Association between Prenatal Dietary Toxicants and Infant Neurodevelopment: The Role of Fish
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Maternal Data Collection
2.3. Infant Data Collection
2.4. Statistical Analyses
3. Results
3.1. Study Design
3.2. Characteristics of Participants
3.3. Association between Diet Toxicants from Fish and Fish Consumption Amount
3.4. Associations between Maternal Toxicant Intake from Fish and Neurodevelopment Data (BSID-III) of 40-Day Newborns
3.5. Association between Maternal Fish Intake and Neurodevelopment Data (BSID-III) of 40 Days Newborns
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Matonti, L.; Blasetti, A.; Chiarelli, F. Nutrition and Growth in Children. Minerva Pediatr. 2020, 72, 462–471. [Google Scholar] [CrossRef] [PubMed]
- Cohen Kadosh, K.; Muhardi, L.; Parikh, P.; Basso, M.; Jan Mohamed, H.J.; Prawitasari, T.; Samuel, F.; Ma, G.; Geurts, J.M. Nutritional Support of Neurodevelopment and Cognitive Function in Infants and Young Children-An Update and Novel Insights. Nutrients 2021, 13, 199. [Google Scholar] [CrossRef] [PubMed]
- Schildroth, S.; Kordas, K.; Bauer, J.A.; Wright, R.O.; Claus Henn, B. Environmental Metal Exposure, Neurodevelopment, and the Role of Iron Status: A Review. Curr. Environ. Health Rep. 2022, 9, 758–787. [Google Scholar] [CrossRef] [PubMed]
- Wylie, A.C.; Short, S.J. Environmental Toxicants and the Developing Brain. Biol. Psychiatry 2023, 93, 921–933. [Google Scholar] [CrossRef] [PubMed]
- Davis, A.N.; Carlo, G.; Gulseven, Z.; Palermo, F.; Lin, C.-H.; Nagel, S.C.; Vu, D.C.; Vo, P.H.; Ho, T.L.; McElroy, J.A. Exposure to Environmental Toxicants and Young Children’s Cognitive and Social Development. Rev. Environ. Health 2019, 34, 35–56. [Google Scholar] [CrossRef] [PubMed]
- Miguel, P.M.; Pereira, L.O.; Silveira, P.P.; Meaney, M.J. Early Environmental Influences on the Development of Children’s Brain Structure and Function. Dev. Med. Child Neurol. 2019, 61, 1127–1133. [Google Scholar] [CrossRef] [PubMed]
- Gentner, M.B.; Leppert, M.L.O. Environmental Influences on Health and Development: Nutrition, Substance Exposure, and Adverse Childhood Experiences. Dev. Med. Child Neurol. 2019, 61, 1008–1014. [Google Scholar] [CrossRef] [PubMed]
- Dutta, S.; Gorain, B.; Choudhury, H.; Roychoudhury, S.; Sengupta, P. Environmental and Occupational Exposure of Metals and Female Reproductive Health. Environ. Sci. Pollut. Res. Int. 2022, 29, 62067–62092. [Google Scholar] [CrossRef] [PubMed]
- Guo, W.; Pan, B.; Sakkiah, S.; Yavas, G.; Ge, W.; Zou, W.; Tong, W.; Hong, H. Persistent Organic Pollutants in Food: Contamination Sources, Health Effects and Detection Methods. Int. J. Environ. Res. Public Health 2019, 16, 4361. [Google Scholar] [CrossRef]
- Rovira, J.; Martínez, M.Á.; Mari, M.; Cunha, S.C.; Fernandes, J.O.; Marmelo, I.; Marques, A.; Haug, L.S.; Thomsen, C.; Nadal, M.; et al. Mixture of Environmental Pollutants in Breast Milk from a Spanish Cohort of Nursing Mothers. Environ. Int. 2022, 166, 107375. [Google Scholar] [CrossRef]
- Kou, X.; Bulló, M.; Rovira, J.; Díaz-López, A.; Arija, V. Dietary Intake of Metals, Metalloids, and Persistent Organic Pollutants in Spanish Pregnant Women. ECLIPSES Study. Chemosphere 2023, 344, 140319. [Google Scholar] [CrossRef] [PubMed]
- Mendivil, C.O. Dietary Fish, Fish Nutrients, and Immune Function: A Review. Front. Nutr. 2020, 7, 617652. [Google Scholar] [CrossRef]
- Manz, J.C.K.; Nsoga, J.V.F.; Diazenza, J.B.; Sita, S.; Bakana, G.M.B.; Francois, A.; Ndomou, M.; Gouado, I.; Mamonekene, V. Nutritional Composition, Heavy Metal Contents and Lipid Quality of Five Marine Fish Species from Cameroon Coast. Heliyon 2023, 9, e14031. [Google Scholar] [CrossRef]
- FDA. Advice about Eating Fish; FDA: Silver Spring, MD, USA, 2024. [Google Scholar]
- SENC. Guía de la Alimentación Saludable para Atención Primaria y Colectivos Ciudadanos; SENC: Barcelona, Spain, 2018; ISBN 9788408201939. [Google Scholar]
- Vejrup, K.; Schjølberg, S.; Knutsen, H.K.; Kvalem, H.E.; Brantsæter, A.L.; Meltzer, H.M.; Alexander, J.; Magnus, P.; Haugen, M. Prenatal Methylmercury Exposure and Language Delay at Three Years of Age in the Norwegian Mother and Child Cohort Study. Environ. Int. 2016, 92–93, 63–69. [Google Scholar] [CrossRef]
- Caspersen, I.H.; Haugen, M.; Schjølberg, S.; Vejrup, K.; Knutsen, H.K.; Brantsæter, A.L.; Meltzer, H.M.; Alexander, J.; Magnus, P.; Kvalem, H.E. Maternal Dietary Exposure to Dioxins and Polychlorinated Biphenyls (PCBs) Is Associated with Language Delay in 3 year Old Norwegian Children. Environ. Int. 2016, 91, 180–187. [Google Scholar] [CrossRef] [PubMed]
- Vejrup, K.; Brandlistuen, R.E.; Brantsæter, A.L.; Knutsen, H.K.; Caspersen, I.H.; Alexander, J.; Lundh, T.; Meltzer, H.M.; Magnus, P.; Haugen, M. Prenatal Mercury Exposure, Maternal Seafood Consumption and Associations with Child Language at Five Years. Environ. Int. 2018, 110, 71–79. [Google Scholar] [CrossRef] [PubMed]
- CDC Child Development: Infants (0-1 Years)|CDC. Available online: https://www.cdc.gov/ncbddd/childdevelopment/positiveparenting/infants.html (accessed on 20 April 2024).
- Hibbeln, J.R.; Davis, J.M.; Steer, C.; Emmett, P.; Rogers, I.; Williams, C.; Golding, J. Maternal Seafood Consumption in Pregnancy and Neurodevelopmental Outcomes in Childhood (ALSPAC Study): An Observational Cohort Study. Lancet 2007, 369, 578–585. [Google Scholar] [CrossRef]
- Peñalver, R.; Pérez-Álvarez, M.D.; Arroyo-Manzanares, N.; Campillo, N.; Viñas, P. Determination of Extractable Pollutants from Microplastics to Vegetables: Accumulation and Incorporation into the Food Chain. Chemosphere 2023, 341, 140141. [Google Scholar] [CrossRef] [PubMed]
- Arija, V.; Fargas, F.; March, G.; Abajo, S.; Basora, J.; Canals, J.; Ribot, B.; Aparicio, E.; Serrat, N.; Hernández-Martínez, C.; et al. Adapting Iron Dose Supplementation in Pregnancy for Greater Effectiveness on Mother and Child Health: Protocol of the ECLIPSES Randomized Clinical Trial. BMC Pregnancy Childbirth 2014, 14, 33. [Google Scholar] [CrossRef]
- Trichopoulou, A.; Costacou, T.; Bamia, C.; Trichopoulos, D. Adherence to a Mediterranean Diet and Survival in a Greek Population. N. Engl. J. Med. 2003, 348, 2599–2608. [Google Scholar] [CrossRef]
- Voltas, N.; Canals, J.; Hernández-Martínez, C.; Serrat, N.; Basora, J.; Arija, V. Effect of Vitamin d Status during Pregnancy on Infant Neurodevelopment: The Eclipses Study. Nutrients 2020, 12, 3196. [Google Scholar] [CrossRef] [PubMed]
- Montgomery, C.; Speake, B.K.; Cameron, A.; Sattar, N.; Weaver, L.T. Maternal Docosahexaenoic Acid Supplementation and Fetal Accretion. Br. J. Nutr. 2003, 90, 135–145. [Google Scholar] [CrossRef] [PubMed]
- Julian, L.J. Measures of Anxiety: State-Trait Anxiety Inventory (STAI), Beck Anxiety Inventory (BAI), and Hospital Anxiety and Depression Scale-Anxiety (HADS-A). Arthritis Care Res. 2011, 63 (Suppl. S1), S467–S472. [Google Scholar] [CrossRef] [PubMed]
- Bosch-Collet, J.; Castell-Garralda, V.; Domingo-Roig, J.L.; González-Paradell, N.; Nadal-Lomas, M.; Abuín, S.; Calderón-Delgado, J.; Rúbies-Prat, T.; Timoner-Alonso, I. Contaminants Químics: V Estudi de Dieta Total a Catalunya; Metalls Pesants, Dioxines (PCDD/F) i Bifenils Policlorats (PCB); Agència Catalana de Seguretat Alimentària: Barcelona, Spain, 2020. [Google Scholar]
- Javier, A.; Guadalupe, C.B.; Fernández García, J.; Marta, G.A.; Ángel, H.G.; Emilio, M.d.V.; Rosa, O.A.; Carmen, R.P.; Joan, Q.I. Guía de La Alimentación Saludable Para Atención Primaria y Colectivos Ciudadanos. Soc. Española Nutr. Comunitaria 2018, 1, 12–32. [Google Scholar]
- Bayley, N. Bayley Scales of Infant and Toddler Development, 3rd ed.; Harcourt Assessment: San Antonio, TX, USA, 2006. [Google Scholar]
- Del Rosario, C.; Slevin, M.; Molloy, E.J.; Quigley, J.; Nixon, E. How to Use the Bayley Scales of Infant and Toddler Development. Arch. Dis. Child. Educ. Pract. Ed. 2021, 106, 108–112. [Google Scholar] [CrossRef] [PubMed]
- Torras-Mañá, M.; Gómez-Morales, A.; González-Gimeno, I.; Fornieles-Deu, A.; Brun-Gasca, C. Assessment of Cognition and Language in the Early Diagnosis of Autism Spectrum Disorder: Usefulness of the Bayley Scales of Infant and Toddler Development, Third Edition. J. Intellect. Disabil. Res. 2016, 60, 502–511. [Google Scholar] [CrossRef]
- De Waal, T.; Pannekoek, J.; Scholtus, S. Handbook of Statistical Data Editing and Imputation, 1st ed.; Wiley: Hoboken, NJ, USA, 2011; ISBN 9780470542804. [Google Scholar]
- EFSA Panel on Contaminants in the Food Chain (CONTAM). Scientific Opinion on Arsenic in Food. EFSA J. 2009, 7, 1351. [Google Scholar] [CrossRef]
- EFSA Panel on Contaminants in the Food Chain (CONTAM); Knutsen, H.K.; Alexander, J.; Barregård, L.; Bignami, M.; Brüschweiler, B.; Ceccatelli, S.; Cottrill, B.; Dinovi, M.; Edler, L.; et al. Risk for Animal and Human Health Related to the Presence of Dioxins and Dioxin-like PCBs in Feed and Food. EFSA J. 2018, 16, e05333. [Google Scholar] [CrossRef] [PubMed]
- Fruh, V.; Rifas-Shiman, S.L.; Amarasiriwardena, C.; Cardenas, A.; Bellinger, D.C.; Wise, L.A.; White, R.F.; Wright, R.O.; Oken, E.; Claus Henn, B. Prenatal Lead Exposure and Childhood Executive Function and Behavioral Difficulties in Project Viva. Neurotoxicology 2019, 75, 105–115. [Google Scholar] [CrossRef]
- Stein, C.R.; Wu, H.; Bellinger, D.C.; Smith, D.R.; Wolff, M.S.; Savitz, D.A. Exposure to Metal Mixtures and Neuropsychological Functioning in Middle Childhood. Neurotoxicology 2022, 93, 84–91. [Google Scholar] [CrossRef]
- Fruh, V.; Rifas-Shiman, S.L.; Coull, B.A.; Devick, K.L.; Amarasiriwardena, C.; Cardenas, A.; Bellinger, D.C.; Wise, L.A.; White, R.F.; Wright, R.O.; et al. Prenatal Exposure to a Mixture of Elements and Neurobehavioral Outcomes in Mid-Childhood: Results from Project Viva. Environ. Res. 2021, 201, 111540. [Google Scholar] [CrossRef] [PubMed]
- Boucher, O.; Muckle, G.; Jacobson, J.L.; Carter, R.C.; Kaplan-Estrin, M.; Ayotte, P.; Dewailly, É.; Jacobson, S.W. Domain-Specific Effects of Prenatal Exposure to PCBs, Mercury, and Lead on Infant Cognition: Results from the Environmental Contaminants and Child Development Study in Nunavik. Environ. Health Perspect. 2014, 122, 310–316. [Google Scholar] [CrossRef]
- Hu, Y.; Chen, L.; Wang, C.; Zhou, Y.; Zhang, Y.; Wang, Y.; Shi, R.; Gao, Y.; Tian, Y. Prenatal Low-Level Mercury Exposure and Infant Neurodevelopment at 12 Months in Rural Northern China. Environ. Sci. Pollut. Res. Int. 2016, 23, 12050–12059. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Ha, E.-H.; Park, H.; Ha, M.; Kim, Y.; Hong, Y.-C.; Lee, E.J.; Kim, H.; Chang, N.; Kim, B.-N. Prenatal Mercury Exposure, Fish Intake and Neurocognitive Development during First Three Years of Life: Prospective Cohort Mothers and Children’s Environmental Health (MOCEH) Study. Sci. Total Environ. 2018, 615, 1192–1198. [Google Scholar] [CrossRef] [PubMed]
- Caspersen, I.H.; Aase, H.; Biele, G.; Brantsæter, A.L.; Haugen, M.; Kvalem, H.E.; Skogan, A.H.; Zeiner, P.; Alexander, J.; Meltzer, H.M.; et al. The Influence of Maternal Dietary Exposure to Dioxins and PCBs during Pregnancy on ADHD Symptoms and Cognitive Functions in Norwegian Preschool Children. Environ. Int. 2016, 94, 649–660. [Google Scholar] [CrossRef]
- Fu, S.-C.; Lin, J.-W.; Liu, J.-M.; Liu, S.-H.; Fang, K.-M.; Su, C.-C.; Hsu, R.-J.; Wu, C.-C.; Huang, C.-F.; Lee, K.-I.; et al. Arsenic Induces Autophagy-Dependent Apoptosis via Akt Inactivation and AMPK Activation Signaling Pathways Leading to Neuronal Cell Death. Neurotoxicology 2021, 85, 133–144. [Google Scholar] [CrossRef] [PubMed]
- Morris, G.; Puri, B.K.; Frye, R.E.; Maes, M. The Putative Role of Environmental Mercury in the Pathogenesis and Pathophysiology of Autism Spectrum Disorders and Subtypes. Mol. Neurobiol. 2018, 55, 4834–4856. [Google Scholar] [CrossRef]
- Vu, H.T.; Pham, T.N.; Yokawa, T.; Nishijo, M.; The, T.P.; Do, Q.; Nishino, Y.; Nishijo, H. Alterations in Regional Brain Regional Volume Associated with Dioxin Exposure in Men Living in the Most Dioxin-Contaminated Area in Vietnam: Magnetic Resonance Imaging (MRI) Analysis Using Voxel-Based Morphometry (VBM). Toxics 2021, 9, 353. [Google Scholar] [CrossRef]
- Westerink, R.H.S. Modulation of Cell Viability, Oxidative Stress, Calcium Homeostasis, and Voltage- and Ligand-Gated Ion Channels as Common Mechanisms of Action of (Mixtures of) Non-Dioxin-like Polychlorinated Biphenyls and Polybrominated Diphenyl Ethers. Environ. Sci. Pollut. Res. Int. 2014, 21, 6373–6383. [Google Scholar] [CrossRef]
- Committee, E.S. Statement on the Benefits of Fish/Seafood Consumption Compared to the Risks of Methylmercury in Fish/Seafood. EFSA J. 2015, 13, 3982. [Google Scholar] [CrossRef]
- Oken, E.; Rifas-Shiman, S.L.; Amarasiriwardena, C.; Jayawardene, I.; Bellinger, D.C.; Hibbeln, J.R.; Wright, R.O.; Gillman, M.W. Maternal Prenatal Fish Consumption and Cognition in Mid Childhood: Mercury, Fatty Acids, and Selenium. Neurotoxicol. Teratol. 2016, 57, 71–78. [Google Scholar] [CrossRef] [PubMed]
- Strain, J.J.; Davidson, P.W.; Bonham, M.P.; Duffy, E.M.; Stokes-Riner, A.; Thurston, S.W.; Wallace, J.M.W.; Robson, P.J.; Shamlaye, C.F.; Georger, L.A.; et al. Associations of Maternal Long-Chain Polyunsaturated Fatty Acids, Methyl Mercury, and Infant Development in the Seychelles Child Development Nutrition Study. Neurotoxicology 2008, 29, 776–782. [Google Scholar] [CrossRef]
- Strain, J.J.; Davidson, P.W.; Thurston, S.W.; Harrington, D.; Mulhern, M.S.; McAfee, A.J.; van Wijngaarden, E.; Shamlaye, C.F.; Henderson, J.; Watson, G.E.; et al. Maternal PUFA Status but Not Prenatal Methylmercury Exposure Is Associated with Children’s Language Functions at Age Five Years in the Seychelles. J. Nutr. 2012, 142, 1943–1949. [Google Scholar] [CrossRef] [PubMed]
- Julvez, J.; Méndez, M.; Fernandez-Barres, S.; Romaguera, D.; Vioque, J.; Llop, S.; Ibarluzea, J.; Guxens, M.; Avella-Garcia, C.; Tardón, A.; et al. Maternal Consumption of Seafood in Pregnancy and Child Neuropsychological Development: A Longitudinal Study Based on a Population with High Consumption Levels. Am. J. Epidemiol. 2016, 183, 169–182. [Google Scholar] [CrossRef] [PubMed]
- Gil, A.; Gil, F. Fish, a Mediterranean Source of n-3 PUFA: Benefits Do Not Justify Limiting Consumption. Br. J. Nutr. 2015, 113 (Suppl. S2), S58–S67. [Google Scholar] [CrossRef]
Seafood Consumption | |||||
---|---|---|---|---|---|
Characteristics | Total (n = 460) | <54 g/d (n = 318) | 54 to 71 g/d (n = 66) | >71 g/d (n = 76) | |
Maternal Characteristics | Summary Statistics | p | |||
Age (years), mean ± SD | 30.89 ± 5.10 | 30.53 ± 5.09 a | 30.85 ± 4.92 | 32.45 ± 5.03 a | 0.012 |
BMI (kg/m2), n (%) | 0.166 | ||||
<25 (normal weight) | 276 (60.0%) | 200 (62.9%) | 37 (56.1%) | 39 (51.3%) | |
25–29 (overweight) | 119 (25.9%) | 81 (25.5%) | 16 (24.2%) | 22 (28.9%) | |
≥30 (obesity) | 65 (14.1%) | 37 (11.6%) | 13 (19.7%) | 15 (19.7%) | |
Gestational weight gain (kg), mean ± SD | 10.30 ± 4.04 | 10.35 ± 4.04 | 10.67 ± 3.61 | 9.81 ± 4.37 | 0.429 |
Social class, n (%) | 0.956 | ||||
Low/middle | 372 (80.9%) | 256 (80.5%) | 54 (81.8%) | 62 (81.6%) | |
High | 88 (19.1%) | 62 (19.5%) | 12 (18.2%) | 14 (18.4%) | |
Smoking status, n (%) | 0.625 | ||||
Never/Ex-smoker | 390 (84.8%) | 273 (85.8%) | 54 (81.8%) | 63 (82.9%) | |
Smoker | 70 (15.2%) | 45 (14.2%) | 12 (18.2%) | 13 (17.1%) | |
MedDiet during pregnancy (score), mean ± SD | 9.85 ± 2.46 | 9.48 ± 2.43 ab | 10.43 ± 2.43 a | 10.90 ± 2.20 b | <0.001 |
Energy intake during pregnancy (kcal/d), mean ± SD | 2041.28 ± 605.77 | 1960.29 ± 531.05 a | 2093.00 ± 676.29 b | 2335.26 ± 734.65 ab | <0.001 |
Serum total n-3 PUFA (μmol/L), mean ± SD | 258.36 ± 82.78 | 251.54 ± 81.11 | 281.63 ± 91.44 | 264.94 ± 78.33 | 0.051 |
Red blood cell folate (nmol/L), mean ± SD | 570.19 ± 209.23 | 562.36 ± 202.70 | 549.94 ± 234.78 | 623.03 ± 213.45 | 0.148 |
Serum ferritin (microgr/L), mean ± SD | 16.25 ± 9.67 | 16.20 ± 9.05 | 17.47 ± 13.64 | 15.38 ± 7.86 | 0.523 |
Serum VitB12 (pg/mL), mean ± SD | 305.13 ± 138.95 | 374.05 ± 135.21 | 318.59 ± 108.11 | 310.96 ± 148.07 | 0.675 |
Serum VitD (ng/mL), mean ± SD | 14.38 ± 6.83 | 14.61 ± 6.49 | 14.60 ± 8.70 | 13.31 ± 6.31 | 0.429 |
Iron supplement (mg/day), mean ± SD | 49.65± 22.07 | 49.62 ± 22.39 | 48.48 ± 21.36 | 50.79 ± 21.53 | 0.825 |
State–trait anxiety inventory score, mean ± SD | 16.14 ± 7.21 | 16.27 ± 7.28 | 15.09 ± 6.07 | 16.47 ± 7.83 | 0.435 |
Newborn characteristics | Summary statistics | ||||
Sex, n (%) | 0.846 | ||||
Male | 236 (51.3%) | 161 (50.6%) | 36 (54.5%) | 39 (51.3%) | |
Female | 224 (48.7%) | 157 (49.4%) | 30 (45.5%) | 37 (48.7%) | |
Newborn weight (g), mean ± SD | 3298.03 ± 461.23 | 3285.39 ± 468.34 | 3264.36 ± 451.75 | 3380.13 ± 435.25 | 0.224 |
Type of feeding, n (%) | |||||
Breastfeeding | 339 (73.7%) | 229 (72.0%) | 51 (77.3%) | 59 (77.6%) | |
Mixed feeding/infant formula | 121 (26.3%) | 89 (28.0%) | 15 (22.7%) | 17 (22.4%) | 0.471 |
Neurodevelopment of infants | Summary statistics | ||||
BSID-III at 40 days, mean ± SD | |||||
Language scale | 96.06 ± 8.27 | 96.31± 8.03 | 97.00 ± 8.31 | 94.12 ± 9.02 | 0.070 |
Receptive language | 10.59 ± 2.12 | 10.64 ± 2.05 | 10.71 ± 2.01 | 10.28 ± 2.48 | 0.352 |
Expressive language | 8.02 ± 1.56 | 8.06 ± 1.59 | 8.23 ± 1.57 | 7.68 ± 1.42 | 0.086 |
Motor scale | 107.47 ± 11.40 | 106.86 ± 11.69 | 108.77 ± 10.56 | 108.91 ± 10.81 | 0.225 |
Fine motor | 11.45 ± 1.95 | 11.42 ± 1.90 | 11.45 ± 2.02 | 11.53 ± 2.12 | 0.919 |
Gross motor | 11.06 ± 2.35 | 10.89 ± 2.38 | 11.48 ± 2.21 | 11.42 ± 2.29 | 0.060 |
Cognitive scale | 101.58 ± 8.78 | 101.38 ± 9.04 | 103.11 ± 6.84 | 101.08 ± 9.10 | 0.301 |
Daily Toxicants | Reference EFSA Values (TWI/TDI) | Comparable Daily EFSA Value # | Toxicants Intake from Total Fish in Total Sample Size (n = 460) | Total Fish Consumption < 54 g/d (n = 318) | Total Fish Consumption 54 to 71 g/d (n = 66) | Total Fish Consumption > 71 g/d (n = 76) | |
---|---|---|---|---|---|---|---|
Median (IQR) | Median (Q1–Q3) | Median (Q1–Q3) | Median (Q1–Q3) | p | |||
As (μg) | 15 µg/kg bw/w | 151.37 | 245.74 (190.58) | 194.24 (131.77–264.21) ab | 366.61 (320.75–406.41) ac | 505.38 (462.21–581.38) bc | <0.001 |
InAs (μg) | 0.3 µg/kg bw/d | 21.19 | 0.04 (0.03) | 0.03 (0.02–0.04) ab | 0.06 (0.06–0.06) ac | 0.08 (0.08–0.10) bc | <0.001 |
Cd (μg) | 2.5 µg/kg bw/w | 25.23 | 2.82 (2.77) | 2.40 (1.13–3.48) ab | 3.81 (2.67–5.49) ac | 4.55 (2.42–7.65) bc | <0.001 |
MeHg (μg) | 1.3 µg/kg bw/w | 13.12 | 3.82 (2.81) | 3.05 (2.05–3.93) ab | 5.47 (4.92–6.12) ac | 7.88 (6.89–9.09) bc | <0.001 |
Pb (μg) | 0.50 µg/kg bw/d | 35.32 | 0.60 (0.51) | 0.49 (0.28–0.68) ab | 0.84 (0.69–1.08) ac | 1.14 (0.77–1.46) bc | <0.001 |
PCDD/Fs (pg TEQ) | 2 pg/kg bw/w * | 20.18 | 2.89 (1.98) | 2.33 (1.69–2.94) ab | 4.15 (3.81–4.57) ac | 5.73 (5.02–6.76) bc | <0.001 |
DL_PCBs (pg TEQ) | 13.79 (10.79) | 11.09 (7.38–14.17) ab | 20.16 (17.03–23.14) ac | 29.25 (24.04–32.74) bc | <0.001 | ||
NDL_PCBs (ng TEQ) | 10 ng/kg bw/d | 706.40 | 137.28 (103.02) | 113.01 (75.72–140.86) ab | 201.18 (190.49–219.12) ac | 280.12 (253.14–332.33) bc | <0.001 |
Language Scale | Receptive Language Subscale | Expressive Language Subscale | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
β | 95%CI | p | β | 95%CI | p | β | 95%CI | p | ||||
As a | ||||||||||||
crude | −0.05 | −0.10 | 0.00 | 0.040 | −0.01 | −0.02 | 0.01 | 0.220 | −0.01 | −0.02 | 0.00 | 0.045 |
Model 1 | −0.06 | −0.12 | −0.01 | 0.022 | −0.01 | −0.02 | 0.01 | 0.223 | −0.02 | −0.23 | −0.01 | 0.016 |
InAs b | ||||||||||||
crude | −0.33 | −0.64 | −0.02 | 0.035 | −0.07 | −0.15 | 0.01 | 0.097 | −0.05 | −0.10 | 0.01 | 0.126 |
Model 1 | −0.40 | −0.75 | −0.06 | 0.020 | −0.08 | −0.17 | 0.01 | 0.090 | −0.06 | −0.12 | 0.01 | 0.077 |
Cd | ||||||||||||
crude | 0.04 | −0.26 | 0.34 | 0.811 | 0.04 | −0.04 | 0.11 | 0.369 | −0.02 | −0.08 | 0.04 | 0.452 |
Model 1 | 0.03 | −0.28 | 0.34 | 0.871 | 0.04 | −0.04 | 0.12 | 0.383 | −0.03 | −0.09 | 0.03 | 0.379 |
MeHg | ||||||||||||
crude | −0.34 | −0.66 | −0.04 | 0.028 | −0.08 | −0.17 | −0.01 | 0.031 | −0.03 | −0.09 | 0.03 | 0.311 |
Model 1 | −0.41 | −0.76 | −0.07 | 0.019 | −0.10 | −0.19 | −0.01 | 0.030 | −0.04 | −0.10 | 0.03 | 0.262 |
Pb c | ||||||||||||
crude | −0.03 | −0.21 | 0.14 | 0.693 | 0.01 | −0.03 | 0.06 | 0.628 | −0.02 | −0.06 | 0.01 | 0.184 |
Model 1 | −0.05 | −0.23 | 0.13 | 0.614 | 0.01 | −0.04 | 0.06 | 0.640 | −0.03 | −0.06 | 0.01 | 0.127 |
PCDD/Fs | ||||||||||||
crude | −0.42 | −0.86 | 0.04 | 0.071 | −0.08 | −0.20 | 0.04 | 0.168 | −0.06 | −0.15 | 0.03 | 0.174 |
Model 1 | −0.50 | −1.00 | 0.00 | 0.053 | −0.09 | −0.22 | 0.04 | 0.164 | −0.08 | −0.17 | 0.02 | 0.119 |
DL-PCBs | ||||||||||||
crude | −0.08 | −0.17 | 0.00 | 0.049 | −0.02 | −0.04 | 0.00 | 0.037 | −0.01 | −0.02 | 0.01 | 0.485 |
Model 1 | −0.10 | −0.19 | −0.01 | 0.040 | −0.03 | −0.05 | −0.01 | 0.036 | −0.01 | −0.02 | 0.01 | 0.459 |
NDL-PCB a | ||||||||||||
crude | −0.10 | −0.19 | −0.01 | 0.031 | −0.02 | −0.05 | 0.00 | 0.053 | −0.01 | −0.03 | 0.01 | 0.216 |
Model 1 | −0.12 | −0.22 | −0.02 | 0.020 | −0.03 | −0.05 | 0.00 | 0.051 | −0.01 | −0.03 | 0.00 | 0.161 |
Language Scale | Receptive Language Subscale | Expressive Language Subscale | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Seafood Consumption | β | 95%CI | p | β | 95%CI | p | β | 95%CI | p | ||||
<54 g/d (ref.) | Crude | ||||||||||||
54–71 g/d | 0.69 | −1.50 | 2.88 | 0.535 | 0.07 | −0.50 | 0.63 | 0.814 | 0.17 | −0.25 | 0.58 | 0.436 | |
>71 g/d | −2.19 | −4.25 | −0.13 | 0.037 | −0.36 | −0.90 | 0.16 | 0.174 | −0.38 | −0.77 | 0.11 | 0.057 | |
<54 g/d (ref.) | Model 1 | ||||||||||||
54–71 g/d | 0.40 | −1.87 | 2.66 | 0.733 | 0.08 | −0.50 | 0.67 | 0.781 | 0.05 | −0.38 | 0.48 | 0.817 | |
>71 g/d | −2.70 | −4.97 | −0.44 | 0.019 | −0.43 | −1.02 | 0.16 | 0.151 | −0.49 | −0.92 | −0.06 | 0.026 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kou, X.; Becerra-Tomás, N.; Canals, J.; Bulló, M.; Arija, V. Association between Prenatal Dietary Toxicants and Infant Neurodevelopment: The Role of Fish. Toxics 2024, 12, 338. https://doi.org/10.3390/toxics12050338
Kou X, Becerra-Tomás N, Canals J, Bulló M, Arija V. Association between Prenatal Dietary Toxicants and Infant Neurodevelopment: The Role of Fish. Toxics. 2024; 12(5):338. https://doi.org/10.3390/toxics12050338
Chicago/Turabian StyleKou, Xiruo, Nerea Becerra-Tomás, Josefa Canals, Monica Bulló, and Victoria Arija. 2024. "Association between Prenatal Dietary Toxicants and Infant Neurodevelopment: The Role of Fish" Toxics 12, no. 5: 338. https://doi.org/10.3390/toxics12050338
APA StyleKou, X., Becerra-Tomás, N., Canals, J., Bulló, M., & Arija, V. (2024). Association between Prenatal Dietary Toxicants and Infant Neurodevelopment: The Role of Fish. Toxics, 12(5), 338. https://doi.org/10.3390/toxics12050338