Potential Effects of Environmental and Occupational Exposure to Microplastics: An Overview of Air Contamination
Abstract
:1. Introduction
2. Regulation on Microplastic Pollution
3. Detection Limits in Different Matrices
4. Analytical Methods
5. Microplastic Exposure
5.1. Exposure through the Diet
5.2. Ingestion through Drinking Water
5.3. Skin Contact
5.4. Exposure through Inhalation
5.4.1. Microplastics in Outdoor Environments
Location | Mp Shape | Reported Concentration | References |
---|---|---|---|
Paris (France) | Fibers (80% between 100 and 500 µm) | Indoor environments (3–15 particle m−3) and outdoors (0.2–0.8 particle m−3). | Gasperi and co-authors 2018 [57] |
Southern Iran | Fibers | From 0.3 to 1.1 particles m−3 and equally distributed between industrial and urban areas. | Abbasi et al., 2019 [62] |
Ahvaz (Iran) | Fibers of size 15–35 µm | 0.002–0.007 particle m−3, 23–341 particle g−1 of PM10 at site 1; 0.002–0.015 particle m−3, 34–162 particle g−1 of PM10 at site 2. | Abbasi et al., 2023 [71] |
Shanghai (China) | Fibers | Average 1.42 ± 1.42 particles m−3 (annual weight of suspended MPs of 120.72 kg). | Liu et al., 2019 [63] |
Beijing (China) | Fibers | 5.7 × 10−3 particle mL−1 | Li et al., 2020 [72] |
North-western Pacific Ocean | Fibers (67%) Fragments (30%) granules (3%) | On average: 0.027 ± 0.018 particles m−3 Pelagic areas: 0.037 ± 0.017 particles m−3 Nearshore locations: 0.013 ± 0.007 particles m−3 | Ding et al., 2022 [73] |
Hamburg (Germany) | Fragments (95%, the majority < 63 µm) | 136.5 and 512.0 particle/(m2 day−1) (mean of 275.0 particle/(m2 day−1)) | Gaston et al., 2020 [64] |
Shanghai (China) | Mainly fragments | Mean of 2.1 × 103 ± 1.0 × 103 particle/(m2 day−1). | Sun et al., 2022 [67] |
5.4.2. Microplastic in Indoor Environments
6. Potential Implications on Human Health
6.1. Distribution of MPs in the Human Body
6.2. Toxicity
7. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hartmann, N.; Huffer, T.; Thompson, R.; Hassellov, M.; Verschoor, A.; Daugaard, A.; Rist, S.; Karlsson, T.; Brenholt, N.; Cole, M.; et al. Are We Speaking the Same Language? Recommendations for a Definition and Categorization Framework for Plastic Debris. Environ. Sci. Technol. 2019, 53, 1039–1047. [Google Scholar] [CrossRef]
- Microplastics: Sources, Effects and Solutions. Available online: https://www.europarl.europa.eu/topics/en/article/20181116STO19217/microplastics-sources-effects-and-solutions (accessed on 22 November 2018).
- Thompson, R.; Olsen, Y.; Mitchell, R.; Davis, A.; Rowland, S.; John, A.; McGonigle, D.; Russell, A. Lost at Sea: Where Is All the Plastic? Science 2004, 304, 838. [Google Scholar] [CrossRef] [PubMed]
- Boots, B.; Russel, C.; Senga Green, D. Effects of Microplastics in Soil Ecosystems: Above and below Ground. Environ. Sci. Technol. 2019, 53, 11496–11506. [Google Scholar] [CrossRef] [PubMed]
- Nelms, S.; Galloway, T.; Godley, B.; Jarvis, D.; Lindeque, P. Investigating Microplastic Trophic Transfer in Marine Top Predators. Environ. Pollut. 2018, 238, 999–1007. [Google Scholar] [CrossRef] [PubMed]
- Revel, M.; Chatel, A.; Mouneyrac, C. Micro (Nano) Plastics: A Threat to Human Health? Curr. Opin. Environ. Sci. Health 2018, 1, 17–23. [Google Scholar] [CrossRef]
- Wagner, M.; Scherer, C.; Alvarez-Munoz, D.; Brennholt, N.; Bourrain, V.; Buchinger, S.; Fries, E.; Grosbois, C.; Klasmeier, J.; Marti, T.; et al. Microplastics in Freshwater Ecosystems: What We Know and What We Need to Know. Environ. Sci. Eur. 2014, 26, 12. [Google Scholar] [CrossRef]
- Wu, P.; Huang, J.; Zeng, Y.; Yang, Y.; Zhang, Y.; He, F.; Chen, H.; Quan, G.; Yan, J.; Li, T.; et al. Environmental Occurences, Fate and Impacts of Microplastics. Ecotoxicol. Environ. Saf. 2019, 184, 109612. [Google Scholar] [CrossRef]
- da Costa, J.; Chamkha, M.; Ksibi, M.; Sayadi, S. Effects of Microplastics’ Physical and Chemical Properties on Aquatic Organisms: State-of-the-Art and Future Research Trends. TrAC Trends Anal. Chem. 2023, 166, 117192. [Google Scholar] [CrossRef]
- Ghosh, S.; Sinha, J.; Ghosh, S.; Vashisth, K.; Han, S.; Bhaskar, R. Microplastics as an Emerging Threat to the Global Environment and Human Health. Sustainability 2023, 15, 10821. [Google Scholar] [CrossRef]
- Basel Convention on the Control of Transboundary Movements of Hazardous Wastes and Their Disposal. In Protocol on Liability and Compensation, Sejal Choksi, Ecology Law Quarterly; University of California: Berkeley, CA, USA, 2001; Volume 28, pp. 509–539.
- G/TBT/N/CHN/1211. Available online: https://docs.wto.org/dol2fe/Pages/FE_Search/FE_S_S009-DP.aspx?language=E&CatalogueIdList=237688 (accessed on 22 April 2024).
- Wen, Z.; Xie, Y.; Chen, M.; Dinga, C. China’s Plastic Import Ban Increases Prospects of Environmental Impact Mitigation of Plastic Waste Trade Flow Worldwide. Nat. Commun. 2021, 12, 425. [Google Scholar] [CrossRef]
- Microbead-Free Waters Act of 2015. 2015. Available online: https://www.fda.gov/drugs/laws-acts-and-rules/microbead-free-waters-act-2015-faqs (accessed on 22 April 2024).
- California SB-54 Solid Waste: Reporting, Packaging, and Plastic Food Service Ware. Available online: https://legiscan.com/CA/text/SB54/id/2600075 (accessed on 22 April 2024).
- Directive (EU) 2019/904 of the European Parliament and of the Council of 5 June 2019 on the Reduction of the Impact of Certain Plastic Products on the Environment. Off. J. Eur. Union 2019, L 155, 1–19.
- The European Green Deal. Available online: https://echa.europa.eu/it/hot-topics/microplastics (accessed on 22 April 2023).
- Fetting, C. “The European Green Deal: Our Pact for the Future”; Conference Report; ESDN Office: Vienna, Austria, 2020. [Google Scholar]
- EU Action Plan: “Towards Zero Pollution for Air, Water and Soil” SWD. 2021. Available online: https://environment.ec.europa.eu/strategy/zero-pollution-action-plan_en (accessed on 22 April 2024).
- D.2.A.9, Senato Della Repubblica. Available online: https://www.senato.it/istituzione/la-costituzione/principi-fondamentali/articolo-9 (accessed on 22 April 2024).
- Regulation (EC) No 1907/2006 of the European Parliament and of the Council of 18 December 2006 Concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH), Establishing a European Chemicals Agency, Amending Directive 1999/45/EC and Repealing Council Regulation (EEC) No 793/93 and Commission Regulation (EC) No 1488/94 as Well as Council Directive 76/769/EEC and Commission Directives 91/155/EEC, 93/67/EEC, 93/105/EC and 2000/21/EC. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A02006R1907-20140410 (accessed on 22 April 2024).
- Explanatory Memorandum to COM(2023)645—Preventing Plastic Pellet Losses to Reduce Microplastic Pollution. 2023. Available online: https://www.eumonitor.eu/9353000/1/j4nvhdfdk3hydzq_j9vvik7m1c3gyxp/vm7diuxbgkyb (accessed on 22 April 2024).
- Dris, R.; Gasperi, J.; Tassin, B. A First Overview of Textile Fibers, Including Microplastics, in Indoor and Outdoor Environments. Environ. Pollut. 2017, 221, 453–458. [Google Scholar] [CrossRef] [PubMed]
- Stefaniak, A.; Bowers, L.; Knepp, A.; Luxton, T.; Peloquin, D.; Baumann, E.; Ham, J.; Wells, J.; Johnson, A.; LeBouf, R.; et al. Particle and Vapor Emissions from Vat Polymerization Desktop-Scale 3-Dimensional Printers. J. Occup. Environ. Hyg. 2019, 16, 519–531. [Google Scholar] [CrossRef] [PubMed]
- Murashov, V.; Geraci, C.; Schulte, P.; Howard, J. Nano- and Microplastics in the Workplace. J. Occup. Environ. Hyg. 2021, 18, 489–494. [Google Scholar] [CrossRef] [PubMed]
- Burkhart, J.; Piacitelli, C.; Schwegler-Berry, D.; Jones, W. Environmental Study of Nylon Flocking Process. J. Toxicol. Environ. Health A 1999, 57, 1–23. [Google Scholar] [PubMed]
- Glassford, E.; Dunn, K.; Dunn, K.; Hammond, D.; Tyrawski, J. 3D Printing with Filaments: Health and Safety Questions to Ask; National Institute for Occupational Safety and Health (NIOSH): Cincinnati, OH, USA, 2020. [Google Scholar]
- Directive (EU) 2020/2184 of the European Parliament and of the Council of 16 December 2020 on the Quality of Water Intended for Human Consumption (Recast). Off. J. Eur. Union 2020, L 435, 1–62.
- Morrison, M.; Trevisan, R.; Ranasinghe, P.; Merrill, G.; Santos, J.; Hong, A.; Edward, W.; Javasundara, N.; Somarelli, J. A Growing Crisis for One Health: Impacts of Plastic Pollution across Layers of Biological Function. Front. Mar. Sci. 2022, 9, 980705. [Google Scholar] [CrossRef]
- German Environment Agency. Plastics in the Environment; Health Canada: Ottawa, ON, Canada, 2020. [Google Scholar]
- Environment and Climate Change Canada and Health Canada. Draft Science Assessment of Plastic Pollution. 2020. Available online: https://www.canada.ca/en/environment-climate-change/services/evaluating-existing-substances/science-assessment-plastic-pollution.html (accessed on 22 April 2024).
- O’Brien, S.; Rauert, C.; Ribeiro, F.; Okoffo, E.D.; Burrows, S.D.; O’Brien, J.W.; Wang, X.; Wright, S.R.; Thomas, K.V. There’s Something in the Air: A Review of Sources, Prevalence and Behaviour of Microplastics in the Atmosphere. Sci. Total Environ. 2023, 874, 162193. [Google Scholar] [CrossRef] [PubMed]
- Vianello, A.; Jensen, R.; Liu, L.; Vollertsen, J. Simulating Human Exposure to Indoor Airborne Microplastics Using a Breathing Thermal Manikin. Sci. Rep. 2019, 9, 8670. [Google Scholar] [CrossRef]
- Cheng, Y.; Zhang, R.; Tisinger, L.; Cali, S.; Yu, Z.; Chen, H.; Li, A. Characterization of Microplastics in Sediment Using Stereomicroscopy and Laser Direct Infrared (LDIR) Spectroscopy. Gond. Res. 2022, 108, 22–30. [Google Scholar] [CrossRef]
- Prasad, S.; Bennett, K.; Bennett, A.; Triantafyllou, M. Towards a Low-Cost, Rapid Microplastic Optical Detection System Using Fluorescent Staining through Nile Red for in Situ Ocean Deployment. In Proceedings of the OCEANS 2023, Limerick, Ireland, 5–8 June 2023. [Google Scholar]
- Kosuth, M.; Mason, S.; Wattenberg, E. Anthropogenic Contamination of Tap Water, Beer, and Sea Salt. PLoS ONE 2018, 13, e0194970. [Google Scholar] [CrossRef] [PubMed]
- Dabrowska, A.; Mielańczuk, M.; Syczewski, M. The Raman Spectroscopy and SEM/EDS Investigation of the Primary Sources of Microplastics from Cosmetics Available in Poland. Chemosphere 2022, 308, 136407. [Google Scholar] [CrossRef]
- Fries, E.; Dekiff, J.; Willmeyer, J.; Nuelle, M.; Ebert, M.; Remy, D. Identification of Polymer Types and Additives in Marine Microplastic Particles Using Pyrolysis-GC/MS and Scanning Electron Microscopy. Environ. Sci. Process. Impacts 2013, 15, 1949–1956. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Xiao, D.; Wang, N.; Masia, F.; Langbein, W.; Li, B. Rapid Identification of Micro and Nanoplastics by Line Scan Raman Micro-Spectroscopy. Talanta 2024, 266, 125067. [Google Scholar] [CrossRef] [PubMed]
- Azaaouaj, S.; Nachite, D.; Anfuso, G.; Er-Ramy, N. Abundance and Distribution of Microplastics on Sandy Beaches of the Eastern Moroccan Mediterranean Coast. Mar. Pollut. Bull. 2024, 200, 116144. [Google Scholar] [CrossRef]
- Yang, Z.; Wang, M.; Feng, Z.; Wang, Z.; Lv, M.; Chang, J.; Chen, L.; Wang, C. Human Microplastics Exposure and Potential Health Risks to Target Organs by Different Routes: A Review. Curr. Pollut. Rep. 2023, 9, 468–485. [Google Scholar] [CrossRef]
- Strokal, M.; Vriend, P.; Bak, M.; Kroeze, C.; van Wijnen, J.; van Emmerik, T. River Export of Macro- and Microplastics to Seas by Sources Worldwide. Nat. Commun. 2023, 14, 4842. [Google Scholar] [CrossRef] [PubMed]
- Osman, A.; Hosny, M.; Eltaweil, A.; Omar, S.; Elgarahy, A.; Farghali, M.; Yap, P.; Wu, Y.; Nagandran, S.; Batumalaie, K.; et al. Microplastic Sources, Formation, Toxicity and Remediation: A Review. Environ. Chem. Lett. 2023, 4, 1–41. [Google Scholar]
- Horton, A.; Walton, A.; Spurgeon, D.; Lahive, E.; Svendsen, C. Microplastics in Freshwater and Terrestrial Environments: Evaluating the Current Understanding to Identify the Knowledge Gaps and Future Research Priorities. Sci. Total Environ. 2017, 586, 127–141. [Google Scholar] [CrossRef]
- Gionfra, S. Plastic Pollution in Soil; Institute for European Environmental Policy: Bruxelles, Belgium, 2018. [Google Scholar]
- Qi, Y.; Yang, X.; Pelaez, A.; Huerta Lwanga, E.; Beriot, N.; Gertsen, H.; Garbeva, P.; Geissen, V. Macro- and Micro-Plastics in Soil-Plant System: Effects of Plastic Mulch Film Residues on Wheat (Triticum aestivum) Growth. Sci. Total Environ. 2018, 645, 1048–1056. [Google Scholar] [CrossRef]
- Oliveri Conti, G.; Ferrante, M.; Banni, M.; Favara, C.; Nicolosi, I.; Cristaldi, A.; Fiore, M.; Zuccarello, P. Micro- and Nano-Plastics in Edible Fruit and Vegetables. The First Diet Risks Assessment for the General Population. Environ. Res. 2020, 187, 109677. [Google Scholar] [CrossRef]
- Hussain, K.; Romanova, S.; Okur, I.; Zhang, D.; Kuebler, J.; Huang, X.; Wang, B.; Fernandez-Ballester, L.; Lu, Y.; Schubert, M.; et al. Assessing the Release of Microplastics and Nanoplastics from Plastic Containers and Reusable Food Pouches: Implications for Human Health. Environ. Sci. Technol. 2023, 57, 9782–9792. [Google Scholar] [CrossRef] [PubMed]
- Koelmans, A.; Nor, M.; Hermsen, E.; Kooi, M.; Mintenig, S.; De France, J. Microplastics in Freshwaters and Drinking Water: Critical Review and Assessment of Data Quality. Water Res. 2019, 155, 410–422. [Google Scholar] [CrossRef] [PubMed]
- Shruti, V.; Pèrez-Guevara, F.; Elizalde-Martinez, I.; Kutralam-Muniasamy, G. First Study of Its Kind on the Microplastic Contamination of Soft Drinks, Cold Tea and Energy Drinks—Future Research and Environmental Considerations. Sci. Total Environ. 2020, 726, 138580. [Google Scholar] [CrossRef]
- Li, Y.; Peng, L.; Fu, J.; Dai, X.; Wang, G. A Microscopic Survey on Microplastics in Beverages: The Case of Beer, Mineral Water and Tea. Analyst 2022, 147, 1099–1105. [Google Scholar] [CrossRef] [PubMed]
- Crosta, A.; Parolini, M.; De Felice, B. Microplastics Contamination in Nonalcoholic Beverages from the Italian Market. Int. J. Environ. Res. Public Health 2023, 20, 4122. [Google Scholar] [CrossRef] [PubMed]
- Schymanski, D.; Goldbeck, C.; Humpf, H.; Fürst, P. Analysis of Microplastics in Water by Micro-Raman Spectroscopy: Release of Plastic Particles from Different Packaging into Mineral Water. Water Res. 2018, 129, 154–162. [Google Scholar] [CrossRef] [PubMed]
- Schneider, M.; Stracke, F.; Hansen, S.; Schaefer, U. Nanoparticles and Their Interactions with the Dermal Barrier. Dermatoendocrinol 2009, 1, 197–206. [Google Scholar] [CrossRef]
- Prata, J. Airborne Microplastics: Consequences to Human Health? Environ. Pollut. 2018, 234, 115–126. [Google Scholar] [CrossRef]
- Hernandez, L.; Yousefi, N.; Tufenkji, N. Are There Nanoplastics in Your Personal Care Products? Environ. Sci. Technol. Lett. 2017, 4, 280–285. [Google Scholar] [CrossRef]
- Gasperi, J.; Wright, S.; Dris, R.; Collard, F.; Mandin, C.; Guerrouache, M.; Langlois, V.; Kelly, F.; Tassin, B. Microplastics in Air: Are We Breathing It In? Curr. Opin. Environ. Sci. Health 2018, 1, 1–5. [Google Scholar] [CrossRef]
- Wang, X.; Li, C.; Liu, K.; Zhu, L.; Song, Z.; Li, D. Atmospheric Microplastic over the South China Sea and East Indian Ocean: Abundance, Distribution and Source. J. Hazard. Mater. 2020, 389, 121846. [Google Scholar] [CrossRef] [PubMed]
- Dris, R.; Gasperi, J.; Rocher, V.; Saad, M.; Renault, N.; Tassin, B. Microplastic Contamination in an Urban Area: A Case Study in Greater Paris. Environ. Chem. 2015, 12, 592–599. [Google Scholar] [CrossRef]
- Gasperi, J.; Dris, R.; Mandin, C.; Tassin, B. First Overview of Microplastics in Indoor and Outdoor Air. In Proceedings of the 15th EuCheMS International Conference on Chemistry and the Environment, Leipzig, Germany, 20–24 September 2015; Volume 364. [Google Scholar]
- Zhang, Y.; Kang, S.; Allen, S.; Allen, D.; Gao, T.; Sillanpää, M. Atmospheric Microplastics: A Review on Current Status and Perspectives. Earth Sci. Rev. 2020, 203, 103118. [Google Scholar] [CrossRef]
- Abbasi, S.; Keshavarzi, B.; Moore, F.; Turner, A.; Kelly, F.; Dominguez, A.; Jaafarzadeh, N. Distribution and Potential Health Impacts of Microplastics and Microrubbers in Air and Street Dusts from Asaluyeh County, Iran. Environ. Pollut. J. 2019, 244, 153–164. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Wang, X.; Fang, T.; Xu, P.; Zhu, L.; Li, D. Source and Potential Risk Assessment of Suspended Atmospheric Microplastics in Shanghai. Sci. Total Environ. 2019, 675, 462–471. [Google Scholar] [CrossRef]
- Gaston, E.; Woo, M.; Steele, C.; Sukumaran, S.; Anderson, S. Microplastics Differ Between Indoor and Outdoor Air Masses: Insights from Multiple Microscopy Methodologies. Appl. Spectrosc. 2020, 74, 1079–1098. [Google Scholar] [CrossRef] [PubMed]
- Sridharan, S.; Kumar, M.; Singh, L.; Bolan, N.; Saha, M. Microplastics as an Emerging Source of Particulate Air Pollution: A Critical Review. J. Hazard. Mater. 2021, 418, 126245. [Google Scholar] [CrossRef]
- Jahandari, A. Microplastics in the Urban Atmosphere: Sources, Occurrences, Distribution, and Potential Health Implications. J. Hazard. Mater. 2023, 12, 100346. [Google Scholar] [CrossRef]
- Sun, J.; Peng, Z.; Zhu, Z.; Fu, W.; Dai, X.; Ni, B. The Atmospheric Microplastics Deposition Contributes to Microplastic Pollution in Urban Waters. Water Res. 2022, 225, 119116. [Google Scholar] [CrossRef]
- Zhao, S.; Yu, Y.; He, J.; Yin, D.; Wang, B. Below-Cloud Scavenging of Aerosol Particles by Precipitation in a Typical Valley City, Northwestern China. Atmos. Environ. 2015, 102, 70–78. [Google Scholar] [CrossRef]
- Klein, M.; Fischer, E. Microplastic Abundance in Atmospheric Deposition within the Metropolitan Area of Hamburg, Germany. Sci. Total Environ. 2019, 685, 96–103. [Google Scholar] [CrossRef]
- Horton, A.; Dixon, S. Microplastics: An Introduction to Environmental Transport Processes. WIREs Water 2018, 5, e1268. [Google Scholar] [CrossRef]
- Abbasi, S.; Jaafarzadeh, N.; Zahedi, A.; Ravanbakhsh, M.; Abbaszadeh, S.; Turner, A. Microplastics in the Atmosphere of Ahvaz City, Iran. J. Environ. Sci. 2023, 126, 95–102. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Shao, L.; Wang, W.; Zhang, M.; Feng, X.; Li, W.; Zhang, D. Airborne Fiber Particles: Types, Size and Concentration Observed in Beijing. Sci. Total Environ. 2020, 705, 135967. [Google Scholar] [CrossRef] [PubMed]
- Ding, J.; Sun, C.; He, C.; Zheng, L.; Dai, D.; Li, F. Atmospheric Microplastics in the Northwestern Pacific Ocean: Distribution, Source, and Deposition. Sci. Total Environ. 2022, 829, 154337. [Google Scholar] [CrossRef] [PubMed]
- Klepeis, N.; Nelson, W.; Ott, W.; Robinson, J.; Tsang, A.; Switzer, P.; Behar, J.; Hern, S.; Engelmann, W. The National Human Activity Pattern Survey (NHAPS): A Resource for Assessing Exposure to Environmental Pollutants. J. Expo. Anal. Environ. Epidemiol. 2001, 11, 231–252. [Google Scholar] [CrossRef] [PubMed]
- Webster, T.; Harrad, S.; Millette, J.; Holbrook, R.; Davis, J.; Stapleton, H.; Allen, J.; McClean, M.; Ibarra, C.; Abdallah, M.; et al. Identifying Transfer Mechanisms and Sources of Decabromodiphenyl Ether (BDE 209) in Indoor Environments Using Environmental Forensic Microscopy. Environ. Sci. Technol. 2009, 43, 3067–3072. [Google Scholar] [CrossRef] [PubMed]
- Dris, R.; Gasperi, J.; Tassin, B. Sources and Fate of Microplastics in Urban Areas: A Focus on Paris Megacity. In Freshwater Microplastics; The Handbook of Environmental Chemistry; Springer: Berlin/Heidelberg, Germany, 2018; Volume 58. [Google Scholar]
- Zhang, J.; Wang, L.; Kannan, K. Microplastics in House Dust from 12 Countries and Associated Human Exposure. Environ. Int. 2020, 134, 105314. [Google Scholar] [CrossRef]
- Peng, C.; Tang, X.; Gong, X.; Dai, Y.; Sun, H.; Wang, L. Development and Application of a Mass Spectrometry Method for Quantifying Nylon Microplastics in Environment. Anal. Chem. 2020, 92, 13930–13935. [Google Scholar] [CrossRef]
- Bahrina, I.; Syafei, A.; Satoto, R.; Jiang, J.; Nurasrin, N.; Assomadi, A.; Boedisantoso, R.; Hermana, J.; Nasir, M. An Occupant-Based Overview of Microplastics in Indoor Environments in the City of Surabaya, Indonesia. J. Ecol. Eng. 2020, 21, 236–242. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhao, Y.; Du, F.; Cai, H.; Wang, G.; Shi, H. Microplastic Fallout in Different Indoor Environments. Environ. Sci. Technol. 2020, 54, 6530–6539. [Google Scholar] [CrossRef] [PubMed]
- Jenner, L.; Sadofsky, L.; Danopoulos, E.; Rotchell, J. Household Indoor Microplastics within the Humber Region (United Kingdom): Quantification and Chemical Characterisation of Particles Present. Atmos. Environ. 2021, 259, 118512. [Google Scholar] [CrossRef]
- Catarino, A.; Macchia, V.; Sanderson, W.; Thompson, R.; Henry, T. Low Levels of Microplastics (MP) in Wild Mussels Indicate That MP Ingestion by Humans Is Minimal Compared to Exposure via Household Fibres Fallout during a Meal. Environ. Pollut. 2018, 237, 675–684. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Feng, Q.; Wang, J. Mini-Review of Microplastics in the Atmosphere and Their Risks to Humans. Sci. Total Environ. 2020, 703, 135504. [Google Scholar] [CrossRef] [PubMed]
- Jeevanandam, J.; Barhoum, A.; Chan, Y.S.; Dufresne, A.; Danquah, M.K. Review on Nanoparticles and Nanostructured Materials: History, Sources, Toxicity and Regulations. Beilstein J. Nanotechnol. 2018, 9, 1050–1074. [Google Scholar] [CrossRef] [PubMed]
- Malakar, A.; Kanel, S.R.; Ray, C.; Snow, D.D.; Nadagouda, M.N. Nanomaterials in the Environment, Human Exposure Pathway, and Health Effects: A Review. Sci. Total Environ. 2021, 759, 143470. [Google Scholar] [CrossRef] [PubMed]
- Thangavel, P.; Park, D.; Lee, Y.-C. Recent Insights into Particulate Matter (PM2.5)-Mediated Toxicity in Humans: An Overview. Int. J. Environ. Res. Public Health 2022, 19, 7511. [Google Scholar] [CrossRef]
- Anderson, J.O.; Thundiyil, J.G.; Stolbach, A. Clearing the Air: A Review of the Effects of Particulate Matter Air Pollution on Human Health. J. Med. Toxicol. 2012, 8, 166–175. [Google Scholar] [CrossRef]
- Kappos, A.D.; Bruckmann, P.; Eikmann, T.; Englert, N.; Heinrich, U.; Höppe, P.; Koch, E. Health Effects of Particles in Ambient Air. Int. J. Hyg. Environ. 2004, 207, 399–407. [Google Scholar] [CrossRef]
- Ragusa, A.; Svelato, A.; Santacroce, C.; Catalano, P.; Notarstefano, V.; Carnevali, O.; Papa, F.; Rongioletti, M.; Baiocco, F.; Draghi, S.; et al. Plasticenta: First Evidence of Microplastics in Human Placenta. Environ. Int. 2021, 146, 106274. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Zhu, J.; Zuo, R.; Xu, Q.; Qian, Y.; An, L. Identification of Microplastics in Human Placenta Using Laser Direct Infrared Spectroscopy. Sci. Total Environ. 2023, 856, 159060. [Google Scholar] [CrossRef] [PubMed]
- Amereh, F.; Amjadi, N.; Mohseni-Bandpei, A.; Isazadeh, S.; Mehrabi, Y.; Eslami, A.; Naeiji, Z.; Rafiee, M. Placental Plastics in Young Women from General Population Correlate with Reduced Foetal Growth in IUGR Pregnancies. Environ. Pollut. 2022, 314, 120174. [Google Scholar] [CrossRef] [PubMed]
- Pauly, J.; Stegmeier, S.; Allaart, H.; Cheney, R.; Zhang, P.; Mayer, A.; Streck, R. Inhaled Cellulosic and Plastic Fibers Found in Human Lung Tissue. Cancer Epidemiol. Biomark. Prev. 1998, 7, 419–428. [Google Scholar]
- Jiang, Y.; Han, J.; Na, J.; Fang, J.; Qi, C.; Lu, J.; Liu, X.; Zhou, C.; Feng, J.; Zhu, W.; et al. Exposure to Microplastics in the Upper Respiratory Tract of Indoor and Outdoor Workers. Chemosphere 2022, 307, 136067. [Google Scholar] [CrossRef] [PubMed]
- Qui, L.; Lu, W.; Tu, C.; Li, X.; Zhang, H.; Wang, S.; Chen, M.; Zheng, X.; Wang, Z.; Lin, M.; et al. Evidence of Microplastics in Bronchoalveolar Lavage Fluid among Never-Smokers: A Prospective Case Series. Environ. Sci. Technol. 2023, 57, 2435–2444. [Google Scholar]
- Lu, W.; Li, X.; Wang, S.; Tu, C.; Qiu, L.; Zhang, H.; Zhong, C.; Li, S.; Liu, Y.; Liu, J.; et al. New Evidence of Microplastics in the Lower Respiratory Tract: Inhalation through Smoking. Environ. Sci. Technol. 2023, 57, 8496–8505. [Google Scholar] [CrossRef] [PubMed]
- Leslie, H.; van Velzen, M.; Brandsma, S.; Vethaak, A.; Garcia-Vallejo, J.; Lamoree, M. Discovery and Quantification of Plastic Particle Pollution in Human Blood. Environ. Int. 2022, 163, 107199. [Google Scholar] [CrossRef]
- Wu, D.; Feng, Y.; Wang, R.; Jiang, J.; Guan, Q.; Yang, X.; Wei, H.; Xia, Y.; Luo, Y. Pigment Microparticles and Microplastics Found in Human Thrombi Based on Raman Spectral Evidence. J. Adv. Res. 2023, 49, 141–150. [Google Scholar] [CrossRef]
- Liebmann, B.; Koppel, S.; Konigshifer, P.; Bucsics, T.; Reiberger, T.; Schwabl, P. Assessment of Microplastic Concentrations in Human Stool: Final Results of a Prospective Study. In Proceedings of the Nano and microplastics in technical and freshwater systems, Microplastics 2018, Ascona, Switzerland, 28–31 October 2018; Volume 10. [Google Scholar]
- Schwabl, P.; Köppel, S.; Königshofer, P.; Bucsics, T.; Trauner, M.; Reiberger, M.; Liebmann, B. Detection of Various Microplastics in Human Stool: A Prospective Case Series. Ann. Intern. Med. 2019, 17, 453–457. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, L.; Trasande, L.; Kannan, K. Occurrence of Polyethylene Terephthalate and Polycarbonate Microplastics in Infant and Adult Feces. Environ. Sci. Technol. Lett. 2021, 8, 989–994. [Google Scholar] [CrossRef]
- Zhu, L.; Kang, Y.; Ma, M.; Wu, Z.; Zhang, L.; Hu, R.; Xu, Q.; Zhu, J.; Gu, X.; An, L. Tissue Accumulation of Microplastics and Potential Health Risks in Human. Sci. Total Environ. 2024, 915, 170004. [Google Scholar] [CrossRef]
- Shen, M.; Zhang, Y.; Zhu, Y.; Song, B.; Zeng, G.; Hu, D.; Wen, X.; Ren, X. Recent Advances in Toxicological Research of Nanoplastics in the Environment: A Review. Environ. Pollut. 2019, 252, 511–521. [Google Scholar] [CrossRef]
- Wang, S.; Han, Q.; Wei, Z.; Wang, Y.; Xie, J.; Chen, M. Polystyrene Microplastics Affect Learning and Memory in Mice by Inducing Oxidative Stress and Decreasing the Level of Acetylcholine. Food Chem. Toxicol. 2022, 162, 112904. [Google Scholar] [CrossRef] [PubMed]
- Yin, K.; Wang, D.; Zhao, H.; Wang, Y.; Zhang, Y.; Liu, Y.; Li, B.; Xing, M. Polystyrene Microplastics Up-Regulates Liver Glutamine and Glutamate Synthesis and Promotes Autophagy-Dependent Ferroptosis and Apoptosis in the Cerebellum through the Liver-Brain Axis. Environ. Pollut. 2022, 307, 119449. [Google Scholar] [CrossRef] [PubMed]
- Shen, R.; Yang, K.; Cheng, X.; Guo, C.; Xing, X.; Sun, H.; Liu, D.; Liu, X.; Wang, D. Accumulation of Polystyrene Microplastics Induces Liver Fibrosis by Activating cGAS/STING Pathway. Environ. Pollut. 2022, 300, 118986. [Google Scholar] [CrossRef]
- Tang, J.; Ni, X.; Zhou, Z.; Wang, L.; Lin, S. Acute Microplastic Exposure Raises Stress Response and Suppresses Detoxification and Immune Capacities in the Scleractinian Coral Pocillopora Damicornis. Environ. Pollut. 2018, 243, 66–74. [Google Scholar] [CrossRef]
- Zhao, Y.; Bao, Z.; Wan, Z.; Fu, Z.; Jin, Y. Polystyrene Microplastic Exposure Disturbs Hepatic Glycolipid Metabolism at the Physiological, Biochemical, and Transcriptomic Levels in Adult Zebrafish. Sci. Total Environ. 2020, 710, 136279. [Google Scholar] [CrossRef]
- Bradney, L.; Wijesekara, H.; Palansooriya, K.; Obadamudalige, N.; Bolan, N.; Ok, Y.; Rinklebe, J.; Kim, K.; Kirkham, M. Particulate Plastics as a Vector for Toxic Trace-Element Uptake by Aquatic and Terrestrial Organisms and Human Health Risk. Environ. Int. 2019, 131, 104937. [Google Scholar] [CrossRef]
- Prata, J.; da Costa, J.; Lopes, I.; Duarte, A.; Rocha-Santos, T. Environmental Exposure to Microplastics: An Overview on Possible Human Health Effects. Sci. Total Environ. 2020, 702, 134455. [Google Scholar] [CrossRef] [PubMed]
- Hou, B.; Wang, F.; Liu, T.; Wang, Z. Reproductive Toxicity of Polystyrene Microplastics: In Vivo Experimental Study on Testicular Toxicity in Mice. J. Hazard. Mater. 2021, 405, 124028. [Google Scholar] [CrossRef] [PubMed]
- An, R.; Wang, X.; Yang, L.; Zhang, J.; Wang, N.; Xu, F.; Hou, Y.; Zhang, H.; Zhang, L. Polystyrene Microplastics Cause Granulosa Cells Apoptosis and Fibrosis in Ovary through Oxidative Stress in Rats. Toxicology 2021, 449, 152665. [Google Scholar] [CrossRef] [PubMed]
- Campanale, C.; Massarelli, C.; Savino, I.; Locaputo, V.; Uricchio, V. A Detailed Review Study on Potential Effects of Microplastics and Additives of Concern on Human Health. Int. J. Environ. Res. Public Health 2020, 17, 1212. [Google Scholar] [CrossRef] [PubMed]
- Limbach, L.; Wick, P.; Manser, P.; Grass, R.; Bruinink, A.; Stark, W. Exposure of Engineered Nanoparticles to Human Lung Epithelial Cells: Influence of Chemical Composition and Catalytic Activity on Oxidative Stress. Environ. Sci. Technol. 2007, 41, 4158–4163. [Google Scholar] [CrossRef]
- Gaurav, M.; Saloni, R. Need of Toxicity Studies for Cosmetic Products and Their Approaches. Biol. Sci. 2022, 02, 105–109. [Google Scholar]
Analytical Methods | Advantages | Disadvantages |
---|---|---|
Stereomicroscopy |
|
|
SEM |
|
|
SEM-EDS |
|
|
Pyr-GC/MS |
|
|
Vibrational FTIR-Spectroscopies |
|
|
Raman Spectroscopies |
|
|
Location | MP Shape | Reported Concentration | References |
---|---|---|---|
University of Paris-Est-Créteil (Paris, France) | Fibers |
| Dris et al., 2018 [76] |
39 Chinese cities | Fibers | PET: range 1550–120,000 µg g−1 (indoors); 212–9020 µg g−1 (outdoors); PC: median concentrations 4.6 µg g−1 (indoors) and 2.0 µg g−1 (outdoors) | Liu et al., 2019 [63] |
12 different countries worldwide | Fibers ? | Ranging between 38 and 120,000 µg g−1 | Zhang et al., 2020 [77] |
Chinese houses | Nylon fibers | 0.431–86.3 µg g−1 and 3.10–92.9 µg g−1 ranges | Peng et al., 2020 [78] |
Surabaya (Indonesia) | Fibers | Mean of 342 items on weekdays and 247 on weekends, respectively, in apartments (mean of 120 items on weekdays and 111 on weekends) | Bahrina et al., 2020 [79] |
Aarhus (Denmark) | Fibers, fragments | Between 1.7 and 16.2 items m−3 | Vianello et al., 2019 [33] |
East China Normal University | Fibers | Dormitory (9.9 × 103 MP/(m2 day−1)), followed by the office (1.8 × 103 MP/(m2 day−1)), and the corridor (1.5 × 103 MP/(m2 day−1)) | Zhang et al., 2020 [80] |
Coastal California | Fibers | In indoor air (3.3 ± 2.9 fibers and 12.6 ± 8.0 fragments m−3), values were higher compared to outdoor air (0.6 ± 0.6 fibers and 5.6 ± 3.2 fragments m−3) | Gaston et al., 2020 [64] |
Hull (UK) | Fibers | Mean amount was 1414 MP/(m2 day−1) | Jenner et al., 2021 [81] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boccia, P.; Mondellini, S.; Mauro, S.; Zanellato, M.; Parolini, M.; Sturchio, E. Potential Effects of Environmental and Occupational Exposure to Microplastics: An Overview of Air Contamination. Toxics 2024, 12, 320. https://doi.org/10.3390/toxics12050320
Boccia P, Mondellini S, Mauro S, Zanellato M, Parolini M, Sturchio E. Potential Effects of Environmental and Occupational Exposure to Microplastics: An Overview of Air Contamination. Toxics. 2024; 12(5):320. https://doi.org/10.3390/toxics12050320
Chicago/Turabian StyleBoccia, Priscilla, Simona Mondellini, Simona Mauro, Miriam Zanellato, Marco Parolini, and Elena Sturchio. 2024. "Potential Effects of Environmental and Occupational Exposure to Microplastics: An Overview of Air Contamination" Toxics 12, no. 5: 320. https://doi.org/10.3390/toxics12050320
APA StyleBoccia, P., Mondellini, S., Mauro, S., Zanellato, M., Parolini, M., & Sturchio, E. (2024). Potential Effects of Environmental and Occupational Exposure to Microplastics: An Overview of Air Contamination. Toxics, 12(5), 320. https://doi.org/10.3390/toxics12050320