Biochar Decreases Cr Toxicity and Accumulation in Sunflower Grown in Cr(VI)-Polluted Soil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Test Soil
2.2. Biochar
2.3. Experimental Design and Procedure
2.4. Determination of Metals and Nutrients in Soil and Plant Samples
2.5. Data Analysis
3. Results
3.1. Plant Growth
3.2. Plant Nutrients
3.3. Plant Cr Concentration and Uptake
3.4. Bioconcentration and Translocation of Cr in Plants
3.5. Soil Available Cr and Cr(VI) Concentrations
3.6. Soil pH
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, X.; Zhang, J.; Ma, J.; Liu, Q.; Shi, T.; Gong, Y.; Yang, S.; Wu, Y. Status of chromium accumulation in agricultural soils across China (1989–2016). Chemosphere 2020, 256, 127036. [Google Scholar] [CrossRef] [PubMed]
- Shahid, M.; Shamshad, S.; Rafiq, M.; Khalid, S.; Bibi, I.; Niazi, N.K.; Dumat, C.; Rashid, M.I. Chromium speciation, bioavailability, uptake, toxicity and detoxification in soil-plant system: A review. Chemosphere 2017, 178, 513–533. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Yang, W.; Zheng, F.; Sun, Y. Removal of Cr (VI) from simulated and leachate wastewaters by Bentonite-supported zero-valent iron nanoparticles. Int. J. Environ. Res. Public Health 2018, 15, 2162. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Zhao, J.; Chang, S.X.; Collins, C.; Xu, J.; Liu, X. Status assessment and probabilistic health risk modeling of metals accumulation in agriculture soils across China: A synthesis. Environ. Int. 2019, 128, 165–174. [Google Scholar] [CrossRef] [PubMed]
- Kapoor, R.T.; Mfarrej, M.F.B.; Alam, P.; Rinklebe, J.; Ahmad, P. Accumulation of chromium in plants and its repercussion in animals and humans. Environ. Pollut. 2022, 301, 119044. [Google Scholar] [CrossRef]
- He, L.; Zhong, H.; Liu, G.; Dai, Z.; Brookes, P.C.; Xu, J. Remediation of heavy metal contaminated soils by biochar: Mechanisms, potential risks and applications in China. Environ. Pollut. 2019, 252, 846–855. [Google Scholar] [CrossRef]
- O’Connor, D.; Peng, T.; Zhang, J.; Tsang, D.C.; Alessi, D.S.; Shen, Z.; Bolan, N.S.; Hou, D. Biochar application for the remediation of heavy metal polluted land: A review of in situ field trials. Sci. Total Environ. 2018, 619, 815–826. [Google Scholar] [CrossRef]
- Lahori, A.H.; Guo, Z.; Zhang, Z.; Li, R.; Mahar, A.; Awasthi, M.K.; Shen, F.; Sial, T.A.; Kumbhar, F.; Wang, P.; et al. Use of biochar as an amendment for remediation of heavy metal-contaminated soils: Prospects and challenges. Pedosphere 2017, 27, 991–1014. [Google Scholar] [CrossRef]
- Dai, L.; Chen, Y.; Liu, L.; Sun, P.; Liu, J.; Wang, B.; Yang, S. Effect of biochar on the uptake, translocation and phytotoxicity of chromium in a soil-barley pot system. Sci. Total Environ. 2022, 826, 153905. [Google Scholar] [CrossRef]
- Kumar, A.; Joseph, S.; Tsechansky, L.; Schreiter, I.J.; Schüth, C.; Taherysoosavi, S.; Mitchell, D.R.; Graber, E.R. Mechanistic evaluation of biochar potential for plant growth promotion and alleviation of chromium-induced phytotoxicity in Ficus elastica. Chemosphere 2020, 243, 125332. [Google Scholar] [CrossRef]
- Mandal, S.; Sarkar, B.; Bolan, N.; Ok, Y.S.; Naidu, R. Enhancement of chromate reduction in soils by surface modified biochar. J. Environ. Manag. 2017, 186, 277–284. [Google Scholar] [CrossRef]
- Choppala, G.; Bolan, N.; Megharaj, M.; Chen, Z.; Naidu, R. The influence of biochar and black carbon on reduction and bioavailability of chromate in soils. J. Environ. Qual. 2012, 41, 1175–1184. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.; Liu, Y.; Liu, S.; Li, Z.; Tan, X.; Huang, X.; Zeng, G.; Zhou, L.; Zheng, B. Biochar to improve soil fertility. A review. Agron. Sustain. Dev. 2016, 36, 36. [Google Scholar] [CrossRef]
- Murtaza, G.; Ahmed, Z.; Usman, M.; Tariq, W.; Ullah, Z.; Shareef, M.; Iqbal, H.; Waqas, M.; Tariq, A.; Wu, Y. Biochar induced modifications in soil properties and its impacts on crop growth and production. J. Plant Nutr. 2021, 44, 1677–1691. [Google Scholar] [CrossRef]
- Dai, Y.; Zheng, H.; Jiang, Z.; Xing, B. Combined effects of biochar properties and soil conditions on plant growth: A meta-analysis. Sci. Total Environ. 2020, 713, 136635. [Google Scholar] [CrossRef] [PubMed]
- Cui, W.; Liu, Y.; Li, W.; Pei, L.; Xu, S.; Sun, Y.; Liu, J.; Wang, F. Remediation agents drive bacterial community in a Cd-contaminated soil. Toxics 2023, 11, 53. [Google Scholar] [CrossRef] [PubMed]
- Doan, T.T.; Henry-des-Tureaux, T.; Rumpel, C.; Janeau, J.-L.; Jouquet, P. Impact of compost, vermicompost and biochar on soil fertility, maize yield and soil erosion in Northern Vietnam: A three year mesocosm experiment. Sci. Total Environ. 2015, 514, 147–154. [Google Scholar] [CrossRef]
- Chen, D.; Liu, X.; Bian, R.; Cheng, K.; Zhang, X.; Zheng, J.; Joseph, S.; Crowley, D.; Pan, G.; Li, L. Effects of biochar on availability and plant uptake of heavy metals—A meta-analysis. J. Environ. Manag. 2018, 222, 76–85. [Google Scholar] [CrossRef]
- Golia, E.E.; Aslanidis, P.-S.C.; Papadimou, S.G.; Kantzou, O.-D.; Chartodiplomenou, M.-A.; Lakiotis, K.; Androudi, M.; Tsiropoulos, N.G. Assessment of remediation of soils, moderately contaminated by potentially toxic metals, using different forms of carbon (charcoal, biochar, activated carbon). Impacts on contamination, metals availability and soil indices. Sustain. Chem. Pharmacy 2022, 28, 100724. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, A.; Ji, C.; Joseph, S.; Bian, R.; Li, L.; Pan, G.; Paz-Ferreiro, J. Biochar’s effect on crop productivity and the dependence on experimental conditions—A meta-analysis of literature data. Plant Soil 2013, 373, 583–594. [Google Scholar] [CrossRef]
- Chen, L.; Yang, J.-y.; Wang, D. Phytoremediation of uranium and cadmium contaminated soils by sunflower (Helianthus annuus L.) enhanced with biodegradable chelating agents. J. Clean. Prod. 2020, 263, 121491. [Google Scholar] [CrossRef]
- Alaboudi, K.A.; Ahmed, B.; Brodie, G. Phytoremediation of Pb and Cd contaminated soils by using sunflower (Helianthus annuus) plant. Ann. Agric. Sci. 2018, 63, 123–127. [Google Scholar] [CrossRef]
- Sudha, M.; Kanmani, S. Phytoremediation of chromium contaminated soils using Helianthus annuus (sunflower). J. Ecotoxicol. Environ. Monit. 2009, 19, 57–63. [Google Scholar]
- Nguyen, D.T.C.; Nguyen, T.T.; Le, H.T.; Nguyen, T.T.T.; Bach, L.G.; Nguyen, T.D.; Vo, D.-V.N.; Van Tran, T. The sunflower plant family for bioenergy, environmental remediation, nanotechnology, medicine, food and agriculture: A review. Environ. Chem. Lett. 2021, 19, 3701–3726. [Google Scholar] [CrossRef]
- Jones, S.; Bardos, R.P.; Kidd, P.S.; Mench, M.; de Leij, F.; Hutchings, T.; Cundy, A.; Joyce, C.; Soja, G.; Friesl-Hanl, W. Biochar and compost amendments enhance copper immobilisation and support plant growth in contaminated soils. J. Environ. Manag. 2016, 171, 101–112. [Google Scholar] [CrossRef] [PubMed]
- Younas, H.; Nazir, A.; Bareen, F. Application of microbe-impregnated tannery solid waste biochar in soil enhances growth performance of sunflower. Environ. Sci. Pollut. Res. 2022, 29, 57669–57687. [Google Scholar] [CrossRef] [PubMed]
- Zeng, F.; Ali, S.; Zhang, H.; Ouyang, Y.; Qiu, B.; Wu, F.; Zhang, G. The influence of pH and organic matter content in paddy soil on heavy metal availability and their uptake by rice plants. Environ. Pollut. 2011, 159, 84–91. [Google Scholar] [CrossRef]
- Singh, H.P.; Mahajan, P.; Kaur, S.; Batish, D.R.; Kohli, R.K. Chromium toxicity and tolerance in plants. Environ. Chem. Lett. 2013, 11, 229–254. [Google Scholar] [CrossRef]
- Zaccheo, P.; Cocucci, M.; Cocucci, S. Effects of Cr on proton extrusion, potassium uptake and transmembrane electric potential in maize root segments. Plant Cell Environ. 1985, 8, 721–726. [Google Scholar]
- Ahmad, M.S.A.; Hussain, M.; Alvi, A.K.; Kausar, A. Potassium and calcium uptake in mashbean under lead and chromium stress. J. Plant Nutr. 2013, 36, 1315–1326. [Google Scholar] [CrossRef]
- Oliveira, H. Chromium as an environmental pollutant: Insights on induced plant toxicity. J. Bot. 2012, 2012, 376843. [Google Scholar] [CrossRef]
- Joseph, S.; Cowie, A.L.; Van Zwieten, L.; Bolan, N.; Budai, A.; Buss, W.; Cayuela, M.L.; Graber, E.R.; Ippolito, J.A.; Kuzyakov, Y. How biochar works, and when it doesn’t: A review of mechanisms controlling soil and plant responses to biochar. GCB Bioenergy 2021, 13, 1731–1764. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, Y.; Zhan, W.; Zheng, K.; Wang, J.; Zhang, C.; Chen, R. Stabilization of heavy metal-contaminated soils by biochar: Challenges and recommendations. Sci. Total Environ. 2020, 729, 139060. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Zheng, F.; Wang, W.; Zhang, S.; Wang, F. Remediation of Cr(VI)-contaminated soil by nano-zero-valent iron in combination with biochar or humic acid and the consequences for plant performance. Toxics 2020, 8, 26. [Google Scholar] [CrossRef] [PubMed]
- Liang, L.; Xi, F.; Tan, W.; Meng, X.; Hu, B.; Wang, X. Review of organic and inorganic pollutants removal by biochar and biochar-based composites. Biochar 2021, 3, 255–281. [Google Scholar] [CrossRef]
- Zhong, M.; Li, M.; Tan, B.; Gao, B.; Qiu, Y.; Wei, X.; Hao, H.; Xia, Z.; Zhang, Q. Investigations of Cr (VI) removal by millet bran biochar modified with inorganic compounds: Momentous role of additional lactate. Sci. Total Environ. 2021, 793, 148098. [Google Scholar] [CrossRef]
- Zhao, N.; Yin, Z.; Liu, F.; Zhang, M.; Lv, Y.; Hao, Z.; Pan, G.; Zhang, J. Environmentally persistent free radicals mediated removal of Cr(VI) from highly saline water by corn straw biochars. Bioresour. Technol. 2018, 260, 294–301. [Google Scholar] [CrossRef]
- Hossain, M.Z.; Bahar, M.M.; Sarkar, B.; Donne, S.W.; Ok, Y.S.; Palansooriya, K.N.; Kirkham, M.B.; Chowdhury, S.; Bolan, N. Biochar and its importance on nutrient dynamics in soil and plant. Biochar 2020, 2, 379–420. [Google Scholar] [CrossRef]
- Wang, F.; Cheng, P.; Zhang, S.; Zhang, S.; Sun, Y. Contribution of arbuscular mycorrhizal fungi and soil amendments to remediation of heavy metal-contaminated soil using sweet sorghum. Pedosphere 2022, 32, 844–855. [Google Scholar] [CrossRef]
- Wang, F.; Zhang, S.; Cheng, P.; Zhang, S.; Sun, Y. Effects of soil amendments on heavy metal immobilization and accumulation by maize grown in a multiple-metal-contaminated soil and their potential for safe crop production. Toxics 2020, 8, 102. [Google Scholar] [CrossRef]
- Freddo, A.; Cai, C.; Reid, B.J. Environmental contextualisation of potential toxic elements and polycyclic aromatic hydrocarbons in biochar. Environ. Pollut. 2012, 171, 18–24. [Google Scholar] [CrossRef] [PubMed]
- Fabbri, D.; Rombolà, A.G.; Torri, C.; Spokas, K.A. Determination of polycyclic aromatic hydrocarbons in biochar and biochar amended soil. J. Analyt. Appl. Pyrolysis 2013, 103, 60–67. [Google Scholar] [CrossRef]
- Kusmierz, M.; Oleszczuk, P.; Kraska, P.; Palys, E.; Andruszczak, S. Persistence of polycyclic aromatic hydrocarbons (PAHs) in biochar-amended soil. Chemosphere 2016, 146, 272–279. [Google Scholar] [CrossRef] [PubMed]
- Odinga, E.S.; Gudda, F.O.; Waigi, M.G.; Wang, J.; Gao, Y. Occurrence, formation and environmental fate of polycyclic aromatic hydrocarbons in biochars. Fundam. Res. 2021, 1, 296–305. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, H.; He, L.; Lu, K.; Sarmah, A.; Li, J.; Bolan, N.S.; Pei, J.; Huang, H. Using biochar for remediation of soils contaminated with heavy metals and organic pollutants. Environ. Sci. Pollut. Res. 2013, 20, 8472–8483. [Google Scholar] [CrossRef]
- Mahmood, A.; Awan, M.I.; Sadaf, S.; Mukhtar, A.; Wang, X.; Fiaz, S.; Khan, S.A.; Ali, H.; Muhammad, F.; Hayat, Z. Bio-diesel production of sunflower through sulphur management in a semi-arid subtropical environment. Environ. Sci. Pollut. Res. 2022, 29, 13268–13278. [Google Scholar] [CrossRef]
- Zehra, A.; Sahito, Z.A.; Tong, W.; Tang, L.; Hamid, Y.; Khan, M.B.; Ali, Z.; Naqvi, B.; Yang, X. Assessment of sunflower germplasm for phytoremediation of lead-polluted soil and production of seed oil and seed meal for human and animal consumption. J. Environ. Sci. 2020, 87, 24–38. [Google Scholar] [CrossRef]
- Zhou, J.; Chen, L.; Peng, L.; Luo, S.; Zeng, Q. Phytoremediation of heavy metals under an oil crop rotation and treatment of biochar from contaminated biomass for safe use. Chemosphere 2020, 247, 125856. [Google Scholar] [CrossRef]
- Fozia, A.; Muhammad, A.Z.; Muhammad, A.; Zafar, M.K. Effect of chromium on growth attributes in sunflower (Helianthus annuus L.). J. Environ. Sci. 2008, 20, 1475–1480. [Google Scholar] [CrossRef] [PubMed]
Cr (mg/kg) | Biochar | N Uptake (mg) | P Uptake (mg) | K Uptake (mg) | |||
---|---|---|---|---|---|---|---|
Shoot | Root | Shoot | Root | Shoot | Root | ||
0 | 0 | 35.74 (4.82) c | 9.30 (1.06) c | 16.77 (1.61) c | 5.45 (0.79) b | 67.88 (6.42) b | 32.65 (2.37) a |
0.1% | 35.26 (7.08) c | 9.26 (2.32) c | 15.45 (1.92) c | 5.47 (1.21) b | 62.73 (5.46) b | 32.13 (4.91) a | |
1% | 47.89 (2.58) b | 13.72 (1.82) a | 24.65 (4.63) a | 7.22 (1.13) a | 117.33 (22.98) a | 34.11 (2.55) a | |
5% | 64.28 (3.02) a | 14.06 (1.48) a | 22.08 (2.95) b | 3.63 (0.65) c | 108.55 (9.87) a | 19.52 (2.07) b | |
50 | 0 | 22.58 (3.98) d | 4.89 (1.28) d | 5.01 (0.66) g | 2.31 (0.72) d | 24.82 (4.22) c | 0.35 (0.17) d |
0.1% | 28.80 (2.59) d | 4.69 (0.53) d | 7.35 (0.67) fg | 2.59 (0.28) d | 36.06 (3.30) c | 0.39 (0.03) d | |
1% | 37.24 (5.78) c | 12.15 (1.05) b | 9.39 (1.16) ef | 3.68 (0.63) c | 64.63 (6.48) b | 8.53 (1.01) c | |
5% | 49.88 (6.88) b | 8.73 (0.77) c | 12.62 (1.96) d | 2.76 (0.37) cd | 76.04 (8.30) b | 7.97 (1.44) c | |
250 | 0 | — | — | — | — | — | — |
0.1% | — | — | — | — | — | — | |
1% | 25.27 (0.27) d | 5.54 (1.84) d | 10.16 (0.05) de | 3.65 (1.26) c | 23.19 (6.27) c | 0.66 (0.21) d | |
5% | 49.02 (5.79) b | 8.31 (1.09) c | 11.25 (0.96) de | 2.23 (0.21) d | 70.38 (9.36) b | 7.54 (1.37) c | |
Two-way ANOVA | Cr | 167.99 * | 239.54 * | 291.49 * | 158.96 * | 222.67 * | 1853.19 * |
Biochar | 177.56 * | 119.08 * | 74.12 * | 33.70 * | 109.36 * | 16.59 * | |
Cr × Biochar | 9.86 * | 7.51 * | 6.29 * | 10.99 * | 7.73 * | 71.08 * |
Cr (mg/kg) | Biochar | Cr Conc. (mg/kg) | Cr Uptake (mg/pot) | ||
---|---|---|---|---|---|
Shoot | Root | Shoot | Root | ||
0 | 0 | 35.54 (1.78) c | 24.50 (12.83) e | 0.07 (0.00) d | 0.01 (0.00) d |
0.1% | 39.99 (3.04) c | 25.44 (2.83) e | 0.08 (0.01) d | 0.02 (0.00) d | |
1% | 34.29 (2.03) c | 28.19 (1.55) e | 0.10 (0.00) c | 0.03 (0.00) d | |
5% | 31.72 (2.41) c | 41.80 (4.83) e | 0.08 (0.01) d | 0.02 (0.00) d | |
50 | 0 | 157.63 (49.83) b | 832.16 (51.61) b | 0.17 (0.05) a | 0.13 (0.02) b |
0.1% | 143.82 (8.72) b | 556.83 (117.77) c | 0.16 (0.02) a | 0.13 (0.03) b | |
1% | 39.74 (4.19) c | 198.66 (13.12) d | 0.06 (0.01) de | 0.08 (0.02) c | |
5% | 22.09 (0.84) c | 161.99 (24.91) d | 0.05 (0.01) e | 0.06 (0.01) c | |
250 | 0 | — | — | — | — |
0.1% | — | — | — | — | |
1% | 197.20 (18.48) a | 2436.75 (206.66) a | 0.13 (0.03) b | 0.39 (0.14) a | |
5% | 24.66 (3.14) c | 160.21 (32.71) d | 0.04 (0.01) e | 0.12 (0.01) b | |
Two-way ANOVA | Cr | 81.96 * | 895.38 * | 99.55 * | 79.55 * |
Biochar | 54.35 * | 831.75 * | 16.86 * | 59.87 * | |
Cr × Biochar | 154.16 * | 1309.24 * | 76.14 * | 81.24 * |
Cr (mg/kg) | Biochar | BCF | TF | |
---|---|---|---|---|
Shoot | Root | |||
0 | 0 | 0.55 (0.03) b | 0.29 (0.11) fg | 2.33 (0.21) a |
0.1% | 0.61 (0.05) b | 0.39 (0.04) f | 1.60 (0.26) b | |
1% | 0.53 (0.03) b | 0.43 (0.02) f | 1.22 (0.07) c | |
5% | 0.49 (0.04) bc | 0.64 (0.07) f | 0.83 (0.09) d | |
50 | 0 | 1.37 (0.43) a | 7.24 (0.45) b | 0.16 (0.02) e |
0.1% | 1.25 (0.08) a | 4.84 (1.02) c | 0.15 (0.01) e | |
1% | 0.35 (0.04) c | 1.73 (0.11) d | 0.19 (0.01) e | |
5% | 0.19 (0.01) d | 1.41 (0.22) de | 0.15 (0.00) e | |
250 | 0 | — | — | — |
0.1% | — | — | — | |
1% | 0.63 (0.06) b | 7.74 (0.66) a | 0.08 (0.00) ef | |
5% | 0.08 (0.01) de | 1.20 (0.25) e | 0.06 (0.00) ef | |
Two-way ANOVA | Cr | 140.33 * | 834.24 * | 1632.55 * |
Biochar | 35.04 * | 202.46 * | 76.86 * | |
Cr × Biochar | 67.48 * | 687.51 * | 89.66 * |
Cr (mg/kg) | Biochar | Available Cr Conc. (mg/kg) | Cr(VI) Conc. (mg/kg) |
---|---|---|---|
0 | 0 | 0.61 (0.02) f | 0.68 (0.08) f |
0.1% | 0.28 (0.04) f | 0.85 (0.13) f | |
1% | 0.49 (0.05) f | 1.40 (0.22) f | |
5% | 0.75 (0.05) f | 1.51 (0.21) f | |
50 | 0 | 5.71 (0.16) e | 8.12 (0.73) e |
0.1% | 4.56 (0.25) e | 9.25 (0.23) e | |
1% | 4.27 (0.09) e | 10.86 (0.81) e | |
5% | 4.49 (0.18) e | 9.82 (0.75) e | |
250 | 0 | 103.64 (7.49) a | 91.54 (2.84) a |
0.1% | 96.44 (2.70) b | 85.94 (9.28) b | |
1% | 31.22 (1.49) c | 46.55 (1.97) c | |
5% | 27.58 (2.69) d | 37.25 (2.91) d | |
Two-way ANOVA | Cr | 6718.44 * | 2112.20 * |
Biochar | 740.49 * | 98.28 * | |
Cr × Biochar | 720.72 * | 113.93 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, S.; Xie, Y.; Jiang, S.; Yang, M.; Lei, H.; Cui, W.; Wang, F. Biochar Decreases Cr Toxicity and Accumulation in Sunflower Grown in Cr(VI)-Polluted Soil. Toxics 2023, 11, 787. https://doi.org/10.3390/toxics11090787
Li S, Xie Y, Jiang S, Yang M, Lei H, Cui W, Wang F. Biochar Decreases Cr Toxicity and Accumulation in Sunflower Grown in Cr(VI)-Polluted Soil. Toxics. 2023; 11(9):787. https://doi.org/10.3390/toxics11090787
Chicago/Turabian StyleLi, Shuai, Yiming Xie, Shuguang Jiang, Mingda Yang, Hongxia Lei, Wenzhi Cui, and Fayuan Wang. 2023. "Biochar Decreases Cr Toxicity and Accumulation in Sunflower Grown in Cr(VI)-Polluted Soil" Toxics 11, no. 9: 787. https://doi.org/10.3390/toxics11090787
APA StyleLi, S., Xie, Y., Jiang, S., Yang, M., Lei, H., Cui, W., & Wang, F. (2023). Biochar Decreases Cr Toxicity and Accumulation in Sunflower Grown in Cr(VI)-Polluted Soil. Toxics, 11(9), 787. https://doi.org/10.3390/toxics11090787