Exposure to Metal Mixtures in Association with Cardiovascular Risk Factors and Outcomes: A Scoping Review
Abstract
:1. Introduction
2. Methods
2.1. Search Strategy
2.2. Study Selection
2.3. Data Extraction
2.4. Data Synthesis and Analysis
3. Results
3.1. Blood Pressure and Hypertension
3.2. Preeclampsia
3.3. Dyslipidemia and Lipid Markers
3.4. Additional CVD Outcomes
3.5. Statistical Methods for Analyzing Effects of Chemical Mixtures
3.6. Challenges and Opportunities in the Study of Metal Mixtures and CVD Risk Factors and Outcomes
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Al | Aluminum |
As | Arsenic |
B | Boron |
Ba | Barium |
Be | Beryllium |
Bi | Bismuth |
Cd | Cadmium |
Co | Cobalt |
Cr | Chromium |
CS | Cesium |
Cu | Copper |
Fe | Iron |
Hg | Mercury |
I | Iodine |
Li | Lithium |
Mg | Magnesium |
Mn | Manganese |
Mo | Molybdenum |
Ni | Nickel |
Pb | Lead |
Rb | Rubidium |
Sb | Antimony |
Se | Selenium |
Sn | Tin |
Sr | Strontium |
Ti | Titanium |
Tl | Thallium |
U | Uranium |
V | Vanadium |
W | Tungsten |
Zn | Zinc |
Study designs | |
CC | Case-control study; |
CCO | Case-cohort study; |
CO | Prospective cohort study; |
CS | Cross-sectional study |
Mixture analysis methods | |
AENET-I | Adaptive elastic-net with main effects and pairwise interactions |
BKMR | Bayesian kernel machine regression |
BKMR-P | Probit extension of Bayesian kernel machine regression |
DSA | Deletion-substitution-addition algorithm |
ERS | Environmental risk score |
EWAS | Environment-wide association Study |
LASSO | Least absolute shrinkage and selection operator |
PCA | Principal component analysis |
WQSR | Weighted quantile sum regression |
References
- Cardiovascular Diseases. Available online: https://www.who.int/westernpacific/health-topics/cardiovascular-diseases (accessed on 9 September 2021).
- Cardiovascular Disease, Chronic Kidney Disease, and Diabetes Mortality Burden of Cardio-Metabolic Risk Factors between 1980 and 2010: Comparative Risk Assessment. Lancet Diabetes Endocrinol. 2014, 2, 634–647. [CrossRef]
- Briffa, J.; Sinagra, E.; Blundell, R. Heavy Metal Pollution in the Environment and Their Toxicological Effects on Humans. Heliyon 2020, 6, e04691. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, R.; Ramond, A.; O’Keeffe, L.M.; Shahzad, S.; Kunutsor, S.K.; Muka, T.; Gregson, J.; Willeit, P.; Warnakula, S.; Khan, H.; et al. Environmental Toxic Metal Contaminants and Risk of Cardiovascular Disease: Systematic Review and Meta-Analysis. BMJ 2018, 362, k3310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alissa, E.M.; Ferns, G.A. Heavy Metal Poisoning and Cardiovascular Disease. J. Toxicol. 2011, 2011, 870125. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.; Yang, Q.; Fu, N.; Li, S.; Han, B.; Liu, Y.; Tang, Y.; Guo, X.; Lv, Z.; Zhang, Z. Hexavalent Chromium Induced Heart Dysfunction via Sesn2-Mediated Impairment of Mitochondrial Function and Energy Supply. Chemosphere 2021, 264, 128547. [Google Scholar] [CrossRef] [PubMed]
- Hudson, K.M.; Belcher, S.M.; Cowley, M. Maternal Cadmium Exposure in the Mouse Leads to Increased Heart Weight at Birth and Programs Susceptibility to Hypertension in Adulthood. Sci. Rep. 2019, 9, 13553. [Google Scholar] [CrossRef]
- Solenkova, N.V.; Newman, J.D.; Berger, J.S.; Thurston, G.; Hochman, J.S.; Lamas, G.A. Metal Pollutants and Cardiovascular Disease: Mechanisms and Consequences of Exposure. Am. Heart J. 2014, 168, 812–822. [Google Scholar] [CrossRef] [Green Version]
- Iavicoli, I.; Fontana, L.; Bergamaschi, A. The Effects of Metals as Endocrine Disruptors. J. Toxicol. Environ. Health B Crit. Rev. 2009, 12, 206–223. [Google Scholar] [CrossRef]
- Huang, Y.-C.T.; Ghio, A.J. Vascular Effects of Ambient Pollutant Particles and Metals. Curr. Vasc. Pharmacol. 2006, 4, 199–203. [Google Scholar] [CrossRef]
- Omanwar, S.; Fahim, M. Mercury Exposure and Endothelial Dysfunction: An Interplay Between Nitric Oxide and Oxidative Stress. Int. J. Toxicol. 2015, 34, 300–307. [Google Scholar] [CrossRef]
- Prozialeck, W.C.; Edwards, J.R.; Nebert, D.W.; Woods, J.M.; Barchowsky, A.; Atchison, W.D. The Vascular System as a Target of Metal Toxicity. Toxicol. Sci. 2008, 102, 207–218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruiz-Hernandez, A.; Kuo, C.-C.; Rentero-Garrido, P.; Tang, W.-Y.; Redon, J.; Ordovas, J.M.; Navas-Acien, A.; Tellez-Plaza, M. Environmental Chemicals and DNA Methylation in Adults: A Systematic Review of the Epidemiologic Evidence. Clin. Epigenet. 2015, 7, 55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, D.-H.; Jacobs, D.R.; Porta, M. Hypothesis: A Unifying Mechanism for Nutrition and Chemicals as Lifelong Modulators of DNA Hypomethylation. Environ. Health Perspect. 2009, 117, 1799–1802. [Google Scholar] [CrossRef] [Green Version]
- Chia, N.; Wang, L.; Lu, X.; Senut, M.-C.; Brenner, C.; Ruden, D.M. Hypothesis: Environmental Regulation of 5-Hydroxymethylcytosine by Oxidative Stress. Epigenetics 2011, 6, 853–856. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dai, H.; Wang, Z. Histone Modification Patterns and Their Responses to Environment. Curr. Environ. Health Rep. 2014, 1, 11–21. [Google Scholar] [CrossRef]
- Nigra, A.E.; Ruiz-Hernandez, A.; Redon, J.; Navas-Acien, A.; Tellez-Plaza, M. Environmental Metals and Cardiovascular Disease in Adults: A Systematic Review beyond Lead and Cadmium. Curr. Environ. Health Rep. 2016, 3, 416–433. [Google Scholar] [CrossRef]
- Hu, X.F.; Lowe, M.; Chan, H.M. Mercury Exposure, Cardiovascular Disease, and Mortality: A Systematic Review and Dose-Response Meta-Analysis. Environ. Res. 2021, 193, 110538. [Google Scholar] [CrossRef]
- Gibson, E.A.; Nunez, Y.; Abuawad, A.; Zota, A.R.; Renzetti, S.; Devick, K.L.; Gennings, C.; Goldsmith, J.; Coull, B.A.; Kioumourtzoglou, M.-A. An Overview of Methods to Address Distinct Research Questions on Environmental Mixtures: An Application to Persistent Organic Pollutants and Leukocyte Telomere Length. Environ. Health 2019, 18, 76. [Google Scholar] [CrossRef] [Green Version]
- Chemical Mixtures in Environmental Health (1998) | RFA Text | Research Project Database | Grantee Research Project | ORD | US EPA. Available online: https://cfpub.epa.gov/ncer_abstracts/index.cfm/fuseaction/display.rfatext/rfa_id/99 (accessed on 21 February 2022).
- Carlin, D.J.; Rider, C.V.; Woychik, R.; Birnbaum, L.S. Unraveling the Health Effects of Environmental Mixtures: An NIEHS Priority. Environ. Health Perspect. 2013, 121, A6–A8. [Google Scholar] [CrossRef]
- Rider, C.V.; Carlin, D.J.; Devito, M.J.; Thompson, C.L.; Walker, N.J. Mixtures Research at NIEHS: An Evolving Program. Toxicology 2013, 313, 94–102. [Google Scholar] [CrossRef] [Green Version]
- Joubert, B.R.; Kioumourtzoglou, M.-A.; Chamberlain, T.; Chen, H.Y.; Gennings, C.; Turyk, M.E.; Miranda, M.L.; Webster, T.F.; Ensor, K.B.; Dunson, D.B.; et al. Powering Research through Innovative Methods for Mixtures in Epidemiology (PRIME) Program: Novel and Expanded Statistical Methods. Int. J. Environ. Res. Public Health 2022, 19, 1378. [Google Scholar] [CrossRef] [PubMed]
- Bobb, J.F.; Claus Henn, B.; Valeri, L.; Coull, B.A. Statistical Software for Analyzing the Health Effects of Multiple Concurrent Exposures via Bayesian Kernel Machine Regression. Environ. Health 2018, 17, 67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carrico, C.; Gennings, C.; Wheeler, D.C.; Factor-Litvak, P. Characterization of Weighted Quantile Sum Regression for Highly Correlated Data in a Risk Analysis Setting. JABES 2015, 20, 100–120. [Google Scholar] [CrossRef] [PubMed]
- Keil, A.P.; Buckley, J.P.; O’Brien, K.M.; Ferguson, K.K.; Zhao, S.; White, A.J. A Quantile-Based g-Computation Approach to Addressing the Effects of Exposure Mixtures. Environ. Health Perspect. 2020, 128, 047004. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tricco, A.C.; Lillie, E.; Zarin, W.; O’Brien, K.K.; Colquhoun, H.; Levac, D.; Moher, D.; Peters, M.D.J.; Horsley, T.; Weeks, L.; et al. PRISMA Extension for Scoping Reviews (PRISMA-ScR): Checklist and Explanation. Ann. Intern. Med. 2018, 169, 467–473. [Google Scholar] [CrossRef] [Green Version]
- Yim, G. Exposure to Metal Mixtures in Association with Cardiovascular Risk Factors and Outcomes: A Scoping Review. 2021. Available online: https://osf.io/hbufn/ (accessed on 16 January 2022). [CrossRef]
- Taylor, K.W.; Joubert, B.R.; Braun, J.M.; Dilworth, C.; Gennings, C.; Hauser, R.; Heindel, J.J.; Rider, C.V.; Webster, T.F.; Carlin, D.J. Statistical Approaches for Assessing Health Effects of Environmental Chemical Mixtures in Epidemiology: Lessons from an Innovative Workshop. Environ. Health Perspect. 2016, 124, A227–A229. [Google Scholar] [CrossRef]
- Morgan, R.L.; Whaley, P.; Thayer, K.A.; Schünemann, H.J. Identifying the PECO: A Framework for Formulating Good Questions to Explore the Association of Environmental and Other Exposures with Health Outcomes. Environ. Int. 2018, 121, 1027–1031. [Google Scholar] [CrossRef]
- RFA-ES-17-001: Powering Research through Innovative Methods for Mixtures in Epidemiology (PRIME) (R01). Available online: https://grants.nih.gov/grants/guide/rfa-files/RFA-ES-17-001.html (accessed on 18 February 2022).
- Schuster, N.A.; Hoogendijk, E.O.; Kok, A.A.L.; Twisk, J.W.R.; Heymans, M.W. Ignoring Competing Events in the Analysis of Survival Data May Lead to Biased Results: A Nonmathematical Illustration of Competing Risk Analysis. J. Clin. Epidemiol. 2020, 122, 42–48. [Google Scholar] [CrossRef]
- Wolffe, T.A.M.; Whaley, P.; Halsall, C.; Rooney, A.A.; Walker, V.R. Systematic Evidence Maps as a Novel Tool to Support Evidence-Based Decision-Making in Chemicals Policy and Risk Management. Environ. Int. 2019, 130, 104871. [Google Scholar] [CrossRef]
- Munn, Z.; Peters, M.D.J.; Stern, C.; Tufanaru, C.; McArthur, A.; Aromataris, E. Systematic Review or Scoping Review? Guidance for Authors When Choosing between a Systematic or Scoping Review Approach. BMC Med. Res. Methodol. 2018, 18, 143. [Google Scholar] [CrossRef]
- Dai, L.; Koutrakis, P.; Coull, B.A.; Sparrow, D.; Vokonas, P.S.; Schwartz, J.D. Use of the Adaptive LASSO Method to Identify PM2.5 Components Associated with Blood Pressure in Elderly Men: The Veterans Affairs Normative Aging Study. Environ. Health Perspect. 2016, 124, 120–125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, J.; White, A.J.; Niehoff, N.M.; O’Brien, K.M.; Sandler, D.P. Airborne Metals Exposure and Risk of Hypertension in the Sister Study. Environ. Res. 2020, 191, 110144. [Google Scholar] [CrossRef] [PubMed]
- Karakis, I.; Baumfeld, Y.; Landau, D.; Gat, R.; Shemesh, N.; Yitshak-Sade, M.; Tirosh, O.; Sarov, B.; Novack, L. Exposure to Metals and Morbidity at Eight Years Follow-up in Women of Childbearing Age. Sci. Rep. 2021, 11, 11429. [Google Scholar] [CrossRef] [PubMed]
- Warembourg, C.; Maitre, L.; Tamayo-Uria, I.; Fossati, S.; Roumeliotaki, T.; Aasvang, G.M.; Andrusaityte, S.; Casas, M.; Cequier, E.; Chatzi, L.; et al. Early-Life Environmental Exposures and Blood Pressure in Children. J. Am. Coll. Cardiol. 2019, 74, 1317–1328. [Google Scholar] [CrossRef]
- Castiello, F.; Olmedo, P.; Gil, F.; Molina, M.; Mundo, A.; Romero, R.R.; Ruíz, C.; Gómez-Vida, J.; Vela-Soria, F.; Freire, C. Association of Urinary Metal Concentrations with Blood Pressure and Serum Hormones in Spanish Male Adolescents. Environ. Res. 2020, 182, 108958. [Google Scholar] [CrossRef]
- Bulka, C.M.; Bryan, M.S.; Persky, V.W.; Daviglus, M.L.; Durazo-Arvizu, R.A.; Parvez, F.; Slavkovich, V.; Graziano, J.H.; Islam, T.; Baron, J.A.; et al. Changes in Blood Pressure Associated with Lead, Manganese, and Selenium in a Bangladeshi Cohort. Environ. Pollut. 2019, 248, 28–35. [Google Scholar] [CrossRef]
- Elongi Moyene, J.-P.; Scheers, H.; Tandu-Umba, B.; Haufroid, V.; Buassa-bu-Tsumbu, B.; Verdonck, F.; Spitz, B.; Nemery, B. Preeclampsia and Toxic Metals: A Case-Control Study in Kinshasa, DR Congo. Environ. Health 2016, 15, 48. [Google Scholar] [CrossRef] [Green Version]
- Park, S.K.; Zhao, Z.; Mukherjee, B. Construction of Environmental Risk Score beyond Standard Linear Models Using Machine Learning Methods: Application to Metal Mixtures, Oxidative Stress and Cardiovascular Disease in NHANES. Environ. Health 2017, 16, 102. [Google Scholar] [CrossRef] [Green Version]
- Park, S.K.; Tao, Y.; Meeker, J.D.; Harlow, S.D.; Mukherjee, B. Environmental Risk Score as a New Tool to Examine Multi-Pollutants in Epidemiologic Research: An Example from the NHANES Study Using Serum Lipid Levels. PLoS ONE 2014, 9, e98632. [Google Scholar] [CrossRef]
- Yao, X.; Steven Xu, X.; Yang, Y.; Zhu, Z.; Zhu, Z.; Tao, F.; Yuan, M. Stratification of Population in NHANES 2009–2014 Based on Exposure Pattern of Lead, Cadmium, Mercury, and Arsenic and Their Association with Cardiovascular, Renal and Respiratory Outcomes. Environ. Int. 2021, 149, 106410. [Google Scholar] [CrossRef]
- Wang, X.; Mukherjee, B.; Park, S.K. Associations of Cumulative Exposure to Heavy Metal Mixtures with Obesity and Its Comorbidities Among U.S. Adults in NHANES 2003–2014. Environ. Int. 2018, 121, 683–694. [Google Scholar] [CrossRef] [PubMed]
- Desai, G.; Niu, Z.; Luo, W.; Frndak, S.; Shaver, A.L.; Kordas, K. Low-Level Exposure to Lead, Mercury, Arsenic, and Cadmium, and Blood Pressure among 8–17-Year-Old Participants of the 2009–2016 National Health and Nutrition Examination Survey. Environ. Res. 2021, 197, 111086. [Google Scholar] [CrossRef] [PubMed]
- Everson, T.M.; Niedzwiecki, M.M.; Toth, D.; Tellez-Plaza, M.; Liu, H.; Barr, D.B.; Gribble, M.O. Metal Biomarker Mixtures and Blood Pressure in the United States: Cross-Sectional Findings from the 1999-2006 National Health and Nutrition Examination Survey (NHANES). Environ. Health 2021, 20, 15. [Google Scholar] [CrossRef]
- Yang, L.; Jiang, Y.; Zhao, L.; Li, M.; Guo, W.; Shu, J.; Zhu, R.; Zhang, X. Multiple Metals Exposure and Arterial Stiffness: A Panel Study in China. Chemosphere 2021, 263, 128217. [Google Scholar] [CrossRef]
- Kim, K.; Park, H. Co-Exposure to Heavy Metals and Hypertension Among Adults in South Korea. Expo. Health 2021. [Google Scholar] [CrossRef]
- Xu, J.; Engel, L.S.; Rhoden, J.; Jackson, W.B.; Kwok, R.K.; Sandler, D.P. The Association between Blood Metals and Hypertension in the GuLF Study. Environ. Res. 2021, 202, 111734. [Google Scholar] [CrossRef] [PubMed]
- Zuk, A.M.; Liberda, E.N.; Tsuji, L.J.S. Environmental Contaminant Body Burdens and the Relationship with Blood Pressure Measures Among Indigenous Adults. Environ. Epidemiol. 2021, 5, e137. [Google Scholar] [CrossRef]
- Zhu, X.; Fan, Y.; Sheng, J.; Gu, L.; Tao, Q.; Huang, R.; Liu, K.; Yang, L.; Chen, G.; Cao, H.; et al. Association Between Blood Heavy Metal Concentrations and Dyslipidemia in the Elderly. Biol. Trace Elem. Res. 2021, 199, 1280–1290. [Google Scholar] [CrossRef]
- Li, Z.; Xu, Y.; Huang, Z.; Wei, Y.; Hou, J.; Long, T.; Wang, F.; Cheng, X.; Duan, Y.; Chen, X.; et al. Association of Multiple Metals with Lipid Markers against Different Exposure Profiles: A Population-Based Cross-Sectional Study in China. Chemosphere 2021, 264, 128505. [Google Scholar] [CrossRef]
- Liberda, E.N.; Zuk, A.M.; Tsuji, L.J.S. Complex Contaminant Mixtures and Their Associations with Intima-Media Thickness. BMC Cardiovasc. Disord 2019, 19, 289. [Google Scholar] [CrossRef] [Green Version]
- Kupsco, A.; Kioumourtzoglou, M.-A.; Just, A.C.; Amarasiriwardena, C.; Estrada-Gutierrez, G.; Cantoral, A.; Sanders, A.P.; Braun, J.M.; Svensson, K.; Brennan, K.J.M.; et al. Prenatal Metal Concentrations and Childhood Cardiometabolic Risk Using Bayesian Kernel Machine Regression to Assess Mixture and Interaction Effects. Epidemiology 2019, 30, 263–273. [Google Scholar] [CrossRef] [PubMed]
- Howe, C.G.; Margetaki, K.; Vafeiadi, M.; Roumeliotaki, T.; Karachaliou, M.; Kogevinas, M.; McConnell, R.; Eckel, S.P.; Conti, D.V.; Kippler, M.; et al. Prenatal Metal Mixtures and Child Blood Pressure in the Rhea Mother-Child Cohort in Greece. Environ. Health 2021, 20, 1. [Google Scholar] [CrossRef] [PubMed]
- Shih, Y.-H.; Howe, C.G.; Scannell Bryan, M.; Shahriar, M.; Kibriya, M.G.; Jasmine, F.; Sarwar, G.; Graziano, J.H.; Persky, V.W.; Jackson, B.; et al. Exposure to Metal Mixtures in Relation to Blood Pressure among Children 5–7 Years Old. Environ. Epidemiol. 2021, 5, e135. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Liu, T.; Wang, G.; Buckley, J.P.; Guallar, E.; Hong, X.; Wang, M.-C.; Wills-Karp, M.; Wang, X.; Mueller, N.T. In Utero Exposure to Heavy Metals and Trace Elements and Childhood Blood Pressure in a U.S. Urban, Low-Income, Minority Birth Cohort. Environ. Health Perspect. 2021, 129, 067005. [Google Scholar] [CrossRef]
- Zhong, Q.; Wu, H.; Niu, Q.; Jia, P.; Qin, Q.; Wang, X.; He, J.; Yang, W.; Huang, F. Exposure to Multiple Metals and the Risk of Hypertension in Adults: A Prospective Cohort Study in a Local Area on the Yangtze River, China. Environ. Int. 2021, 153, 106538. [Google Scholar] [CrossRef]
- Jiang, Q.; Xiao, Y.; Long, P.; Li, W.; Yu, Y.; Liu, Y.; Liu, K.; Zhou, L.; Wang, H.; Yang, H.; et al. Associations of Plasma Metal Concentrations with Incident Dyslipidemia: Prospective Findings from the Dongfeng-Tongji Cohort. Chemosphere 2021, 285, 131497. [Google Scholar] [CrossRef]
- Bommarito, P.A.; Kim, S.S.; Meeker, J.D.; Fry, R.C.; Cantonwine, D.E.; McElrath, T.F.; Ferguson, K.K. Urinary Trace Metals, Maternal Circulating Angiogenic Biomarkers, and Preeclampsia: A Single-Contaminant and Mixture-Based Approach. Environ. Health 2019, 18, 63. [Google Scholar] [CrossRef] [Green Version]
- Liu, T.; Zhang, M.; Rahman, M.L.; Wang, X.; Hinkle, S.N.; Zhang, C.; Mueller, N.T. Exposure to Heavy Metals and Trace Minerals in First Trimester and Maternal Blood Pressure Change over Gestation. Environ. Int. 2021, 153, 106508. [Google Scholar] [CrossRef]
- Domingo-Relloso, A.; Grau-Perez, M.; Briongos-Figuero, L.; Gomez-Ariza, J.L.; Garcia-Barrera, T.; Dueñas-Laita, A.; Bobb, J.F.; Chaves, F.J.; Kioumourtzoglou, M.-A.; Navas-Acien, A.; et al. The Association of Urine Metals and Metal Mixtures with Cardiovascular Incidence in an Adult Population from Spain: The Hortega Follow-Up Study. Int. J. Epidemiol. 2019, 48, 1839–1849. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, K.; Han, T.; Zhang, P.; Chen, X.; Wu, W.; Feng, Y.; Yang, H.; Li, M.; Xie, B.; et al. Exposure to Multiple Metals and Prevalence for Preeclampsia in Taiyuan, China. Environ. Int. 2020, 145, 106098. [Google Scholar] [CrossRef]
- Wen, Y.; Huang, S.; Zhang, Y.; Zhang, H.; Zhou, L.; Li, D.; Xie, C.; Lv, Z.; Guo, Y.; Ke, Y.; et al. Associations of Multiple Plasma Metals with the Risk of Ischemic Stroke: A Case-Control Study. Environ. Int. 2019, 125, 125–134. [Google Scholar] [CrossRef]
- Xiao, Y.; Yuan, Y.; Liu, Y.; Yu, Y.; Jia, N.; Zhou, L.; Wang, H.; Huang, S.; Zhang, Y.; Yang, H.; et al. Circulating Multiple Metals and Incident Stroke in Chinese Adults. Stroke 2019, 50, 1661–1668. [Google Scholar] [CrossRef] [PubMed]
- Cabral, M.; Kuxhaus, O.; Eichelmann, F.; Kopp, J.F.; Alker, W.; Hackler, J.; Kipp, A.P.; Schwerdtle, T.; Haase, H.; Schomburg, L.; et al. Trace Element Profile and Incidence of Type 2 Diabetes, Cardiovascular Disease and Colorectal Cancer: Results from the EPIC-Potsdam Cohort Study. Eur. J. Nutr. 2021, 60, 3267–3278. [Google Scholar] [CrossRef]
- Liu, Q.; Jin, J.; Xu, C.; Li, W.; Liang, J.; Xu, J.; Weng, Z.; Zhang, X.; Zhang, X.; Shao, J.; et al. HDL Cholesterol: A Potential Mediator of the Association between Serum Levels of a Mixture of Metals and the Risk of Aortic Dissection in a Chinese Population. Environ. Pollut. 2021, 290, 117942. [Google Scholar] [CrossRef] [PubMed]
- Vuong, A.M.; Yolton, K.; Braun, J.M.; Lanphear, B.P.; Chen, A. Chemical Mixtures and Neurobehavior: A Review of Epidemiologic Findings and Future Directions. Rev. Environ. Health 2020, 35, 245–256. [Google Scholar] [CrossRef] [PubMed]
- Gibson, E.A.; Goldsmith, J.; Kioumourtzoglou, M.-A. Complex Mixtures, Complex Analyses: An Emphasis on Interpretable Results. Curr. Environ. Health Rep. 2019, 6, 53–61. [Google Scholar] [CrossRef] [PubMed]
- Stafoggia, M.; Breitner, S.; Hampel, R.; Basagaña, X. Statistical Approaches to Address Multi-Pollutant Mixtures and Multiple Exposures: The State of the Science. Curr. Environ. Health Rep. 2017, 4, 481–490. [Google Scholar] [CrossRef] [PubMed]
- Bobb, J.F.; Valeri, L.; Claus Henn, B.; Christiani, D.C.; Wright, R.O.; Mazumdar, M.; Godleski, J.J.; Coull, B.A. Bayesian Kernel Machine Regression for Estimating the Health Effects of Multi-Pollutant Mixtures. Biostatistics 2015, 16, 493–508. [Google Scholar] [CrossRef]
- Gennings, C.; Carrico, C.; Factor-Litvak, P.; Krigbaum, N.; Cirillo, P.M.; Cohn, B.A. A Cohort Study Evaluation of Maternal PCB Exposure Related to Time to Pregnancy in Daughters. Environ. Health 2013, 12, 66. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, S. Quantile G-Computation: A New Method for Analyzing Mixtures of Environmental Exposures. Environ. Health Perspect. 2020, 128, 104004. [Google Scholar] [CrossRef]
- Weisskopf, M.G.; Seals, R.M.; Webster, T.F. Bias Amplification in Epidemiologic Analysis of Exposure to Mixtures. Environ. Health Perspect. 2018, 126, 047003. [Google Scholar] [CrossRef] [PubMed]
- Anyanwu, B.O.; Ezejiofor, A.N.; Igweze, Z.N.; Orisakwe, O.E. Heavy Metal Mixture Exposure and Effects in Developing Nations: An Update. Toxics 2018, 6, 65. [Google Scholar] [CrossRef] [Green Version]
- Said, S.; Hernandez, G.T. The Link between Chronic Kidney Disease and Cardiovascular Disease. J. Nephropathol. 2014, 3, 99–104. [Google Scholar] [CrossRef]
- Yang, A.-M.; Lo, K.; Zheng, T.-Z.; Yang, J.-L.; Bai, Y.-N.; Feng, Y.-Q.; Cheng, N.; Liu, S.-M. Environmental Heavy Metals and Cardiovascular Diseases: Status and Future Direction. Chronic Dis. Transl. Med. 2020, 6, 251–259. [Google Scholar] [CrossRef] [PubMed]
- Bosch, A.C.; O’Neill, B.; Sigge, G.O.; Kerwath, S.E.; Hoffman, L.C. Heavy Metals in Marine Fish Meat and Consumer Health: A Review. J. Sci. Food Agric. 2016, 96, 32–48. [Google Scholar] [CrossRef] [PubMed]
- Mohan, D.; Mente, A.; Dehghan, M.; Rangarajan, S.; O’Donnell, M.; Hu, W.; Dagenais, G.; Wielgosz, A.; Lear, S.; Wei, L.; et al. Associations of Fish Consumption with Risk of Cardiovascular Disease and Mortality Among Individuals With or Without Vascular Disease From 58 Countries. JAMA Intern. Med. 2021, 181, 631–649. [Google Scholar] [CrossRef] [PubMed]
- Krittanawong, C.; Isath, A.; Hahn, J.; Wang, Z.; Narasimhan, B.; Kaplin, S.L.; Jneid, H.; Virani, S.S.; Tang, W.H.W. Fish Consumption and Cardiovascular Health: A Systematic Review. Am. J. Med. 2021, 134, 713–720. [Google Scholar] [CrossRef]
- Hu, X.F.; Singh, K.; Chan, H.M. Mercury Exposure, Blood Pressure, and Hypertension: A Systematic Review and Dose–Response Meta-Analysis. Environ. Health Perspect. 2018, 126, 076002. [Google Scholar] [CrossRef]
- Marchiset-Ferlay, N.; Savanovitch, C.; Sauvant-Rochat, M.-P. What Is the Best Biomarker to Assess Arsenic Exposure via Drinking Water? Environ. Int. 2012, 39, 150–171. [Google Scholar] [CrossRef]
- Vahter, M. Mechanisms of Arsenic Biotransformation. Toxicology 2002, 181–182, 211–217. [Google Scholar] [CrossRef]
- Chou, C.-H.S.J.; Harper, C. Toxicological Profile for Arsenic; United States Agency for Toxic Substances and Disease Registry: Atlanta, GA, USA, 2007. [Google Scholar]
- Slotnick, M.J.; Meliker, J.R.; AvRuskin, G.A.; Ghosh, D.; Nriagu, J.O. Toenails as a Biomarker of Inorganic Arsenic Intake from Drinking Water and Foods. J. Toxicol. Environ. Health A 2007, 70, 148–158. [Google Scholar] [CrossRef] [PubMed]
- Mercury | Toxicological Profile | ATSDR. Available online: https://wwwn.cdc.gov/TSP/ToxProfiles/ToxProfiles.aspx?id=115&tid=24 (accessed on 22 February 2022).
- Clarkson, T.W.; Vyas, J.B.; Ballatori, N. Mechanisms of Mercury Disposition in the Body. Am. J. Ind. Med. 2007, 50, 757–764. [Google Scholar] [CrossRef] [PubMed]
- Sakamoto, M.; Chan, H.M.; Domingo, J.L.; Oliveira, R.B.; Kawakami, S.; Murata, K. Significance of Fingernail and Toenail Mercury Concentrations as Biomarkers for Prenatal Methylmercury Exposure in Relation to Segmental Hair Mercury Concentrations. Environ. Res. 2015, 136, 289–294. [Google Scholar] [CrossRef] [PubMed]
- Berglund, M.; Lind, B.; Björnberg, K.A.; Palm, B.; Einarsson, O.; Vahter, M. Inter-Individual Variations of Human Mercury Exposure Biomarkers: A Cross-Sectional Assessment. Environ. Health 2005, 4, 20. [Google Scholar] [CrossRef] [Green Version]
- Risher, J.F.; De Rosa, C.T.; Jones, D.E.; Murray, H.E. Summary Report for the Expert Panel Review of the Toxicological Profile for Mercury. 1999. Available online: https://journals.sagepub.com/doi/10.1177/074823379901500504 (accessed on 20 February 2022).
- Zalups, R.K.; Barfuss, D.W.; Kostyniak, P.J. Altered Intrarenal Accumulation of Mercury in Uninephrectomized Rats Treated with Methylmercury Chloride. Toxicol. Appl. Pharmacol. 1992, 115, 174–182. [Google Scholar] [CrossRef]
- Bours, M.J.L. Tutorial: A Nontechnical Explanation of the Counterfactual Definition of Effect Modification and Interaction. J. Clin. Epidemiol. 2021, 134, 113–124. [Google Scholar] [CrossRef]
- Yu, H.; Zhen, J.; Leng, J.; Cai, L.; Ji, H.; Keller, B.B. Zinc as a Countermeasure for Cadmium Toxicity. Acta Pharmacol. Sin. 2021, 42, 340–346. [Google Scholar] [CrossRef]
- McCarty, M.F. Zinc and Multi-Mineral Supplementation Should Mitigate the Pathogenic Impact of Cadmium Exposure. Med. Hypotheses 2012, 79, 642–648. [Google Scholar] [CrossRef]
- Mathers, C.D.; Loncar, D. Projections of Global Mortality and Burden of Disease from 2002 to 2030. PLoS Med. 2006, 3, e442. [Google Scholar] [CrossRef] [Green Version]
- Chemical Mixtures. Available online: https://www.niehs.nih.gov/health/topics/science/chemical-mixtures/index.cfm (accessed on 20 February 2022).
Populations | Exposures | Comparators | Outcomes |
---|---|---|---|
Healthy humans without restrictions based on age, sex, race, or country. Studies which focused on ill patients and occupational studies were excluded | Exposure to metals, including both toxic and essential elements. To be included, a minimum of three metals needed to have been considered and exposures must have been measured at the individual level in human biological samples (e.g., serum, urine, or toenails) | The comparators differed across studies depending on the mixture analysis methods used | Cardiovascular risk factors or outcomes, including stroke, myocardial infarction, coronary heart disease, hypertension, dyslipidemia, or pregnancy hypertension. Outcomes could be either self-reported, extracted from medical records, or based on investigator collected measurements |
Source | Study Location a | Study Design | Study Population b | Metals Included | Exposure Matrix | Outcome(s) Studied | Mixture Analysis Method(s) | Covariates | Summary of Main Findings |
---|---|---|---|---|---|---|---|---|---|
BP and hypertension (n = 15) | |||||||||
Park et al. 2017 | USA | CS | 9664 adults (4911 females/4753 males) | Pb, Cd, Hg, Sb, As, Ba, Co, Cs, Mo, Tl, W, and U | Blood and urine | SBP, DBP, and hypertension | ERS (AENET-I) | Age, sex, race/ethnicity, education, smoking status, and BMI |
|
Wang et al. 2018 | USA | CS | 9537 adults (4841 females/4696 males) | Cd, Pb, Hg, Sb, As, Ba, Co, Cs, Mo, Tl, W, and U | Blood and urine | Hypertension | ERS (Adaptive Elastic Net) | Age, sex, race/ethnicity, education, smoking status, physical activity, and NHANES cycles |
|
Kupsco et al. 2019 | Mexico City, Mexico | CO | 548 mother-child pairs (272 females/276 males) | As, Cd, Co, Cr, Cs, Cu, Mn, Pb, Sb, Se, and Zn | Blood | SBP and DBP | BKMR | Maternal age, education, socioeconomic status, parity, environmental tobacco smoke, and date of follow-up visit (for HbA1c, global risk score, non-HDL cholesterol, SBP and DBP outcomes only). Birth weight, gestational age, sex, and pre-pregnancy BMI included as covariates in sensitivity analyses |
|
Warembourg et al. 2019 | Europe | CO | 1277 mother-child pairs (580 females/697 males) | As, Cd, Co, Cs, Cu, Hg, Mn, Mo, Pb, and Tl (out of 89 prenatal exposures) | Blood | SBP and DBP | DSA | Cohort, maternal age, maternal education level, maternal pre-pregnancy BMI, parity, parental country of birth, child age, child sex, and child height |
|
Castiello et al. 2020 | Granada, Spain | CS | 133 male adolescents | As, Cd, Hg, Ni, Pb, Mn, and Cr | Urine | SBP, DBP, elevated BP, and PP | PCA | Age, serum TG, HDL, LDL, and BMI |
|
Desai et al. 2021 | USA | CS | 1642 child or adolescents (824 females/818 males) | Pb, Hg, As, and Cd | Blood and urine | SBP, DBP and PP | BKMR | Age, sex, race, BMI, total energy intake, NHANES cycle, education of household head, and income to poverty ratio |
|
Everson et al. 2021 * | USA | CS | 2413 adults (female to male ratio not provided) | Ba, Cd, Co, Cs, Mo, Sb, Tl, W, and Pb | Blood and urine | SBP and DBP | Regression tree | Age and its squared term, race, sex, BMI, and smoking status |
|
Howe et al. 2021 | Heraklion, Greece | CO | 176 mother-child pairs (78 females/98 males) | Mg, Co, Se, Mo, As, Cd, Sb, and Pb | Urine | SBP, DBP, BP change, and elevated BP | BKMR | Maternal age, maternal education, maternal pre-pregnancy BMI, maternal smoking during pregnancy, child’s sex, child’s age, and child’s height |
|
Kim and Park. 2021 | South Korea | CS | 10,566 adults (5843 females/4723 males) | Pb, Hg, and Cd | Blood | SBP, DBP, and hypertension | WQSR | Age and sex |
|
Shih et al. 2021 | Bangladesh | CO | 491 mother-child pairs (242 females/249 males) | Al, As, Cd, Cr, Co, Cu, Fe, Pb, Mn, Hg, Mo, Ni, Se, Sn, U, V, and Zn | Toenail samples | BP | PCA, WQSR, and BKMR | Maternal age, maternal education, passive tobacco smoke exposure during pregnancy, child age, child sex, and height |
|
Xu et al. 2021 | USA | CS | 957 adults (246 females/711 males) | Cd, Pb, Hg, Mn, and Se | Blood | BP and hypertension | Quantile g-computation | Age, sex, race, educational attainment, and household income level |
|
Yao et al. 2021 | USA | CS | 9662 adults (4910 females/4752 males) | As, Pb, Cd, and Hg | Blood and urine | SBP, DBP, and hypertension | K-medoids | Age, gender, ethnicity, education, smoking status, and BMI |
|
Zhang et al. 2021 | Boston, USA | CO | 1194 mother-child pairs (603 females/591 males) | Pb, Hg, Cd, Se, and Mn | Blood | SBP and DBP | BKMR | Maternal age, at delivery, race/ethnicity, educational level, pre-pregnancy body mass index, and cigarette smoking history |
|
Zhong et al. 2021 * | Tongling, Maanshan, and Chizhou, China | CO | 1303 adults (726 females/577 males) | As, B, Ba, Bi, Cd, Co, Cr, Cu, Fe, Li, Mg, Mn, Mo, Rb, Se, Sr, and Zn | Urine | Hypertension | BKMR (Cd, Cu, Mg, Mo, and Zn included) | Age, sex, smoking, drinking, BMI and BP at baseline |
|
Zuk et al. 2021 | Quebec, Canada | CS | 759 adults (447 females/312 males) | Cd, Hg, Pb, and Se (along with other POPs) | Blood | BP and hypertension | PCA | Age, sex, total lipids, smoking status, and BMI |
|
Preeclampsia (n = 3) | |||||||||
Bommarito et al. 2019 * | Boston, USA | CO | 28/355 pregnant women | As, Ba, Cd, Cu, Hg, Mn, Mo, Ni, Pb, Se, Sn, Tl, Zn, Be, Cr, U, and W | Urine | Preeclampsia | PCA | Smoking during pregnancy, race, educational attainment, insurance status, infant sex, ART, calcium supplementation, pre-pregnancy BMI, and gestational age at study visit |
|
Wang et al. 2020 | Taiyuan, China | CC | 427/427 pregnant women | Cr, Co, Ni, As, Cd, Sb, Hg, and Pb | Blood | Preeclampsia | WQSR and PCA | Matched by age, residence area, and conception time, and adjusted for education, household monthly income per capita, gestational age, and pre-pregnancy BMI |
|
Liu et al. 2021 | USA (12 clinical sites across the nation) | CO | 1832 women in the longitudinal analysis, 1688 women in the cross-sectional analysis | Ba, Cs, Sb, Co, Cu, Mo, Se, and Zn | Blood | Baseline SBP, DBP, and rates of weekly BP changes over pregnancy | BKMR | Maternal age at enrollment, maternal race/ethnicity, maternal educational achievement, marital status, parity, self-reported pre-pregnancy BMI, pre-pregnancy to 1st trimester moderate to vigorous level of physical activity, and gestational age at chemical measurement |
|
Dyslipidemia and serum lipid levels (n = 5) | |||||||||
Park et al. 2014 | USA | CS | Stage 1: 10,818 adults (5789 females/5029 males) Stage 2: 4615 adults (2395 females/2220 males) | Pb, Cd, Hg, and As out of 149 pollutants | Blood and urine | TC, HDL, LDL, and TG | ERS (EWAS) | Age, gender, race/ethnicity, education, BMI, and serum micronutrients |
|
Kupsco et al. 2019 | Mexico City, Mexico | CO | 548 mother-child pairs (272 females/276 males) | As, Cd, Co, Cr, Cs, Cu, Mn, Pb, Sb, Se, and Zn | Blood | Non-HDL cholesterol, TG, leptin, adiponectin | BKMR | Maternal age, education, socioeconomic status, parity, environmental tobacco smoke, and date of follow-up visit (for HbA1c, global risk score, non-HDL cholesterol, SBP and DBP outcomes only). Birth weight, gestational age, sex, and pre-pregnancy BMI included as covariates in sensitivity analyses |
|
Zhu et al. 2021 | West Anhui, China | CS | 1013 adults (552 females/461 males) | Sr, Cd, Pb, V, Al, Co, and Mn | Blood | Dyslipidemia | PCA | Gender, age, education level, per capita income, BMI, occupation, smoking, drinking, exercise, and disease history of hypertension, diabetes, stroke, and coronary heart disease |
|
Jiang et al. 2021 | Hubei, China | CO | 2947 adults (1473 females/1474 males) | Al, Sb, As, Ba, Co, Cu, Pb, Mn, Mo, Ni, Rb, Se, Sr, Tl, Ti, V, and Zn | Blood | Incident dyslipidemia | PCA | Age, gender, BMI, education level, smoking status, drinking status, physical activity, fasting blood glucose, eGFR, hypertension, family history of dyslipidemia, and measurement batch |
|
Li et al. 2021 * | Hunan, China | CS | 564 (293 females/271 males) and 637 adults (449 females/188 males) from Shimen and Huayuan, respectively | Al, As, Ba, Cd, Co, Cr, Cu, Fe, Mn, Mo, Ni, Rb, Sb, Se, Sn, Sr, Ti, Tl, U, W, V, and Zn | Blood and urine | The concentrations of TG, TC, HDL-C, and LDL-C | WQSR and BKMR | Age, gender, BMI, smoke, drink, physical activity, education, ethnicity, income level, hypertension, family history of hyperlipidemia, and eGFR |
|
CVD outcomes (n = 8) | |||||||||
Domingo-Relloso et al. 2019 | Valladolid, Spain | CO | 1171 adults (566 females/605 males | Sb, Ba, Cd, Cr, Co, Cu, Mo, V, and Zn | Urine | Combined endpoint for incident coronary heart disease and stroke | BKMR-P | Sex, education, smoking status, cumulative smoking dose, urine cotinine, age, estimated GFR, residence, HDL cholesterol level, total cholesterol level, dyslipidemia treatment, hypertension treatment, diabetes mellitus of type 2 and systolic pressure |
|
Kupsco et al. 2019 | Mexico City, Mexico | CO | 548 mother-child pairs (272 females/276 males) | As, Cd, Co, Cr, Cs, Cu, Mn, Pb, Sb, Se, and Zn | Blood | Cardio-metabolic component scores | BKMR | Maternal age, education, socioeconomic status, parity, environmental tobacco smoke, and date of follow-up visit (for HbA1c, global risk score, non-HDL cholesterol, SBP and DBP outcomes only). Birth weight, gestational age, sex, and pre-pregnancy BMI included as covariates in sensitivity analyses |
|
Liberda et al. 2019 | Quebec, Canada | CS | 535 adults (299 females/236 males) | As, Pb, Cd, Hg, Se, Co, Cu, Mo, Ni, and Zn out of 43 contaminants | Blood | Carotid intima-media thickness | PCA | Age, sex, smoking status, BMI, SBP, LDL, Apo-B, triglycerides, TNF-α, hs-CRP, and ox-LDL |
|
Wen et al. 2019 | Shenzhen, China | CC | 1277/1277 adults (548 females/729 males for both controls and cases) | Al, As, Cd, Co, Cu, Fe, Mn, Mo, Se, Tl, and Zn | Blood | First ischemic stroke | PCA | Matched by age and sex, with adjustment for BMI, smoking, alcohol drinking, hypertension, diabetes, and hyperlipidemia |
|
Xiao et al. 2019 | Dongfeng, China | CC | 1035/1035 adults (382 females/653 males for both controls and cases) for ischemic stroke; 269/269 adults (112 females/157 males) for hemorrhagic stroke | Al, As, Ba, Co, Cu, Pb, Mn, Hg, Mo, Ni, Rb, Se, Sr, Tl, Ti, W, V, and Zn | Blood | Incident stroke | Elastic net regression | Matched on age, sex, and blood sampling date, and adjusted for BMI, smoking, drinking staus, regular exercise, family history of stroke, hyperlipidemia, diabetes mellitus, and hypertension |
|
Cabral et al. 2021 | Potsdam, Germany | CCO | 2087 adults (1304 females/783 males) | Mn, Fe, Cu, Zn, I, and Se | Blood | CVD outcomes (incident MI and stroke) | PCA | Age, sex, education, BMI, waist circumference, smoking status, overall leisure-time physical activity, alcohol consumption, prevalent hypertension, anti-hypertensive and lipid-lowering medication, vitamin and mineral preparations, and dietary quality |
|
Liu et al. 2021 | Nanjing, China | CC | 127/183 adults (30 females/97 males for cases; 46 females/137 males for controls) | Mo, Tl, Cu, Cs, Ba, Pb, Cr, Mn, Co, and Ni | Blood | AD | BKMR and WQSR | Matched by age and sex, with adjustments for BMI, education level, smoking status, drinking status, BP, history of hypertension, subtype of AD, and the WBC count |
|
Yang et al. 2021 * | Wuhan, China | Panel study | 127 adults (90 females/37 males) | Al, Sb, As, Ba, Cd, Cr, Co, Cu, Fe, Pb, Mn, Mo, Ni, Rb, Se, Sr, Tl, Sn, Ti, W, U, V, and Zn | Urine | Arterial stiffness of peripheral arteries | LASSO | Age, sex, BMI, smoking status, drinking status, education, physical activity, hypertension, hyperlipidemia, diabetes, heart rate, and community |
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yim, G.; Wang, Y.; Howe, C.G.; Romano, M.E. Exposure to Metal Mixtures in Association with Cardiovascular Risk Factors and Outcomes: A Scoping Review. Toxics 2022, 10, 116. https://doi.org/10.3390/toxics10030116
Yim G, Wang Y, Howe CG, Romano ME. Exposure to Metal Mixtures in Association with Cardiovascular Risk Factors and Outcomes: A Scoping Review. Toxics. 2022; 10(3):116. https://doi.org/10.3390/toxics10030116
Chicago/Turabian StyleYim, Gyeyoon, Yuting Wang, Caitlin G. Howe, and Megan E. Romano. 2022. "Exposure to Metal Mixtures in Association with Cardiovascular Risk Factors and Outcomes: A Scoping Review" Toxics 10, no. 3: 116. https://doi.org/10.3390/toxics10030116
APA StyleYim, G., Wang, Y., Howe, C. G., & Romano, M. E. (2022). Exposure to Metal Mixtures in Association with Cardiovascular Risk Factors and Outcomes: A Scoping Review. Toxics, 10(3), 116. https://doi.org/10.3390/toxics10030116