Microplastics and 17α Ethinylestradiol: How Do Different Aquatic Invertebrates Respond to This Combination of Contaminants?
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. EE2 Quantification
3.2. Biomarkers
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- European Union. Directive 2013/39/EU—European Parliament and of the Council, of 12 August 2013, Amending Directives 2000/60/EC and 2008/105/EC with Regard to Priority Substances in the Field of Water Policy. Off. J. Eur. Union 2013. Available online: https://eur-lex.europa.eu/legal-content/PT/TXT/?uri=CELEX%3A32013L0039 (accessed on 8 February 2023).
- European Union. Commission Implementing Decision (EU) 2018/840 of 5 June 2018 Establishing a Watch List of Substances to Be Monitored at Union Level in the Field of Water Policy, Pursuant to Directive 2008/105/EC of the European Parliament and of the Council, and Repealing Commission Implementing Decision (EU) 2015/495 [Notified under Number C (2018) 3362]. Available online: https://eur-lex.europa.eu/legal-content/PT/TXT/?uri=CELEX%3A32018D0840 (accessed on 8 February 2023).
- Aris, A.Z.; Shamsuddin, A.S.; Praveena, S.M. Occurrence of 17α-ethynylestradiol (EE2) in the environment and effect on exposed biota: A review. Environ. Int. 2014, 69, 104–119. [Google Scholar] [CrossRef] [PubMed]
- Tang, Z.; Liu, Z.H.; Wang, H.; Dang, Z.; Liu, Y. A review of 17α-ethynylestradiol (EE2) in surface water across 32 countries: Sources, concentrations, and potential estrogenic effects. J. Environ. Manag. 2021, 292, 112804. [Google Scholar] [CrossRef] [PubMed]
- Ying, G.G.; Kookana, R.S. Degradation of five selected endocrine-disrupting chemicals in seawater and marine sediment. Env. Sci. Technol. 2003, 37, 1256–1260. [Google Scholar] [CrossRef]
- Maranho, L.A.; Baena-Nogueras, R.M.; Lara-Martín, P.A.; DelValls, T.A.; Martín-Díaz, M.L. Bioavailability, oxidative stress, neurotoxicity and genotoxicity of pharmaceuticals bound to marine sediments. The use of the polychaete Hediste diversicolor as bioindicator species. Environ. Res. 2014, 134, 353–365. [Google Scholar] [CrossRef] [PubMed]
- Borysko, L.; Ross, P.M. Adult exposure to the synthetic hormone 17α-ethynylestradiol affects offspring of the gastropods Nassarius burchardi and Nassarius jonasii. Ecotoxicol. Environ. Saf. 2014, 103, 91–100. [Google Scholar] [CrossRef] [PubMed]
- Maranho, L.A.; Moreira, L.B.; Baena-Nogueras, R.M.; Lara-Martín, P.A.; DelValls, T.A.; Martín-Díaz, M.L. A candidate short-term toxicity test using Ampelisca brevicornis to assess sublethal responses to pharmaceuticals bound to marine sediments. Arch. Environ. Contam. Toxicol. 2015, 68, 237–258. [Google Scholar] [CrossRef] [PubMed]
- Silva, A.Q.; Abessa, D.M.S. Toxicity of three emerging contaminants to non-target marine organisms. Environ. Sci. Poll. Res. 2019, 26, 18354–18364. [Google Scholar] [CrossRef] [PubMed]
- Almeida, Â.; Silva, M.G.; Soares, A.M.; Freitas, R. Concentrations levels and effects of 17alpha-Ethinylestradiol in freshwater and marine waters and bivalves: A review. Environ. Res. 2020, 185, 109316. [Google Scholar] [CrossRef]
- Eriksen, M.; Lebreton, L.C.; Carson, H.S.; Thiel, M.; Moore, C.J.; Borerro, J.C.; Galgani, F.; Ryan, P.G.; Reisser, J. Plastic pollution in the world’s oceans: More than 5 trillion plastic pieces weighing over 250,000 tons afloat at sea. PLoS ONE 2014, 9, e111913. [Google Scholar] [CrossRef]
- GESAMP. Sources, Fate and Effects of Microplastics in the Marine Environment: Part Two of a Global Assessment; Kershaw, P.J., Rochman, C.M., Eds.; IMO/FAO/UNESCO IOC/UNIDO/WMO/IAEA/UN/UNEP/UNDP Joint Group of Experts on the Scientific Aspects of Marine Environmental Protection; Reports and Studies Series. GESAMP No. 93; International Maritime Organization: London, UK, 2016; 220p. [Google Scholar]
- Wu, C.; Zhang, K.; Huang, X.; Liu, J. Sorption of pharmaceuticals and personal care products to polyethylene debris. Environ. Sci. Pollut. Res. 2016, 23, 8819–8826. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Wang, J. Sorption of antibiotics onto aged microplastics in freshwater and seawater. Mar. Poll. Bull. 2019, 149, 110511. [Google Scholar] [CrossRef] [PubMed]
- Yu, F.; Yang, C.; Zhu, Z.; Bai, X.; Ma, J. Adsorption behavior of organic pollutants and metals on micro/nanoplastics in the aquatic environment. Sci. Total Environ. 2019, 694, 133643. [Google Scholar] [CrossRef] [PubMed]
- Souza, T.M.; Choueri, R.B.; Nobre, C.R.; de Souza Abessa, D.M.; Moreno, B.B.; Carnaúba, J.H.; Mendes, G.I.; Albergaria-Barbosa AC, R.; Simões, F.R.; Gusso-Choueri, P.K. Interactive effects of microplastics and benzo [a] pyrene on two species of marine invertebrates. Mar. Pollut. Bull. 2023, 193, 115170. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.L.; Wang, S.C.; Zhao, F.F.; Wang, S.G.; Liu, F.F.; Liu, G.Z. Joint toxicity of microplastics with triclosan to marine microalgae Skeletonema costatum. Environ. Poll. 2019, 246, 509–517. [Google Scholar] [CrossRef] [PubMed]
- Nobre, C.R.; Moreno, B.B.; Alves, A.V.; de Lima Rosa, J.; da Rosa Franco, H.; Abessa, D.M.S.; Maranho, L.A.; Choueri, R.B.; Gusso-Choueri, P.K.; Pereira, C.D.S. Effects of microplastics associated with triclosan on the oyster Crassostrea gasar: An integrated biomarker approach. Arch. Environ. Contam. Toxicol. 2020, 79, 101–110. [Google Scholar] [CrossRef] [PubMed]
- Weis, J.S.; Alava, J.J. (Micro)Plastics are Toxic Pollutants. Toxics 2023, 11, 935. [Google Scholar] [CrossRef] [PubMed]
- Porcino, N.; Bottari, T.; Mancuso, M. Do really microplastics affects marine biota? A review. Animals 2023, 13, 147. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Wu, J.; Wu, J.; Zhang, C.; Luo, Y. Adsorption and desorption of steroid hormones by microplastics in seawater. Bull. Environ. Contam. Toxicol. 2021, 107, 730–735. [Google Scholar] [CrossRef]
- Wu, J.; Lu, J.; Wu, J. Effect of gastric fluid on adsorption and desorption of endocrine disrupting chemicals on microplastics. Front. Environ. Sci. Eng. 2022, 16, 104. [Google Scholar] [CrossRef]
- Melo, C.M.; Silva, F.C.; Gomes, C.H.; Solé-Cava, A.M.; Lazoski, C. Crassostrea gigas in natural oyster banks in southern Brazil. Biol. Invasions 2010, 12, 441–449. [Google Scholar] [CrossRef]
- Lüchmann, K.H.; Clark, M.S.; Bainy, A.C.; Gilbert, J.A.; Craft, J.A.; Chipman, J.K.; Thorne MA, S.; Mattos, J.J.; Siebert, M.N.; Schroeder, D.C. Key metabolic pathways involved in xenobiotic biotransformation and stress responses revealed by transcriptomics of the mangrove oyster Crassostrea brasiliana. Aquat. Toxicol. 2015, 166, 10–20. [Google Scholar] [CrossRef] [PubMed]
- dos Reis, I.M.; Mattos, J.J.; Garcez, R.C.; Zacchi, F.L.; Miguelão, T.; Flores-Nunes, F.; Toledo-Silva, G.; Sasaki, S.T.; Taniguchi, S.; Bicego, M.C.; et al. Histological responses and localization of the cytochrome P450 (CYP2AU1) in Crassostrea brasiliana exposed to phenanthrene. Aquat. Toxicol. 2015, 169, 79–89. [Google Scholar] [CrossRef] [PubMed]
- Catharino, M.G.M.; Vasconcellos, M.B.A.; Kirschbaum, A.A.; Gasparro, M.R.; de Sousa, E.C.P.M.; Minei, C.C.; Moreira, E.G. Passive biomonitoring study and effect biomarker in oysters Crassostrea brasiliana (Lamark, 1819: Mollusca, Bivalvia) in Santos and Cananéia Estuaries in São Paulo State, Brazil. J. Radioanal. Nucl. Chem. 2015, 303, 2297–2302. [Google Scholar] [CrossRef]
- Siebert, M.N.; Mattos, J.J.; Piazza, C.E.; de Lima, D.; Gomes, C.H.A.; de Melo, C.M.; Bainy, A.C. Characterization of ethoxyresorufin O-deethylase activity (EROD) in oyster Crassostrea brasiliana. Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 2017, 203, 115–121. [Google Scholar] [CrossRef] [PubMed]
- Melo, G.A.S. Manual de Identificação dos Brachyura (Caranguejos e siris) do Litoral Brasileiro; Plêiade/FAPESP: São Paulo, Brazil, 1996; 604p. [Google Scholar]
- Christofoletti, R.A.; Hattori, G.Y.; Pinheiro, M.A.A. Food selection by a mangrove crab: Temporal changes in fasted animals. Hydrobiologia 2013, 702, 63–72. [Google Scholar] [CrossRef]
- Pinheiro, M.A.A.; Duarte, L.F.A.; Toledo, T.R.; Adams, M.A.; Torres, R.A. Habitat monitoring and genotoxicity in Ucides cordatus (Crustace: Ucididae), as tools to manage a mangrove reserve in southeastern Brazil. Environ. Monit. Assess. 2013, 185, 8273–8285. [Google Scholar] [CrossRef] [PubMed]
- Ortega, P.; Santos, R.A.; Lacouth, P.; Rozas, E.E.; Custódio, M.R.; Zanotto, F.P. Cytochemical characterization of gill and hepatopancreatic cells of the crab Ucides cordatus (Crustacea, Brachyura) validated by cell metal transport. Iheringia. Série Zool. 2014, 104, 347–354. [Google Scholar] [CrossRef]
- Duarte, L.F.A.; Souza, C.A.; Nobre, C.R.; Pereira, C.D.S.; Pinheiro, M.A.A. Multi-level biological responses in Ucides cordatus (Linnaeus, 1763) (Brachyura, Ucididae) as indicators of conservation status in mangrove areas from the western atlantic. Ecotoxicol. Environ. Saf. 2016, 133, 176–187. [Google Scholar] [CrossRef]
- Duarte, L.F.A.; Blasco, J.; Catharino, M.G.M.; Moreira, E.G.; Trombini, C.; Nobre, C.R.; Moreno, B.B.; Abessa, D.M.S.; Pereira, C.D.S. Lead toxicity on a sentinel species subpopulation inhabiting mangroves with different status conservation. Chemosphere 2020, 251, 126394. [Google Scholar] [CrossRef]
- Siegfried, M.; Koelmans, A.A.; Besseling, E.; Kroeze, C. Export of microplastics from land to sea. A modelling approach. Water Res. 2017, 127, 249–257. [Google Scholar] [CrossRef] [PubMed]
- U.S. Environmental Protection Agency. Method. 1694: Pharmaceuticals and Personal. Care Products in Water, Soil, Sediment, and Biosolids by HPLC/MS/MSEPA821-R-08-002; U.S. Environmental Protection Agency: Washington, DC, USA, 2007. [Google Scholar]
- Gagné, F.; Blaise, C. Hepatic metallothionein level and mixed function oxidase activity in fingerling rainbow trout (Oncorhynchus mykiss) after acute exposure to pulp and paper mill effluents. Water Res. 1993, 27, 1669–1682. [Google Scholar] [CrossRef]
- Gagné, F.; André, C.; Cejka, P.; Gagnon, C.; Blaise, C. Toxicological effects of primary-treated urban wastewaters, before and after ozone treatment, on freshwater mussels (Elliptio complanata). Comp. Biochem. Physiol. Part C 2007, 145, 542–552. [Google Scholar] [CrossRef] [PubMed]
- McFarland, V.A.; Inouye, L.S.; Lutz, C.H.; Jarvis, A.S.; Clarke, J.U.; McCant, D.D. Biomarkers of oxidative stress and genotoxicity in livers of field-collected brown bullhead, Ameiurus nebulosus. Arch. Environ. Contam. Toxicol. 1999, 37, 236–241. [Google Scholar] [CrossRef] [PubMed]
- Sies, H.; Koch, O.R.; Martino, E.; Boveris, A. Increased biliary glutathione disulfide release in chronically ethanol-treated rats. FEBS Lett. 1979, 103, 287–290. [Google Scholar] [CrossRef] [PubMed]
- Sedlak, J.; Lindsay, R.H. Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman’s reagent. Anal. Biochem. 1968, 25, 192–205. [Google Scholar] [CrossRef] [PubMed]
- Wills, E.D. Evaluation of lipid peroxidation in lipids and biological membranes. In Biochemical Toxicology: A Practical Approach; Snell, K., Mullock, B., Eds.; IRL Press: Washington, DC, USA, 1987; pp. 127–150. [Google Scholar]
- Olive, P.L. DNA precipitation Assay: A rapid and simple method for detecting DNA damage in mammalian cells. Environ. Mol. Mutagen. 1998, 11, 487–495. [Google Scholar] [CrossRef] [PubMed]
- Ellman, G.L.; Courtney, K.D.; Andres, V.; Featherstone, R.M. A new and rapid colorimetric determination of acetylcholinesterase activities. Biochem. Pharm. 1961, 7, 88–95. [Google Scholar] [CrossRef]
- Herbert, A.; Guilhermino, L.; Da Silva De Assis, H.C.; Hansen, P.D. Acetylcholinesterase activity in aquatic organisms as pollution biomarker. Zeitschrift f. Angew. Zool. 1995, 3, 1–15. [Google Scholar]
- Bradford, M.M. A rapid and sensitive method for the quantitationof microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Martínez-Gómez, C.; Bignell, J.; Lowe, D. Lysosomal Membrane Stability in Mussels; ICES Techniques in Marine Environmental Sciences No. 56; International Council for the Exploration of the Sea: København, Denmark, 2015; 41p. [Google Scholar] [CrossRef]
- Liu, C.; Chang, V.W.; Gin, K.Y. Environmental toxicity of PFCs: An enhanced integrated biomarker assessment and structure–activity analysis. Environ. Toxicol. Chem. 2013, 32, 2226–2233. [Google Scholar] [CrossRef]
- Lara, L.Z.; Bertoldi, C.; Alves, N.M.; Fernandes, A.N. Sorption of endocrine disrupting compounds onto polyamide microplastics under different environmental conditions: Behaviour and mechanism. Sci. Total Environ. 2021, 796, 148983. [Google Scholar] [CrossRef] [PubMed]
- Teuten, E.L.; Rowland, S.J.; Galloway, T.S.; Thompson, R.C. Potential for plastics to transport hydrophobic contaminants. Environ. Sci. Technol. 2007, 41, 7759–7764. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Tan, Z.; Peng, J.; Qiu, Q.; Li, M. The behaviors of microplastics in the marine environment. Mar. Environ. Res. 2016, 113, 7–17. [Google Scholar] [CrossRef] [PubMed]
- Vieira, Y.; Lima, E.C.; Foletto, E.L.; Dotto, G.L. Microplastics physicochemical properties, specific adsorption modeling and their interaction with pharmaceuticals and other emerging contaminants. Sci. Total Environ. 2021, 753, 141981. [Google Scholar] [CrossRef] [PubMed]
- Brew, D.W.; Black, M.C.; Santos, M.; Rodgers, J.; Henderson, W.M. Metabolomic investigations of the temporal effects of exposure to pharmaceuticals and personal care products and their mixture in the eastern oyster (Crassostrea virginica). Environ. Toxicol. Chem. 2020, 39, 419–436. [Google Scholar] [CrossRef] [PubMed]
- Brandts, I.; Teles, M.; Gonçalves, A.P.; Barreto, A.; Franco-Martinez, L.; Tvarijonaviciute, A.; Martins, M.A.; Soares, A.M.V.M.; Delito, L.; Oliveira, M. Effects of nanoplastics on Mytilus galloprovincialis after individual and combined exposure with carbamazepine. Sci. Total Environ. 2018, 643, 775–784. [Google Scholar] [CrossRef] [PubMed]
- Subba, M.; Keough, M.J.; Kellar, C.; Long, S.; Miranda, A.; Pettigrove, V.J. Potamopyrgus antipodarum has the potential to detect effects from various land use activities on a freshwater ecosystem. Environ. Poll. 2021, 2021, 117563. [Google Scholar] [CrossRef] [PubMed]
- Trestrail, C.; Nugegoda, D.; Shimeta, J. Invertebrate responses to microplastic ingestion: Reviewing the role of the antioxidant system. Sci. Total Environ. 2020, 734, 138559. [Google Scholar] [CrossRef]
- Huber, P.C.; Almeida, W.P.; Fátima, Â.D. Glutathione and related enzymes: Biological roles and importance in pathological processes. Química Nova 2008, 31, 1170–1179. [Google Scholar] [CrossRef]
- Von Moos, N.; Burkhardt-Holm, P.; Kohler, A. Uptake and effects of microplastics on cells and tissue of the blue mussel Mytilus edulis L. after an experimental exposure. Environ. Sci. Technol. 2012, 46, 11327–11335. [Google Scholar] [CrossRef] [PubMed]
- Avio, C.G.; Gorbi, S.; Milan, M.; Benedetti, M.; Fattorini, D.; d’Errico, G.; Bargelloni, L.; Regoli, F. Pollutants bioavailability and toxicological risk from microplastics to marine mussels. Environ. Poll. 2015, 198, 211–222. [Google Scholar] [CrossRef] [PubMed]
- Freitas, R.; Coppola, F.; Costa, S.; Manzini, C.; Intorre, L.; Meucci, V.; Soares, A.M.V.M.; Pretti, C.; Solé, M. Does salinity modulates the response of Mytilus galloprovincialis exposed to triclosan and diclofenac? Environ. Poll. 2019, 251, 756–765. [Google Scholar] [CrossRef] [PubMed]
- Anbumani, S.; Kakkar, P. Ecotoxicological effects of microplastics on biota: A review. Environ. Sci. Poll. Res. 2018, 25, 14373–14396. [Google Scholar] [CrossRef] [PubMed]
- Jong, M.C.; Li, J.; Noor, H.M.; He, Y.; Gin, K.Y.H. Impacts of size-fractionation on toxicity of marine microplastics: Enhanced integrated biomarker assessment in the tropical mussels, Perna viridis. Sci. Total Environ. 2022, 835, 155459. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Hu, M.; Xu, G.; Shi, H.; Leung, J.Y.; Wang, Y. Microplastic accumulation via trophic transfer: Can a predatory crab counter the adverse effects of microplastics by body defence? Sci. Total Environ. 2021, 754, 142099. [Google Scholar] [CrossRef] [PubMed]
- Jeong, C.B.; Kang, H.M.; Lee, M.C.; Kim, D.H.; Han, J.; Hwang, D.S.; Souissi, S.; Lee Sj Shin, K.H.; Park, H.G.; Lee, J.S. Adverse effects of microplastics and oxidative stress-induced MAPK/Nrf2 pathway-mediated defense mechanisms in the marine copepod Paracyclopina nana. Sci. Rep. 2017, 7, srep41323. [Google Scholar] [CrossRef] [PubMed]
- Nobre, C.R.; Moreno, B.B.; Alves, A.V.; Rosa, J.L.; Fontes, M.K.; Campos, B.G.; Silva, L.F.; Duarte, L.F.A.; Abessa, D.M.S.; Choueri, R.B.; et al. Combined effects of polyethylene spiked with the antimicrobial triclosan on the swamp ghost crab (Ucides cordatus; Linnaeus, 1763). Chemosphere 2022, 2022, 135169. [Google Scholar] [CrossRef] [PubMed]
- Abouda, S.; Missawi, O.; Cappello, T.; Boughattas, I.; De Marco, G.; Maisano, M.; Banni, M. Toxicological impact of environmental microplastics and benzo [a] pyrene in the seaworm Hediste diversicolor under environmentally relevant exposure conditions. Environ. Poll. 2022, 310, 119856. [Google Scholar] [CrossRef]
- Burlando, B.; Marchi, B.; Panfoli, I.; Viarengo, A. Essential role of Ca2+-dependent phospholipase A2 in estradiol-induced lysosome activation. Am. J. Physiol. Cell Physiol. 2002, 283, C1461–C1468. [Google Scholar] [CrossRef]
- Arman, S. Effects of acute triclosan exposure on gill and liver tissues of zebrafish (Danio rerio). Ann. Limnol. Int. J. Limnol. 2021, 57, 6. [Google Scholar] [CrossRef]
- Faggio, C.; Tsarpali, V.; Dailianis, S. Mussel digestive gland as a model tissue for assessing xenobiotics: An overview. Sci. Total Environ. 2018, 636, 220–229. [Google Scholar] [CrossRef] [PubMed]
- Manzoni, G. Textbook Ostras Aspectos Bioecológicos e Técnicas de Cultivo; Univali, CTTmar; CGMA: Itajaí, Santa Catarina, Brazil, 2001; p. 30. [Google Scholar]
- da Silva, L.F.; Nobre, C.R.; Moreno, B.B.; Pereira, C.D.S.; de Souza Abessa, D.M.; Choueri, R.B.; Gusso-Choueri, P.K.; Cesar, A. Non-destructive biomarkers can reveal effects of the association of microplastics and pharmaceuticals or personal care products. Mar. Pollut. Bull. 2022, 177, 113469. [Google Scholar] [CrossRef] [PubMed]
- Dos Santos, C.C.M.; Ferreira, J.A.; Dos Santos, C.R.M.; Amado, L.L. Seasonal modulation of oxidative stress biomarkers in mangrove oyster (Crassostrea gasar) from an Amazon estuary. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2021, 257, 110953. [Google Scholar] [CrossRef] [PubMed]
- Dos Santos, C.C.M.; da Costa, J.F.M.; Dos Santos, C.R.M.; Amado, L.L. Influence of seasonality on the natural modulation of oxidative stress biomarkers in mangrove crab Ucides cordatus (Brachyura, Ucididae). Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2019, 227, 146–153. [Google Scholar] [CrossRef] [PubMed]
- Moore, M.N.; Allen, J.I.; McVeigh, A. Environmental prognostics: An integrated model supporting lysosomal stress responses as predictive biomarkers of animal health status. Mar. Environ. Res. 2006, 61, 278–304. [Google Scholar] [CrossRef] [PubMed]
- Ringwood, A.H.; Hoguet, J.; Keppler, C.; Gielazyn, M. Linkages between cellular biomarker responses and reproductive success in oysters–Crassostrea virginica. Mar. Environ. Res. 2004, 58, 151–155. [Google Scholar] [CrossRef]
- Pereira, C.D.S.; Abessa, D.M.S.; Choueri, R.B.; Almagro-Pastor, V.; Cesar, A.; Maranho, L.A.; Martín-Díaz, M.L.; Torres, R.J.; Gusso-Choueri, P.K.; Almeida, J.E.; et al. Ecological relevance of sentinels’ biomarker responses: A multi-level approach. Mar. Environ. Res. 2014, 96, 118–126. [Google Scholar] [CrossRef]
17α Ethinylestradiol (EE2): Analytical Parameters | |||
---|---|---|---|
Level of Concentration of Analytical Curve (µg·L−1) | MRM Transition Counts | MLOD (µg·L−1) | MLOQ (µg·L−1) |
4.687 to 300 | 279 > 133 | 0.12 | 0.40 |
Analytical Recovery | |||
---|---|---|---|
Nominal Concentration (µg·g−1) | Measured Concentration (µg·g−1) | Recovery (%) | |
EE2 | 44.4 | 35.40 | 79.65 |
Microplastics before exposure | |||
EE2 (µg·g−1) | |||
MP | <MLOD | ||
MPE | 35.40 |
Treatment | Water | Species | Microplastics after Exposure | |
---|---|---|---|---|
EE2 (µg·L−1) | EE2 (µg·g−1) | EE2 (µg·g−1) | ||
C. gasar | C | <MLOD | <MLOD | - |
MP | <MLOD | <MLOD | <MLOD | |
MPE | <MLOD | <MLOQ | 0.66 | |
U. cordatus | C | <MLOD | <MLOD | - |
MP | <MLOD | <MLOD | <MLOD | |
MPE | 1.93 | 0.01401 | 1.284 |
Main Test | ||||||||
---|---|---|---|---|---|---|---|---|
Crassostrea gasar | Ucides cordatus | |||||||
DF | MS | Pseudo-F | P (Perm) | DF | MS | Pseudo-F | P (Perm) | |
Time | 1 | 101.82 | 8.8278 | 0.001 | 1 | 131.78 | 11.756 | 0.001 |
Treatment | 2 | 32.486 | 2.8164 | 0.001 | 2 | 25.325 | 2.2592 | 0.002 |
Time vs. Treatment | 2 | 36.979 | 3.206 | 0.001 | 2 | 35.009 | 3.1232 | 0.001 |
Pairwise—Time (T3 X T7) | ||||||||
Crassostrea gasar | Ucides cordatus | |||||||
T | P (perm) | perms | P (MC) | T | P (perm) | perms | P (MC) | |
Control | 2.4615 | 0.002 | 760 | 0.002 | 2.9181 | 0.002 | 742 | 0.001 |
MP | 1.6692 | 0.006 | 755 | 0.022 | 2.243 | 0.001 | 753 | 0.001 |
MPE | 2.8417 | 0.001 | 758 | 0.001 | 2.1195 | 0.001 | 758 | 0.001 |
Pairwise—Treatment | ||||||||
Crassostrea gasar | Ucides cordatus | |||||||
T | P (perm) | perms | P (MC) | T | P (perm) | perms | P (MC) | |
3 Days of Exposure | ||||||||
Control vs. MP | 1.4699 | 0.018 | 752 | 0.059 | 0.86666 | 0.695 | 738 | 0.628 |
Control vs. MPE | 2.1896 | 0.001 | 753 | 0.001 | 1.7069 | 0.009 | 776 | 0.021 |
MP vs. MPE | 1.6532 | 0.017 | 749 | 0.034 | 1.3927 | 0.036 | 752 | 0.086 |
7 Days of Exposure | ||||||||
Control vs. MP | 1.2881 | 0.095 | 765 | 0.126 | 1.7032 | 0.009 | 771 | 0.019 |
Control vs. MPE | 1.8678 | 0.001 | 755 | 0.013 | 2.2825 | 0.001 | 746 | 0.001 |
MP vs. MPE | 1.9531 | 0.001 | 768 | 0.009 | 1.2866 | 0.103 | 749 | 0.154 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nobre, C.R.; Moreno, B.B.; Alves, A.V.; Fontes, M.K.; Campos, B.G.d.; Silva, L.F.d.; Maranho, L.A.; Duarte, L.F.d.A.; Abessa, D.M.d.S.; Choueri, R.B.; et al. Microplastics and 17α Ethinylestradiol: How Do Different Aquatic Invertebrates Respond to This Combination of Contaminants? Toxics 2024, 12, 319. https://doi.org/10.3390/toxics12050319
Nobre CR, Moreno BB, Alves AV, Fontes MK, Campos BGd, Silva LFd, Maranho LA, Duarte LFdA, Abessa DMdS, Choueri RB, et al. Microplastics and 17α Ethinylestradiol: How Do Different Aquatic Invertebrates Respond to This Combination of Contaminants? Toxics. 2024; 12(5):319. https://doi.org/10.3390/toxics12050319
Chicago/Turabian StyleNobre, Caio Rodrigues, Beatriz Barbosa Moreno, Aline Vecchio Alves, Mayana Karoline Fontes, Bruno Galvão de Campos, Leticia Fernanda da Silva, Luciane Alves Maranho, Luís Felipe de Almeida Duarte, Denis Moledo de Souza Abessa, Rodrigo Brasil Choueri, and et al. 2024. "Microplastics and 17α Ethinylestradiol: How Do Different Aquatic Invertebrates Respond to This Combination of Contaminants?" Toxics 12, no. 5: 319. https://doi.org/10.3390/toxics12050319
APA StyleNobre, C. R., Moreno, B. B., Alves, A. V., Fontes, M. K., Campos, B. G. d., Silva, L. F. d., Maranho, L. A., Duarte, L. F. d. A., Abessa, D. M. d. S., Choueri, R. B., Gusso-Choueri, P. K., & Pereira, C. D. S. (2024). Microplastics and 17α Ethinylestradiol: How Do Different Aquatic Invertebrates Respond to This Combination of Contaminants? Toxics, 12(5), 319. https://doi.org/10.3390/toxics12050319