Indoor Carbon Dioxide, Fine Particulate Matter and Total Volatile Organic Compounds in Private Healthcare and Elderly Care Facilities
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Campaigns
2.2. Facilities Characteristics
2.3. Data Collection
2.3.1. CO2 Measurements
2.3.2. PM2.5 Measurements
2.3.3. TVOC Measurements
2.4. Statistical Analysis
3. Results
4. Discussion
4.1. CO2 Concentrations
4.2. PM2.5 Concentrations
4.3. TVOC Concentrations
4.4. Strengths and Limitations of the Study
4.5. Recommendations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization (WHO). WHO Global Air Quality Guidelines. Particulate Matter (PM2.5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide; World Health Organization: Geneva, Switzerland, 2021. [Google Scholar]
- Schweizer, C.; Edwards, R.D.; Bayer-Oglesby, L.; Gauderman, W.J.; Ilacqua, V.; Jantunen, M.J.; Lai, H.K.; Nieuwenhuijsen, M.; Künzli, N. Indoor time-microenvironment-activity patterns in seven regions of Europe. J. Expo. Sci. Environ. Epidemiol. 2007, 17, 170–181. [Google Scholar] [CrossRef] [Green Version]
- Matz, C.J.; Stieb, D.M.; Davis, K.; Egyed, M.; Rose, A.; Chou, B.; Brion, O. Effects of age, season, gender and urban-rural status on time-activity: Canadian Human Activity Pattern Survey 2 (CHAPS 2). Int. J. Environ. Res. Public Health 2014, 11, 2108–2124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bentayeb, M.; Norback, D.; Bednarek, M.; Bernard, A.; Cai, G.; Cerrai, S.; Eleftheriou, K.K.; Gratziou, C.; Holst, G.J.; Lavaud, F.; et al. Indoor air quality, ventilation and respiratory health in elderly residents living in nursing homes in Europe. Eur. Respir. J. 2015, 45, 1228–1238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Settimo, G.; Manigrasso, M.; Avino, P. Indoor Air Quality: A Focus on the European Legislation and State-of-the-Art Research in Italy. Atmosphere 2020, 11, 370. [Google Scholar] [CrossRef] [Green Version]
- Wong, L.T.; Mui, K.W.; Tsang, T.W. Evaluation of Indoor Air Quality Screening Strategies: A Step-Wise Approach for IAQ Screening. Int. J. Environ. Res. Public Health 2016, 13, 1240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, Q.; Marzouk, T.; Cirligeanu, R.; Malmstrom, H.; Eliav, E.; Ren, Y.F. Ventilation Assessment by Carbon Dioxide Levels in Dental Treatment Rooms. J. Dent. Res. 2021, 100, 810–816. [Google Scholar] [CrossRef] [PubMed]
- Rudnick, S.N.; Milton, D.K. Risk of indoor airborne infection transmission estimated from carbon dioxide concentration. Indoor Air 2003, 13, 237–245. [Google Scholar] [CrossRef] [PubMed]
- Batterman, S. Review and Extension of CO₂-Based Methods to Determine Ventilation Rates with Application to School Classrooms. Int. J. Environ. Res. Public Health 2017, 14, 145. [Google Scholar] [CrossRef] [PubMed]
- Issarow, C.M.; Mulder, N.; Wood, R. Modelling the risk of airborne infectious disease using exhaled air. J. Theor. Biol. 2015, 372, 100–106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fromme, H.; Debiak, M.; Sagunski, H.; Röhl, C.; Kraft, M.; Kolossa-Gehring, M. The German approach to regulate indoor air contaminants. Int. J. Hyg. Environ. Health 2019, 222, 347–354. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention (CDC). Ventilation in Building; Centers for Disease Control and Prevention: Atlanta, GA, USA, 2020. Available online: https://www.cdc.gov/coronavirus/2019-ncov/community/ventilation.html (accessed on 8 February 2022).
- Haut Conseil de la Santé Publique. COVID-19: Aération, Ventilation et Mesure du CO2 Dans les ERP; Haut Conseil de la Santé Publique: Paris, France, 2021; Available online: https://www.hcsp.fr/explore.cgi/avisrapportsdomaine?clefr=1009 (accessed on 8 February 2022).
- Mentese, S.; Rad, A.Y.; Arisoy, M.; Güllü, G. Multiple comparisons of organic, microbial, and fine particulate pollutants in typical indoor environments: Diurnal and seasonal variations. J. Air Waste Manag. Assoc. 2012, 62, 1380–1393. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- GBD 2013 Risk Factors Collaborators. Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks in 188 countries, 1990–2013: A systematic analysis for the Global Burden of Disease Study 2013. Lancet 2015, 386, 2287–2323. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Wen, Q.; Zhang, R. Sources, health effects and control strategies of indoor fine particulate matter (PM2.5): A review. Sci. Total Environ. 2017, 586, 610–622. [Google Scholar] [CrossRef] [PubMed]
- Gokhale, S.; Kohajda, T.; Schlink, U. Source apportionment of human personal exposure to volatile organic compounds in homes, offices and outdoors by chemical mass balance and genetic algorithm receptor models. Sci. Total Environ. 2008, 407, 122–138. [Google Scholar] [CrossRef] [PubMed]
- Virji, M.A.; Liang, X.; Su, F.C.; LeBouf, R.F.; Stefaniak, A.B.; Stanton, M.L.; Henneberger, P.K.; Houseman, E.A. Peaks, Means, and Determinants of Real-Time TVOC Exposures Associated with Cleaning and Disinfecting Tasks in Healthcare Settings. Ann. Work Expo. Health 2019, 63, 759–772. [Google Scholar] [CrossRef] [PubMed]
- Baudet, A.; Baurès, E.; Guegan, H.; Blanchard, O.; Guillaso, M.; Le Cann, P.; Gangneux, J.-P.; Florentin, A. Indoor Air Quality in Healthcare and Care Facilities: Chemical Pollutants and Microbiological Contaminants. Atmosphere 2021, 12, 1337. [Google Scholar] [CrossRef]
- Baurès, E.; Blanchard, O.; Mercier, F.; Surget, E.; le Cann, P.; Rivier, A.; Gangneux, J.P.; Florentin, A. Indoor air quality in two French hospitals: Measurement of chemical and microbiological contaminants. Sci. Total Environ. 2018, 642, 168–179. [Google Scholar] [CrossRef] [PubMed]
- Patel, S.; Li, J.; Pandey, A.; Pervez, S.; Chakrabarty, R.K.; Biswas, P. Spatio-temporal measurement of indoor particulate matter concentrations using a wireless network of low-cost sensors in households using solid fuels. Environ. Res. 2017, 152, 59–65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sahu, V.; Gurjar, B.R. Spatio-temporal variations of indoor air quality in a university library. Int. J. Environ. Health Res. 2021, 31, 475–490. [Google Scholar] [CrossRef] [PubMed]
- Mitteilungen der Ad-hoc-Arbeitsgruppe Innenraumrichtwerte der Innenraumlufthygiene-Kommission des Umweltbundesamtes und der Obersten Landesgesundheitsbehörden. Health evaluation of carbon dioxide in indoor air. Bundesgesundheitsblatt Gesundh. Gesundh. 2008, 51, 1358–1369. [CrossRef]
- Jung, C.C.; Wu, P.C.; Tseng, C.H.; Su, H.J. Indoor air quality varies with ventilation types and working areas in hospitals. Build. Environ. 2015, 85, 190–195. [Google Scholar] [CrossRef]
- Hwang, S.H.; Roh, J.; Park, W.M. Evaluation of PM10, CO2, airborne bacteria, TVOCs, and formaldehyde in facilities for susceptible populations in South Korea. Environ. Pollut. 2018, 242, 700–708. [Google Scholar] [CrossRef] [PubMed]
- Settimo, G.; Indinnimeo, L.; Inglessis, M.; De Felice, M.; Morlino, R.; di Coste, A.; Fratianni, A.; Avino, P. Indoor Air Quality Levels in Schools: Role of Student Activities and No Activities. Int. J. Environ. Res. Public Health 2020, 17, 6695. [Google Scholar] [CrossRef] [PubMed]
- Derruau, S.; Bouchet, J.; Nassif, A.; Baudet, A.; Yasukawa, K.; Lorimier, S.; Prêcheur, I.; Bloch-Zupan, A.; Pellat, B.; Chardin, H.; et al. COVID-19 and Dentistry in 72 Questions: An Overview of the Literature. J. Clin. Med. 2021, 10, 779. [Google Scholar] [CrossRef] [PubMed]
- Hong, Y.J.; Huang, Y.C.; Lee, I.L.; Chiang, C.M.; Lin, C.; Jeng, H.A. Assessment of volatile organic compounds and particulate matter in a dental clinic and health risks to clinic personnel. J. Environ. Sci. Health A Tox. Hazard. Subst. Environ. Eng. 2015, 50, 1205–1214. [Google Scholar] [CrossRef] [PubMed]
- Tzoutzas, I.; Maltezou, H.C.; Barmparesos, N.; Tasios, P.; Efthymiou, C.; Assimakopoulos, M.N.; Tseroni, M.; Vorou, R.; Tzermpos, F.; Antoniadou, M.; et al. Indoor Air Quality Evaluation Using Mechanical Ventilation and Portable Air Purifiers in an Academic Dentistry Clinic during the COVID-19 Pandemic in Greece. Int. J. Environ. Res. Public Health 2021, 18, 8886. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.H.; Kabir, E.; Kabir, S. A review on the human health impact of airborne particulate matter. Environ. Int. 2015, 74, 136–143. [Google Scholar] [CrossRef] [PubMed]
- Langer, S.; Ramalho, O.; Derbez, M.; Ribéron, J.; Kirchner, S.; Mandin, C. Indoor environmental quality in French dwellings and building characteristics. Atmos. Environ. 2016, 128, 82–91. [Google Scholar] [CrossRef]
- Mandin, C.; Trantallidi, M.; Cattaneo, A.; Canha, N.; Mihucz, V.G.; Szigeti, T.; Mabilia, R.; Perreca, E.; Spinazzè, A.; Fossati, S.; et al. Assessment of indoor air quality in office buildings across Europe—The OFFICAIR study. Sci. Total Environ. 2017, 579, 169–178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, M.; Zhang, S.; Feng, G.; Su, H.; Zhu, F.; Ren, M.; Cai, Z. Indoor airborne particle sources and outdoor haze days effect in urban office areas in Guangzhou. Environ. Res. 2017, 154, 60–65. [Google Scholar] [CrossRef] [PubMed]
- Shao, Z.; Yin, X.; Bi, J.; Ma, Z.; Wang, J. Spatiotemporal Variations of Indoor PM2.5 Concentrations in Nanjing, China. Int. J. Environ. Res. Public Health 2019, 16, 144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benabed, A.; Limam, K. Resuspension of Indoor Particles Due to Human Foot Motion. Energy Procedia 2017, 139, 242–247. [Google Scholar] [CrossRef]
- Helmis, C.G.; Tzoutzas, J.; Flocas, H.A.; Halios, C.H.; Stathopoulou, O.I.; Assimakopoulos, V.D.; Panis, V.; Apostolatou, M.; Sgouros, G.; Adam, E. Indoor air quality in a dentistry clinic. Sci. Total Environ. 2007, 377, 349–365. [Google Scholar] [CrossRef] [PubMed]
- Zabiegala, B. Organic compounds in indoor environments. Polish J. Environ. Stud. 2006, 15, 383–393. [Google Scholar]
- Mendes, A.; Pereira, C.; Mendes, D.; Aguiar, L.; Neves, P.; Silva, S.; Batterman, S.; Teixeira, J.P. Indoor air quality and thermal comfort-results of a pilot study in elderly care centers in Portugal. J. Toxicol. Environ. Health 2013, 76, 333–344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Umweltbundesamt. Evaluation of indoor air contaminants by means of reference and guideline values. Bundesgesundheitsblatt Gesundh. Gesundh. 2007, 50, 990–1005. [Google Scholar]
- Meyer, C. Overview of TVOC and Indoor Air Quality; Renesas Electronics Corporation: Tokyo, Japan, 2018. [Google Scholar]
- Gola, M.; Settimo, G.; Capolongo, S. How Can Design Features and Other Factors Affect the Indoor Air Quality in Inpatient Rooms? Check-Lists for the Design Phase, Daily Procedures and Maintenance Activities for Reducing the Air Concentrations of Chemical Pollution. Int. J. Environ. Res. Public Health 2020, 17, 4280. [Google Scholar] [CrossRef] [PubMed]
- Gola, M.; Settimo, G.; Capolongo, S. Chemical Pollution in Healing Spaces: The Decalogue of the Best Practices for Adequate Indoor Air Quality in Inpatient Rooms. Int. J. Environ. Res. Public Health 2019, 16, 4388. [Google Scholar] [CrossRef] [Green Version]
- Gola, M.; Settimo, G.; Capolongo, S. Indoor Air Quality in Inpatient Environments: A Systematic Review on Factors that Influence Chemical Pollution in Inpatient Wards. J. Healthc. Eng. 2019, 2019, 8358306. [Google Scholar] [CrossRef]
- Dancer, S.J. The role of environmental cleaning in the control of hospital-acquired infection. J. Hosp. Infect. 2009, 73, 378–385. [Google Scholar] [CrossRef]
- Baudet, A.; Guillaso, M.; Grimmer, L.; Mediqai Study Group; Regad, M.; Florentin, A. Microbiological Contamination of the Office Environment in Dental and Medical Practice. Antibiotics 2021, 10, 1375. [Google Scholar] [CrossRef] [PubMed]
Facilities | CO2 (ppm) | PM2.5 (µg/m3) | TVOCs (ppb) | |||
---|---|---|---|---|---|---|
OH | Non-OH | OH | Non-OH | OH | Non-OH | |
Dental offices | ||||||
Treatment rooms | 1016 ± 510 (378–2455) | 676 ± 391 (365–2096) | 12.6 ± 7.9 (2.9–101.6) | 9.8 ± 8.0 (2.1–126.4) | 1059 ± 686 (0–3290) | 530 ± 539 (10–1913) |
Sterilization room | 1057 ± 478 (439–2324) | 737 ± 335 (432–2073) | 18.9 ± 26.2 (4.7–668.5) | 7.5 ± 4.0 (2.2–37.0) | 1274 ± 504 (421–3027) | 947 ± 467 (95–2259) |
Waiting room | 542 ± 186 (332–1597) | 440 ± 92 (334–990) | 16.5 ± 10.5 (4.3–65.6) | 19.6 ± 21.1 (5.0–123.7) | 193 ± 189 (30–1637) | 121 ± 88 (41–734) |
General practitioner offices | ||||||
Consulting rooms | 905 ± 592 (406–3633) | 653 ± 403 (406–3373) | 4.9 ± 4.7 (0.6–34.9) | 3.7 ± 4.0 (0.6–43.0) | 200 ± 316 (0–3135) | 103 ± 153 (0–2209) |
Waiting rooms | 676 ± 361 (357–2266) | 468 ± 171 (356–1904) | 7.6 ± 5.9 (1.1–33.3) | 6.5 ± 3.7 (1.3–45.0) | 177 ± 236 (0–1783) | 96 ± 204 (0–3460) |
Pharmacies | ||||||
Commercial spaces | 717 ± 160 (394–1120) | 540 ± 122 (384–1071) | 13.3 ± 10.6 (2.9–259.5) | 10.6 ± 6.2 (2.8–32.7) | 255 ± 162 (0–3801) | 227 ± 128 (0–622) |
Storage rooms | 781 ± 193 (416–1259) | 553 ± 119 (392–1127) | 7.4 ± 4.2 (0.9–88.8) | 7.6 ± 5.1 (0.4–26.8) | 241 ± 286 (0–8398) | 213 ± 196 (0–2052) |
Elderly care facilities | ||||||
Common rooms | 600 ± 162 (361–1871) | 503 ± 144 (334–1843) | 8.3 ± 5.3 (1.6–122.6) | 6.7 ± 4.0 (1.6–245.1) | 146 ± 192 (0–2178) | 133 ± 193 (0–2600) |
Bedrooms | 762 ± 203 (365–1451) | 629 ± 174 (345–1322) | 9.3 ± 8.9 (1.1–170.0) | 12.7 ± 17.6 (1.2–222.0) | 160 ± 220 (0–1694) | 163 ± 235 (0–2201) |
Facilities | CO2 (ppm) | PM2.5 (µg/m3) | TVOCs (ppb) | |||
---|---|---|---|---|---|---|
Summer | Winter | Summer | Winter | Summer | Winter | |
Dental offices | ||||||
Treatment rooms | 916 ± 563 (391–2455) | 777 ± 391 (365–2169) | 10.3 ± 5.2 (3.4–126.4) | 12.0 ± 10.1 (2.1–101.6) | 807 ± 696 (0–2655) | 755 ± 637 (0–3290) |
Sterilization room | 940 ± 475 (436–2324) | 830 ± 389 (432–1876) | 9.7 ± 3.1 (5.5–25.7) | 16.2 ± 26.4 (2.2–668.5) | 1432 ± 463 (95–2598) | 789 ± 323 (421–3027) |
Waiting room | 380 ± 30 (332–568) | 602 ± 149 (434–1597) | 12.6 ± 2.8 (6.9–28.5) | 23.6 ± 22.3 (4.3–123.7) | 63 ± 33 (30–549) | 252 ± 165 (102–1637) |
General practitioner offices | ||||||
Consulting rooms | 590 ± 164 (432–1105) | 953 ± 663 (406–3633) | 3.1 ± 1.5 (0.9–19.7) | 5.5 ± 5.8 (0.6–43.0) | 160 ± 214 (0–2209) | 146 ± 283 (0–3135) |
Waiting rooms | 512 ± 144 (378–943) | 602 ± 359 (356–2266) | 8.6 ± 5.9 (1.7–33.3) | 5.6 ± 3.0 (1.1–45.0) | 35 ± 119 (0–2424) | 223 ± 256 (0–3460) |
Pharmacies | ||||||
Commercial spaces | 621 ± 148 (393–943) | 624 ± 182 (384–1120) | 11.0 ± 2.3 (7.6–20.1) | 12.4 ± 11.0 (2.8–259.5) | 312 ± 104 (5–1340) | 192 ± 150 (0–3801) |
Storage rooms | 690 ± 208 (392–1259) | 631 ± 176 (416–1251) | 4.0 ± 2.2 (0.4–88.8) | 9.7 ± 4.5 (4.7–34.2) | 449 ± 80 (263–2052) | 84 ± 201 (0–8398) |
Elderly care facilities | ||||||
Common rooms | 523 ± 175 (334–1871) | 551 ± 147 (376–1843) | 7.7 ± 5.0 (2.0–245.1) | 6.8 ± 4.0 (1.6–122.6) | 45 ± 155 (0–2600) | 248 ± 174 (47–2178) |
Bedrooms | 604 ± 228 (345–1451) | 771 ± 138 (401–1322) | 14.5 ± 15.3 (2.1–222.0) | 6.9 ± 11.4 (1.1–189.9) | 75 ± 130 (0–2201) | 313 ± 277 (0–1694) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baudet, A.; Baurès, E.; Blanchard, O.; Le Cann, P.; Gangneux, J.-P.; Florentin, A. Indoor Carbon Dioxide, Fine Particulate Matter and Total Volatile Organic Compounds in Private Healthcare and Elderly Care Facilities. Toxics 2022, 10, 136. https://doi.org/10.3390/toxics10030136
Baudet A, Baurès E, Blanchard O, Le Cann P, Gangneux J-P, Florentin A. Indoor Carbon Dioxide, Fine Particulate Matter and Total Volatile Organic Compounds in Private Healthcare and Elderly Care Facilities. Toxics. 2022; 10(3):136. https://doi.org/10.3390/toxics10030136
Chicago/Turabian StyleBaudet, Alexandre, Estelle Baurès, Olivier Blanchard, Pierre Le Cann, Jean-Pierre Gangneux, and Arnaud Florentin. 2022. "Indoor Carbon Dioxide, Fine Particulate Matter and Total Volatile Organic Compounds in Private Healthcare and Elderly Care Facilities" Toxics 10, no. 3: 136. https://doi.org/10.3390/toxics10030136
APA StyleBaudet, A., Baurès, E., Blanchard, O., Le Cann, P., Gangneux, J. -P., & Florentin, A. (2022). Indoor Carbon Dioxide, Fine Particulate Matter and Total Volatile Organic Compounds in Private Healthcare and Elderly Care Facilities. Toxics, 10(3), 136. https://doi.org/10.3390/toxics10030136