Using QuEChERS and HPLC Method to Monitor the Background Concentration of Polycyclic Aromatic Hydrocarbons in Commercial Black Tea Leaves and Infusions in Taiwan
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection and Preparation
- Ct.i: concentration (ng/mL) of PAHs in the tea infusion.
- Vt.i: volume (mL) of the tea infusion.
- Cd.t: concentration (ng/mL) of PAHs in the dry tea.
- Wd.t: weight (g) of dry tea used to prepare the tea infusion.
2.2. Extraction and Analysis
2.2.1. Chemicals
2.2.2. Extraction of PAHs
2.2.3. HPLC Analysis
2.3. Method Validation
- Mean = the average value, calculated by summing all results and dividing by the total number of results.
- SD = the variation in results from the mean.
- σ: standard deviation.
- S: slope.
- σ: standard deviation.
- S: slope.
3. Results
3.1. Method Validation
3.2. Effect of Brewing Time on PAH Transfer
3.3. Concentration of PAH4 in Tea Leaves
3.4. Concentration of PAH4 in Tea Infusions
4. Discussion
4.1. Effect of Brewing Time on PAH Transfer
4.2. PAH Concentration in Tea Leaves
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shi, Y.; Wu, H.; Wang, C.; Guo, X.; Du, J.; Du, L. Determination of polycyclic aromatic hydrocarbons in coffee and tea samples. Food Chem. 2016, 99, 75–80. [Google Scholar] [CrossRef] [PubMed]
- Christensen, E.R.; Bzdusek, P.A. PAHs in sediments of the Black River and the Ashtabula River, Ohio: Source apportionment by factor analysis. Water Res. 2005, 39, 511–524. [Google Scholar] [CrossRef] [PubMed]
- European Food Safety Authority (EFSA). Polycyclic Aromatic Hydrocarbons in Food—Scientific Opinion of the Panel on Contaminants in the Food Chain. EFSA J. 2008, 724, 1–114. [Google Scholar] [CrossRef]
- Estrellan, C.R.; Iino, F. Toxic emissions from open burning. Chemosphere 2010, 80, 193–207. [Google Scholar] [CrossRef]
- Paris, A.; Ledauphin, J.; Poinot, P.; Gaillard, J.-L. Polycyclic aromatic hydrocarbons in fruits and vegetables: Origin, analysis, and occurrence. Environ. Pollut. 2018, 234, 96–106. [Google Scholar] [CrossRef] [PubMed]
- Tfouni, S.A.; Toledo, M.C.F. Determination of polycyclic aromatic hydrocarbons in cane sugar. Food Control 2007, 18, 948–952. [Google Scholar] [CrossRef]
- Rengarajan, T.; Rajendran, P.; Nandakumar, N.; Lokeshkumar, B.; Rajendran, P.; Nishigaki, I. Exposure to polycyclic aromatic hydrocarbons with special focus on cancer. Asian Pac. J. Trop. Biomed. 2015, 5, 182–189. [Google Scholar] [CrossRef]
- Menzie, C.A.; Potocki, B.B.; Santodonato, J. Exposure to carcinogenic PAHs in the environment. Environ. Sci. Technol. 1992, 26, 1278–1284. [Google Scholar] [CrossRef]
- Chen, B.H.; Inbaraj, B.S.; Hsu, K.C. Recent advances in the analysis of polycyclic aromatic hydrocarbons in food and water. J. Food Drug Anal. 2022, 30, 494–522. [Google Scholar] [CrossRef]
- Kao, T.H.; Chen, S.; Huang, C.W.; Chen, C.J.; Chen, B.H. Occurrence and exposure to polycyclic aromatic hydrocarbons in kindling-free-charcoal grilled meat products in Taiwan. Food Chem. Toxicol. 2014, 71, 149–158. [Google Scholar] [CrossRef]
- Kao, T.H.; Chen, S.; Chen, C.J.; Huang, C.W.; Chen, B.H. Evaluation of analysis of polycyclic aromatic hydrocarbons by QuEChERS and GC-MS and their formation in poultry meat as affected by marinating and frying. J. Agric. Food Chem. 2012, 60, 1380–1389. [Google Scholar] [CrossRef]
- Chiang, C.F.; Hsu, K.C.; Tsai, T.Y.; Cho, C.Y.; Hsu, C.H.; Yang, D.J. Evaluation of optimal QuEChERS conditions of various food matrices for rapid determination of EU priority polycyclic aromatic hydrocarbons in various foods. Food Chem. 2021, 334, 127471. [Google Scholar] [CrossRef]
- João Ramalhosa, M.; Paíga, P.; Morais, S.; Delerue-Matos, C.; Prior Pinto Oliveira, M.B. Analysis of polycyclic aromatic hydrocarbons in fish: Evaluation of a quick, easy, cheap, effective, rugged, and safe extraction method. J. Sep. Sci. 2009, 32, 3529–3538. [Google Scholar] [CrossRef] [PubMed]
- Knobel, G.; Campiglia, A.D. Determination of polycyclic aromatic hydrocarbon metabolites in milk by a quick, easy, cheap, effective, rugged and safe extraction and capillary electrophoresis. J. Sep. Sci. 2013, 36, 2291–2298. [Google Scholar] [CrossRef]
- Escarrone, A.L.V.; Caldas, S.S.; Furlong, E.B.; Meneghetti, V.L.; Fagundes, C.A.A.; Arias, J.L.O.; Prime, E.G. Polycyclic aromatic hydrocarbons in rice grain dried by different processes: Evaluation of a quick, easy, cheap, effective, rugged and safe extraction method. Food Chem. 2014, 146, 597–602. [Google Scholar] [CrossRef] [PubMed]
- Chiang, S.M.; Ueng, K.C.; Chen, H.S.; Wu, C.J.; Yang, Y.S.; Yang, D.J. Effects of Manufacturing Procedures and Preparation conditions on European Union Priority Polycyclic Aromatic Hydrocarbons in Oolong Tea Samples. Food Chem. 2021, 358, 129885. [Google Scholar] [CrossRef]
- Bertinetti, I.A.; Ferreira, C.D.; Monks, J.L.F.; Sanches-Filho, P.J.; Elias, M.C. Accumulation of polycyclic aromatic hydrocarbons (PAHs) in rice subjected to drying with different fuels plus temperature, industrial processes and cooking. J. Food Compos. Anal. 2018, 66, 109–115. [Google Scholar] [CrossRef]
- Chen, S.; Kao, T.H.; Chen, C.J.; Huang, C.W.; Chen, B.H. Reduction of carcinogenic polycyclic aromatic hydrocarbons in meat by sugar-smoking and dietary exposure assessment in Taiwan. J. Agric. Food Chem. 2013, 61, 7645–7653. [Google Scholar] [CrossRef] [PubMed]
- Danyi, S.; Brose, F.; Brasseur, C.; Schneider, Y.J.; Larondelle, Y.; Pussemier, L. Analysis of EU priority polycyclic aromatic hydrocarbons in food supplements using high performance liquid chromatography coupled to an ultraviolet, diode array or fluorescence detector. Anal. Chim. Acta 2009, 633, 293–299. [Google Scholar] [CrossRef] [PubMed]
- German-Hernandez, M.; Pino, V.; Anderson, J.L.; Afonso, A.M. Use of ionic liquid aggregates of 1-hexadecyl-3-butyl imidazolium bromide in a focused-microwave assisted extraction method followed by high-performance liquid chromatography with ultraviolet and fluorescence detection to determine the 15+1 EU priority PAHs in toasted cereals (“gofios”). Talanta 2011, 85, 1199–1206. [Google Scholar] [CrossRef]
- Wang, C.; Han, J.; Pu, Y.; Wang, X. Tea (Camellia sinensis): A Review of Nutritional Composition, Potential Applications, and Omics Research. Appl. Sci. 2022, 12, 5874. [Google Scholar] [CrossRef]
- Food and Agriculture Organization (FAO). International Tea Market: Market Situation, Prospects and Emerging Issues; FAO: Rome, Italy, 2022; pp. 3–5. Available online: https://www.fao.org/documents/card/en?details=cc0238en (accessed on 2 September 2023).
- Textor, C. Tea Production in Taiwan from 2011 to 2021. 2022. Available online: https://www.statista.com/statistics/321788/taiwan-tea-production/ (accessed on 18 August 2023).
- Taipei Economic and Cultural Office in Ho Chi Minh City. Taiwan Is the Largest Export Market for Vietnamese Tea. 2022. Available online: https://www.roc-taiwan.org/vnsgn/post/36507.html (accessed on 12 August 2023).
- Aaqil, M.; Peng, C.; Kamal, A.; Nawaz, T.; Zhang, F.; Gong, J. Tea Harvesting and Processing Techniques and Its Effect on Phytochemical Profile and Final Quality of Black Tea: A Review. Foods 2023, 12, 4467. [Google Scholar] [CrossRef]
- Lin, D.; Tu, Y.; Zhu, L. Concentrations and health risk of polycyclic aromatic hydrocarbons in tea. Food Chem. Toxicol. 2005, 43, 41–48. [Google Scholar] [CrossRef]
- Huang, M.; Penning, P.M. Polycyclic Aromatic Hydrocarbons. In Encyclopedia of Food Safety; Motarjemi, Y., Moy, G., Todd, E., Eds.; Academic Press: San Diego, CA, USA, 2014; Volume 2, pp. 416–423. [Google Scholar]
- Badawy, M.E.I.; El-Nouby, M.A.M.; Kimani, P.K.; Lim, L.W.; Rabea, E.I. A review of the modern principles and applications of solid-phase extraction techniques in chromatographic analysis. Anal. Sci. 2022, 38, 1457–1487. [Google Scholar] [CrossRef] [PubMed]
- Lehotay, S.J. Quick, Easy, Cheap, Effective, Rugged and Safe (QuEChERS) approach for determining pesticide residues. In Pesticide Protocols; Martínez Vidal, J.L., Frenich, A.G., Eds.; Humana Press: Totowa, NJ, USA, 2006; Volume 19, pp. 239–261. [Google Scholar]
- Chiang, C.F.; Hsu, K.C.; Cho, C.Y.; Tsai, T.Y.; Hsu, C.H.; Yang, D.J. Comparison and establishment of appropriate methods to determine EU priority PAHs in charcoal-grilled chicken drumsticks with different treatments and their dietary risk assessments. Food Chem. Toxicol. 2020, 142, 111400. [Google Scholar] [CrossRef] [PubMed]
- Huang, P.C.; Lin, H.T. Food intake survey and background concentration of polycyclic aromatic hydrocarbons in deep-fried, barbecued, and pan-fried foods. J. Agric. For. 2023, 70, 37–50. Available online: www.jaf.nchu.edu.tw/70-1 (accessed on 10 August 2023). (In Chinese).
- U.S. Food and Drug Administration. (USFDA). Guidelines for the validation of chemical methods for the FDA foods program. In Method Validation Guidelines, 3rd ed.; USFDA: Silver Spring, MD, USA, 2019. Available online: https://www.fda.gov/science-research/field-science-and-laboratories/method-validation-guidelines (accessed on 8 February 2024).
- European Union. Commission Regulation (EU) No 836/2011. Official Journal of European Union L 215/9 836/2011. 2011. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex:32011R0836 (accessed on 15 August 2023).
- Taiwan Food and Drug Administration (TFDA). Validation Specification for Food Chemical Inspection Methods. 2021. Available online: https://www.fda.gov.tw/tc/includes/GetFile.ashx?id=f637713826789525112&type=2&cid=38868 (accessed on 10 August 2023). (In Chinese)
- Kishida, M.; Imamura, K.; Takenaka, N.; Maeda, Y.; Viet, P.H.; Bandow, H. Concentrations of atmospheric polycyclic aromatic hydrocarbons in particulate matter and the gaseous phase at roadside sites in Hanoi, Vietnam. Bull. Environ. Contam. Toxicol. 2008, 81, 174–179. [Google Scholar] [CrossRef] [PubMed]
- Fang, G.C.; Chang, K.F.; Lu, C.; Bai, H. Toxic equivalency factors study of polycyclic aromatic hydrocarbons (PAHs) in Taichung City, Taiwan. Toxicol. Ind. Health 2002, 18, 279–288. [Google Scholar] [CrossRef]
- Phan Thi, L.A.; Ngoc, N.T.; Quynh, N.T.; Thanh, N.V.; Kim, T.T.; Anh, D.H.; Viet, P.H. Polycyclic aromatic hydrocarbons (PAHs) in dry tea leaves and tea infusions in Vietnam: Contamination levels and dietary risk assessment. Environ. Geochem. Health 2020, 42, 2853–2863. [Google Scholar] [CrossRef] [PubMed]
PAH | Retention Time (min) * | Linear Regression Equation ** | r2 | Mean Recovery (%) (CV%) (n = 5) | |
---|---|---|---|---|---|
1.0 µg/kg | 5.0 µg/kg | ||||
BaA | 4.396 | Y = 17,992X + 618.16 | 0.9996 | 98 (2.6) | 105 (2.4) |
CHR | 4.773 | Y = 9650X + 415.71 | 0.9996 | 100 (0.7) | 108 (4.6) |
BbF | 6.575 | Y = 5327X − 226.41 | 0.9990 | 100 (4.0) | 109 (3.1) |
BaP | 8.249 | Y = 45,574X − 361.09 | 0.9993 | 100 (1.8) | 112 (2.7) |
BaA | CHR | BbF | BaP | EU Regulation | |
---|---|---|---|---|---|
(µg/kg) | |||||
LOD | 0.11 | 0.13 | 0.13 | 0.02 | ≤0.3 |
LOQ | 0.38 | 0.43 | 0.42 | 0.08 | ≤0.9 |
Country | Sample Number | Concentration (µg/kg) 2 | ||||
---|---|---|---|---|---|---|
BaA | CHR | BbF | BaP | PAH4 | ||
Taiwan | 1 | 2.63 | 7.18 | 0.84 | 4.40 | 15.05 |
2 | 0.68 | 1.17 | ND | 5.11 | 7.03 | |
3 | 0.98 | 2.91 | ND | 0.86 | 4.81 | |
4 | 1.04 | 5.07 | ND | 0.48 | 6.66 | |
5 | ND 1 | 6.54 | ND | 2.95 | 10.11 | |
6 | 1.23 | 1.29 | ND | 0.29 | 2.88 | |
7 | 0.89 | 2.57 | ND | 1.61 | 5.13 | |
8 | 0.93 | 3.16 | ND | ND | 4.17 | |
9 | ND | 4.02 | ND | ND | 4.64 | |
10 | 11.66 | 18.04 | ND | 5.34 | 40.76 | |
Mean | 2.06 | 5.20 | 0.66 | 2.10 | 10.12 | |
Vietnam | 17 | 56.74 | 78.24 | 35.31 | 47.92 | 218.2 |
18 | 46.97 | 65.67 | 40.15 | 40.47 | 193.3 | |
Mean | 51.85 | 71.95 | 37.73 | 44.19 | 205.8 | |
India | 20 | 6.79 | 8.00 | 1.57 | 0.85 | 17.21 |
21 | 10.46 | 10.85 | 4.22 | 3.69 | 29.22 | |
24 | 19.07 | 40.20 | 1.87 | 2.25 | 63.39 | |
Mean | 12.10 | 19.68 | 2.55 | 2.27 | 36.61 | |
Indonesia | 26 | 7.14 | 8.62 | 2.57 | 2.03 | 20.36 |
Kenya | 28 | 3.12 | 6.37 | 1.39 | 0.51 | 11.40 |
Sri Lanka | 29 | 17.85 | 25.36 | 9.40 | 11.02 | 63.63 |
30 | 28.50 | 39.08 | 14.32 | 11.66 | 93.56 | |
33 | 28.29 | 36.46 | 15.41 | 17.64 | 97.81 | |
Mean | 24.88 | 33.63 | 13.05 | 13.44 | 85.00 | |
Myanmar | 34 | 3.23 | 5.32 | 1.34 | 1.34 | 11.23 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Harrison, D.M.; Chang, W.-C.; Lin, H.-T. Using QuEChERS and HPLC Method to Monitor the Background Concentration of Polycyclic Aromatic Hydrocarbons in Commercial Black Tea Leaves and Infusions in Taiwan. Toxics 2024, 12, 148. https://doi.org/10.3390/toxics12020148
Harrison DM, Chang W-C, Lin H-T. Using QuEChERS and HPLC Method to Monitor the Background Concentration of Polycyclic Aromatic Hydrocarbons in Commercial Black Tea Leaves and Infusions in Taiwan. Toxics. 2024; 12(2):148. https://doi.org/10.3390/toxics12020148
Chicago/Turabian StyleHarrison, Drewyan Minelly, Wei-Chung Chang, and Hsin-Tang Lin. 2024. "Using QuEChERS and HPLC Method to Monitor the Background Concentration of Polycyclic Aromatic Hydrocarbons in Commercial Black Tea Leaves and Infusions in Taiwan" Toxics 12, no. 2: 148. https://doi.org/10.3390/toxics12020148
APA StyleHarrison, D. M., Chang, W. -C., & Lin, H. -T. (2024). Using QuEChERS and HPLC Method to Monitor the Background Concentration of Polycyclic Aromatic Hydrocarbons in Commercial Black Tea Leaves and Infusions in Taiwan. Toxics, 12(2), 148. https://doi.org/10.3390/toxics12020148