.H.; Day, L. Synergistic effect of milk solids and carrot cell wall particles on the rheology and texture of yoghurt gels. Food Res. Int. 2014, 62, 701–708. [Google Scholar] [CrossRef]
- Wolfe, K.; Wu, X.; Liu, R.H. Antioxidant activity of apple peels. J. Agric. Food Chem. 2003, 51, 609–614. [Google Scholar] [CrossRef] [PubMed]
- Savatovic, S.; Cetkovic, G.; Djilas, S.; Tumbas, V.; Canadanovic-Brunet, J.; Cetojevic-Simin, D.; Mandic, A. Antioxidant and antiproliferative activity of Granny Smith apple pomace. Acta Period. Technol. 2008, 39, 201–212. [Google Scholar] [CrossRef]
- Ćetković, G.; Čanadanović-Brunet, J.; Djilas, S.; Savatović, S.; Mandić, A.; Tumbas, V. Assessment of polyphenolic content and in vitro antiradical characteristics of apple pomace. Food Chem. 2008, 109, 340–347. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Amezquita, L.E.; Tejada-Ortigoza, V.; Campanella, O.H.; Welti-Chanes, J. Influence of Drying Method on the Composition, Physicochemical Properties, and Prebiotic Potential of Dietary Fibre Concentrates from Fruit Peels. J. Food Qual. 2018, 2018, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Nagpal, R.; Kumar, A.; Kumar, M.; Behare, P.V.; Jain, S.; Yadav, H. Probiotics, their health benefits and applications for developing healthier foods: A review. FEMS Microbiol. Lett. 2012, 334, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Islamova, Z.I.; Ogai, D.K.; Abramenko, O.I.; Lim, A.L.; Abduazimov, B.B.; Malikova, M.K.; Rakhmanberdyeva, R.K.; Khushbaktova, Z.A.; Syrov, V.N. Comparative assessment of the prebiotic activity of some pectin polysaccharides. Pharm. Chem. J. 2017, 51, 288–291. [Google Scholar] [CrossRef]
- Vodnar, D.C.; Călinoiu, L.F.; Dulf, F.V.; Ştefănescu, B.E.; Crişan, G.; Socaciu, C. Identification of the bioactive compounds and antioxidant, antimutagenic and antimicrobial activities of thermally processed agro-industrial waste. Food Chem. 2017, 231, 131–140. [Google Scholar] [CrossRef]
- Rana, S.; Bhushan, S. Apple phenolics as nutraceuticals: Assessment, analysis and application. J. Food Sci. Technol. 2016, 53, 1727–1738. [Google Scholar] [CrossRef]
- de Moreno, M.A.; Perdigon, G.D.V. Reduction of β-glucuronidase and nitroreductase activity by yoghurt in a murine colon cancer model. Biocell 2005, 29, 15–24. [Google Scholar]
- Lyu, F.; Luiz, S.F.; Azeredo, D.R.P.; Cruz, A.G.; Ajlouni, S.; Ranadheera, C.S. Apple pomace as a functional and healthy ingredient in food products: A Review. Processes 2020, 8, 319. [Google Scholar] [CrossRef] [Green Version]
Yogurt Sample 1 | Firmness (g) | Cohesiveness (g) | Index of Viscosity (g s) |
---|---|---|---|
C | 17.24 ± 1.49 | 11.4 ± 1.39 a | 4.08 ± 1.36 a |
1 | 16.14 ± 0.4 | 10.37 ± 0.05 b | 2.97 ± 0.04 b |
3 | 20.37 ± 1.47 | 14.15 ± 1.59 ab | 10.49 ± 4.71 ab |
5 | 19.85 ± 2.47 | 12.75 ± 0.93 | 6.15 ± 2.17 |
Sensory Attributes | Yogurt Sample 1 | ||||
---|---|---|---|---|---|
CI * (n) | C | 1 | 3 | 5 | |
Color | 3 | 14.79 ± 0.19 | 14.14 ± 0.76 | 15.00 ± 0.00 | 14.57 ± 0.24 |
Creaminess | 4 | 19.43 ± 0.24 ab | 14.29 ± 0.61 acd | 18.86 ± 0.27 ce | 17.43 ± 0.56 bde |
Granulation | 3 | 13.50 ± 0.45 ab | 12.00 ± 0.27 a | 12.75 ± 0.46 | 11.50 ± 0.56 b |
Odor | 3 | 14.33 ± 0.36 a | 12.67 ± 0.67 ab | 14.25 ± 0.43 b | 13.58 ± 0.36 |
Taste | 7 | 31.46 ± 0.29 a | 28.39 ± 0.39 abc | 32.67 ± 0.35 b | 32.08 ± 0.47 c |
[%] of maximum overall quality | 20 | 93.51 | 81.48 | 93.52 | 89.17 |
Sample 1 | TPC (mg GAE/L) | DPPH (mM TE) | FRAP (mM TE) |
---|---|---|---|
C | 41.7 ± 0.3 | 0.03 ± 0.00 | 0.82 ± 0.02 |
1 | 56.3 ± 0.5 * | 0.10 ± 0.00 * | 1.10 ± 0.00 * |
3 | 76.3 ± 1.7 * | 0.14 ± 0.01 * | 1.35 ± 0.01 * |
5 | 96.3 ± 1.6 * | 0.24 ± 0.00 * | 1.38 ± 0.00 * |
WE 50 mg/mL | 206.4 ± 2.1 * | 0.66 ± 0.00 * | 1.88 ± 0.05 * |
Yogurt Sample 1 | Viable Counts (log CFU/mL) | ||
---|---|---|---|
L. acidophilus | S. thermophilus | B. bifidum | |
C | 8.67 ± 0.38 | 9.28 ± 0.79 | 9.14 ± 0.11 |
1 | 8.59 ± 0.27 | 9.03 ± 0.60 | 8.96 ± 0.24 |
3 | 8.65 ± 0.38 | 9.15 ± 0.48 | 8.76 ± 0.20 * |
5 | 8.60 ± 0.27 | 9.18 ± 0.61 | 8.81 ± 0.15 * |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jovanović, M.; Petrović, M.; Miočinović, J.; Zlatanović, S.; Laličić Petronijević, J.; Mitić-Ćulafić, D.; Gorjanović, S. Bioactivity and Sensory Properties of Probiotic Yogurt Fortified with Apple Pomace Flour. Foods 2020, 9, 763. https://doi.org/10.3390/foods9060763
Jovanović M, Petrović M, Miočinović J, Zlatanović S, Laličić Petronijević J, Mitić-Ćulafić D, Gorjanović S. Bioactivity and Sensory Properties of Probiotic Yogurt Fortified with Apple Pomace Flour. Foods. 2020; 9(6):763. https://doi.org/10.3390/foods9060763
Chicago/Turabian StyleJovanović, Marina, Marija Petrović, Jelena Miočinović, Snežana Zlatanović, Jovanka Laličić Petronijević, Dragana Mitić-Ćulafić, and Stanislava Gorjanović. 2020. "Bioactivity and Sensory Properties of Probiotic Yogurt Fortified with Apple Pomace Flour" Foods 9, no. 6: 763. https://doi.org/10.3390/foods9060763
APA StyleJovanović, M., Petrović, M., Miočinović, J., Zlatanović, S., Laličić Petronijević, J., Mitić-Ćulafić, D., & Gorjanović, S. (2020). Bioactivity and Sensory Properties of Probiotic Yogurt Fortified with Apple Pomace Flour. Foods, 9(6), 763. https://doi.org/10.3390/foods9060763