Association of Air Quality Improvement and Frailty Progression: A National Study across China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Air Pollution Assessment
2.3. Frailty Index Assessment
2.4. Covariates
2.5. Statistical Analyses
3. Results
3.1. Baseline Characteristics
3.2. Air Quality Improvement and Frailty Progression
3.3. Subgroup and Sensitivity Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hoogendijk, E.O.; Afilalo, J.; Ensrud, K.E.; Kowal, P.; Onder, G.; Fried, L.P. Frailty: Implications for clinical practice and public health. Lancet 2019, 394, 1365–1375. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Lupón, J.; Vidán, M.T.; Ferguson, C.; Gastelurrutia, P.; Newton, P.J.; Macdonald, P.S.; Bueno, H.; Bayés-Genís, A.; Woo, J.; et al. Impact of Frailty on Mortality and Hospitalization in Chronic Heart Failure: A Systematic Review and Meta-Analysis. J. Am. Heart Assoc. 2018, 7, e008251. [Google Scholar] [CrossRef] [PubMed]
- Ensrud, K.E.; Kats, A.M.; Schousboe, J.T.; Taylor, B.C.; Cawthon, P.M.; Hillier, T.A.; Yaffe, K.; Cummings, S.R.; Cauley, J.A.; Langsetmo, L.; et al. Frailty Phenotype and Healthcare Costs and Utilization in Older Women. J. Am. Geriatr. Soc. 2018, 66, 1276–1283. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.H.; Glynn, R.J.; Avorn, J.; Lipsitz, L.A.; Rockwood, K.; Pawar, A.; Schneeweiss, S. Validation of a Claims-Based Frailty Index Against Physical Performance and Adverse Health Outcomes in the Health and Retirement Study. J. Gerontol. Ser. A 2019, 74, 1271–1276. [Google Scholar] [CrossRef]
- Hajek, A.; Bock, J.-O.; Saum, K.-U.; Matschinger, H.; Brenner, H.; Holleczek, B.; Haefeli, W.E.; Heider, D.; König, H.-H. Frailty and healthcare costs—Longitudinal results of a prospective cohort study. Age Ageing 2018, 47, 233–241. [Google Scholar] [CrossRef] [PubMed]
- Wilkinson, T.J.; Miksza, J.; Zaccardi, F.; Lawson, C.; Nixon, A.C.; Young, H.M.; Khunti, K.; Smith, A.C. Associations between frailty trajectories and cardiovascular, renal, and mortality outcomes in chronic kidney disease. J. Cachex-Sarcopenia Muscle 2022, 13, 2426–2435. [Google Scholar] [CrossRef]
- Hu, K.; Keenan, K.; Hale, J.M.; Börger, T. The association between city-level air pollution and frailty among the elderly population in China. Health Place 2020, 64, 102362. [Google Scholar] [CrossRef]
- Shin, J.; Choi, J. Frailty Related to the Exposure to Particulate Matter and Ozone: The Korean Frailty and Aging Cohort Study. Int. J. Environ. Res. Public Health 2021, 18, 11796. [Google Scholar] [CrossRef]
- Guo, Y.F.; Ng, N.; Kowal, P.; Lin, H.; Ruan, Y.; Shi, Y.; Wu, F. Frailty Risk in Older Adults Associated with Long-Term Exposure to Ambient PM2.5 in 6 Middle-Income Countries. J. Gerontol. Ser. A 2022, 77, 970–976. [Google Scholar] [CrossRef]
- Shih, C.-H.; Chen, J.-K.; Kuo, L.-W.; Cho, K.-H.; Hsiao, T.-C.; Lin, Z.-W.; Lin, Y.-S.; Kang, J.-H.; Lo, Y.-C.; Chuang, K.-J.; et al. Chronic pulmonary exposure to traffic-related fine particulate matter causes brain impairment in adult rats. Part. Fibre Toxicol. 2018, 15, 44. [Google Scholar] [CrossRef]
- Yao, M.; Niu, Y.; Liu, S.; Liu, Y.; Kan, H.; Wang, S.; Ji, J.S.; Zhao, B. Mortality Burden of Cardiovascular Disease Attributable to Ozone in China: 2019 vs 2050. Environ. Sci. Technol. 2023, 57, 10985–10997. [Google Scholar] [CrossRef]
- Wang, K.; Yuan, Y.; Wang, Q.; Yang, Z.; Zhan, Y.; Wang, Y.; Wang, F.; Zhang, Y. Incident risk and burden of cardiovascular diseases attributable to long-term NO2 exposure in Chinese adults. Environ. Int. 2023, 178, 108060. [Google Scholar] [CrossRef]
- Guo, L.-H.; Zeeshan, M.; Huang, G.-F.; Chen, D.-H.; Xie, M.; Liu, J.; Dong, G.-H. Influence of Air Pollution Exposures on Cardiometabolic Risk Factors: A Review. Curr. Environ. Health Rep. 2023, 10, 501–507. [Google Scholar] [CrossRef]
- Xue, T.; Liu, J.; Zhang, Q.; Geng, G.; Zheng, Y.; Tong, D.; Liu, Z.; Guan, D.; Bo, Y.; Zhu, T.; et al. Rapid improvement of PM2.5 pollution and associated health benefits in China during 2013–2017. Sci. China Earth Sci. 2019, 62, 1847–1856. [Google Scholar] [CrossRef]
- Chen, C.; Fang, J.-L.; Shi, W.-Y.; Li, T.-T.; Shi, X.-M. Clean air actions and health plans in China. Chin. Med. J. 2020, 133, 1609–1611. [Google Scholar] [CrossRef]
- Huang, J.; Pan, X.; Guo, X.; Li, G. Health impact of China’s Air Pollution Prevention and Control Action Plan: An analysis of national air quality monitoring and mortality data. Lancet Planet. Health 2018, 2, e313–e323. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Hu, Y.; Smith, J.P.; Strauss, J.; Yang, G. Cohort Profile: The China Health and Retirement Longitudinal Study (CHARLS). Int. J. Epidemiol. 2014, 43, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Nie, Z.; Ou, Y.; Qian, Z.; McMillin, S.E.; Aaron, H.E.; Zhou, Y.; Dong, G.; Dong, H. Air quality improvement and cognitive function benefit: Insight from clean air action in China. Environ. Res. 2022, 214 Pt 4, 114200. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Knibbs, L.D.; Zhang, W.; Li, S.; Cao, W.; Guo, J.; Ren, H.; Wang, B.; Wang, H.; Williams, G.; et al. Estimating spatiotemporal distribution of PM1 concentrations in China with satellite remote sensing, meteorology, and land use information. Environ. Pollut. 2018, 233, 1086–1094. [Google Scholar] [CrossRef]
- Chen, G.; Li, S.; Knibbs, L.D.; Hamm, N.A.S.; Cao, W.; Li, T.; Guo, J.; Ren, H.; Abramson, M.J.; Guo, Y. A machine learning method to estimate PM2.5 concentrations across China with remote sensing, meteorological and land use information. Sci. Total Environ. 2018, 636, 52–60. [Google Scholar] [CrossRef]
- Chen, G.; Wang, Y.; Li, S.; Cao, W.; Ren, H.; Knibbs, L.D.; Abramson, M.J.; Guo, Y. Spatiotemporal patterns of PM10 concentrations over China during 2005–2016: A satellite-based estimation using the random forests approach. Environ. Pollut. 2018, 242 Pt A, 605–613. [Google Scholar] [CrossRef]
- Chen, G.; Li, Y.; Zhou, Y.; Shi, C.; Guo, Y.; Liu, Y. The comparison of AOD-based and non-AOD prediction models for daily PM2.5 estimation in Guangdong province, China with poor AOD coverage. Environ. Res. 2021, 195, 110735. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Chen, J.; Dong, G.-H.; Yang, B.-Y.; Liu, Y.; Lu, T.; Yu, P.; Guo, Y.; Li, S. Improving satellite-based estimation of surface ozone across China during 2008–2019 using iterative random forest model and high-resolution grid meteorological data. Sustain. Cities Soc. 2021, 69, 102807. [Google Scholar] [CrossRef]
- Cheng, Z.; He, D.; Li, J.; Wu, Q.; Liu, Z.; Zhu, Y. C-reactive protein and white blood cell are associated with frailty progression: A longitudinal study. Immun. Ageing 2022, 19, 29. [Google Scholar] [CrossRef] [PubMed]
- Rockwood, K.; Song, X.; MacKnight, C.; Bergman, H.; Hogan, D.B.; McDowell, I.; Mitnitski, A. A global clinical measure of fitness and frailty in elderly people. CMAJ 2005, 173, 489–495. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Kong, X.; Li, H.; Chen, J.; Yao, Q.; Li, H.; Zhou, F.; Hu, H. Does social participation decrease the risk of frailty? Impacts of diversity in frequency and types of social participation on frailty in middle-aged and older populations. BMC Geriatr. 2022, 22, 553. [Google Scholar] [CrossRef] [PubMed]
- Myers, V.; Broday, D.M.; Steinberg, D.M.; Drory, Y.; Gerber, Y. Exposure to particulate air pollution and long-term incidence of frailty after myocardial infarction. Ann. Epidemiol. 2013, 23, 395–400. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.-J.; Liu, C.-Y.; Peng, L.-N.; Lin, C.-H.; Lin, H.-P.; Chen, L.-K. PM2.5 air pollution contributes to the burden of frailty. Sci. Rep. 2020, 10, 14478. [Google Scholar] [CrossRef] [PubMed]
- Veronese, N.; Maniscalco, L.; Matranga, D.; Lacca, G.; Dominguez, L.J.; Barbagallo, M. Association between Pollution and Frailty in Older People: A Cross-Sectional Analysis of the UK Biobank. J. Am. Med. Dir. Assoc. 2023, 24, 475–481.e3. [Google Scholar] [CrossRef]
- Liu, K.; Cao, H.; Li, B.; Guo, C.; Zhao, W.; Han, X.; Zhang, H.; Wang, Z.; Tang, N.; Niu, K.; et al. Long-term exposure to ambient nitrogen dioxide and ozone modifies systematic low-grade inflammation: The CHCN-BTH study. Int. J. Hyg. Environ. Health 2022, 239, 113875. [Google Scholar] [CrossRef]
- Zhou, P.; Zhang, W.; Xu, Y.-J.; Liu, R.-Q.; Qian, Z.; McMillin, S.E.; Bingheim, E.; Lin, L.-Z.; Zeng, X.-W.; Yang, B.-Y.; et al. Association between long-term ambient ozone exposure and attention-deficit/hyperactivity disorder symptoms among Chinese children. Environ. Res. 2023, 216 Pt 2, 114602. [Google Scholar] [CrossRef] [PubMed]
- García-Esquinas, E.; Rodríguez-Artalejo, F. Environmental Pollutants, Limitations in Physical Functioning, and Frailty in Older Adults. Curr. Environ. Health Rep. 2017, 4, 12–20. [Google Scholar] [CrossRef] [PubMed]
- Bandeen-Roche, K.; Seplaki, C.L.; Huang, J.; Buta, B.; Kalyani, R.R.; Varadhan, R.; Xue, Q.-L.; Walston, J.D.; Kasper, J.D. Frailty in Older Adults: A Nationally Representative Profile in the United States. J. Gerontol. Ser. A 2015, 70, 1427–1434. [Google Scholar] [CrossRef] [PubMed]
- Mackenbach, J.P.; Avendano, M.; Andersen-Ranberg, K.; Aro, A.R. First results from the survey of health, ageing and retirement in Europe. In Health, Ageing and Retirement in Europe; Borsch-Supan, A., Brugiavini, A., Jürges, H., Mackenbach, J.P., Siegrist, J., Weber, G., Eds.; Mannheim Research Institute for the Economics of Aging: Mannheim, Germany, 2005. [Google Scholar]
- Ilinca, S.; Calciolari, S. The Patterns of Health Care Utilization by Elderly Europeans: Frailty and Its Implications for Health Systems. Health Serv. Res. 2014, 50, 305–320. [Google Scholar] [CrossRef] [PubMed]
- Nethery, R.C.; Mealli, F.; Sacks, J.D.; Dominici, F. Evaluation of the health impacts of the 1990 Clean Air Act Amendments using causal inference and machine learning. J. Am. Stat. Assoc. 2020, 116, 1128–1139. [Google Scholar] [CrossRef] [PubMed]
- Malmqvist, E.; Jensen, E.L.; Westerberg, K.; Stroh, E.; Rittner, R.; Gustafsson, S.; Spanne, M.; Nilsson, H.; Oudin, A. Estimated health benefits of exhaust free transport in the city of Malmo, Southern Sweden. Environ. Int. 2018, 118, 78–85. [Google Scholar] [CrossRef] [PubMed]
- Fougère, B.; Vellas, B.; Billet, S.; Martin, P.J.; Gallucci, M.; Cesari, M. Air Pollution modifies the association between successful and pathological aging throughout the frailty condition. Ageing Res. Rev. 2015, 24 Pt B, 299–303. [Google Scholar] [CrossRef]
- Odegaard, A.O.; Jacobs, D.R., Jr.; Sanchez, O.A.; Goff, D.C., Jr.; Reiner, A.P.; Gross, M.D. Oxidative stress, inflammation, endothelial dysfunction and incidence of type 2 diabetes. Cardiovasc. Diabetol. 2016, 15, 51. [Google Scholar] [CrossRef]
- Salimi, S.; Shardell, M.D.; Seliger, S.L.; Bandinelli, S.; Guralnik, J.M.; Ferrucci, L. Inflammation and Trajectory of Renal Function in Community-Dwelling Older Adults. J. Am. Geriatr. Soc. 2018, 66, 804–811. [Google Scholar] [CrossRef] [PubMed]
- Miller, A.H.; Raison, C.L. The role of inflammation in depression: From evolutionary imperative to modern treatment target. Nat. Rev. Immunol. 2016, 16, 22–34. [Google Scholar] [CrossRef]
- Lai, K.S.P.; Liu, C.S.; Rau, A.; Lanctôt, K.L.; Köhler, C.A.; Pakosh, M.; Carvalho, A.F.; Herrmann, N. Peripheral inflammatory markers in Alzheimer’s disease: A systematic review and meta-analysis of 175 studies. J. Neurol. Neurosurg. Psychiatry 2017, 88, 876–882. [Google Scholar] [CrossRef] [PubMed]
- Delfino, R.J.; Staimer, N.; Tjoa, T.; Polidori, A.; Arhami, M.; Gillen, D.L.; Kleinman, M.T.; Vaziri, N.D.; Longhurst, J.; Zaldivar, F.; et al. Circulating Biomarkers of Inflammation, Antioxidant Activity, and Platelet Activation Are Associated with Primary Combustion Aerosols in Subjects with Coronary Artery Disease. Environ. Health Perspect. 2008, 116, 898–906. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, B.; Moebus, S.; Dragano, N.; Stang, A.; Möhlenkamp, S.; Schmermund, A.; Memmesheimer, M.; Bröcker-Preuss, M.; Mann, K.; Erbel, R.; et al. Chronic Residential Exposure to Particulate Matter Air Pollution and Systemic Inflammatory Markers. Environ. Health Perspect. 2009, 117, 1302–1308. [Google Scholar] [CrossRef] [PubMed]
- Delfino, R.J.; Staimer, N.; Tjoa, T.; Gillen, D.L.; Polidori, A.; Arhami, M.; Kleinman, M.T.; Vaziri, N.D.; Longhurst, J.; Sioutas, C. Air Pollution Exposures and Circulating Biomarkers of Effect in a Susceptible Population: Clues to Potential Causal Component Mixtures and Mechanisms. Environ. Health Perspect. 2009, 117, 1232–1238. [Google Scholar] [CrossRef] [PubMed]
- Panasevich, S.; Leander, K.; Rosenlund, M.; Ljungman, P.; Bellander, T.; De Faire, U.; Pershagen, G.; Nyberg, F. Associations of long- and short-term air pollution exposure with markers of inflammation and coagulation in a population sample. Occup. Environ. Med. 2009, 66, 747–753. [Google Scholar] [CrossRef]
- Rückerl, R.; Schneider, A.; Breitner, S.; Cyrys, J.; Peters, A. Health effects of particulate air pollution: A review of epidemiological evidence. Inhal. Toxicol. 2011, 23, 555–592. [Google Scholar] [CrossRef] [PubMed]
- Cesari, M.; Penninx, B.W.J.H.; Pahor, M.; Lauretani, F.; Corsi, A.M.; Williams, G.R.; Guralnik, J.M.; Ferrucci, L. Inflammatory Markers and Physical Performance in Older Persons: The InCHIANTI Study. J. Gerontol. Ser. A 2004, 59, M242–M248. [Google Scholar] [CrossRef] [PubMed]
- Visser, M.; Pahor, M.; Taaffe, D.R.; Goodpaster, B.H.; Simonsick, E.M.; Newman, A.B.; Nevitt, M.; Harris, T.B. Relationship of Interleukin-6 and Tumor Necrosis Factor- with Muscle Mass and Muscle Strength in Elderly Men and Women: The Health ABC Study. J. Gerontol. Ser. A 2002, 57, M326–M332. [Google Scholar] [CrossRef] [PubMed]
- Donaldson, K.; Stone, V. Current hypotheses on the mechanisms of toxicity of ultrafine particles. Ann. Ist. Super. Sanita 2003, 39, 405–410. [Google Scholar] [PubMed]
- Hirano, S.; Furuyama, A.; Koike, E.; Kobayashi, T. Oxidative-stress potency of organic extracts of diesel exhaust and urban fine particles in rat heart microvessel endothelial cells. Toxicology 2003, 187, 161–170. [Google Scholar] [CrossRef]
- Wold, L.E.; Simkhovich, B.Z.; Kleinman, M.T.; Nordlie, M.A.; Dow, J.S.; Sioutas, C.; Kloner, R.A. In vivo and in vitro models to test the hypothesis of particle-induced effects on cardiac function and arrhythmias. Cardiovasc. Toxicol. 2006, 6, 69–78. [Google Scholar] [CrossRef]
- Risom, L.; Møller, P.; Loft, S. Oxidative stress-induced DNA damage by particulate air pollution. Mutat. Res. Mol. Mech. Mutagen. 2005, 592, 119–137. [Google Scholar] [CrossRef]
- Biswas, S.K. Does the Interdependence between Oxidative Stress and Inflammation Explain the Antioxidant Paradox? Oxid. Med. Cell. Longev. 2016, 2016, 5698931. [Google Scholar] [CrossRef]
- Chuang, K.-J.; Yan, Y.-H.; Chiu, S.-Y.; Cheng, T.-J. Long-term air pollution exposure and risk factors for cardiovascular diseases among the elderly in Taiwan. Occup. Environ. Med. 2010, 68, 64–68. [Google Scholar] [CrossRef]
- Sun, Q.; Yue, P.; Deiuliis, J.A.; Lumeng, C.N.; Kampfrath, T.; Mikolaj, M.B.; Cai, Y.; Ostrowski, M.C.; Lu, B.; Parthasarathy, S.; et al. Ambient Air Pollution Exaggerates Adipose Inflammation and Insulin Resistance in a Mouse Model of Diet-Induced Obesity. Circulation 2009, 119, 538–546. [Google Scholar] [CrossRef]
- Andersen, Z.J.; Raaschou-Nielsen, O.; Ketzel, M.; Jensen, S.S.; Hvidberg, M.; Loft, S.; Tjønneland, A.; Overvad, K.; Sørensen, M. Diabetes Incidence and Long-Term Exposure to Air Pollution: A cohort study. Diabetes Care 2012, 35, 92–98. [Google Scholar] [CrossRef]
- Fedarko, N.S. The Biology of Aging and Frailty. Clin. Geriatr. Med. 2011, 27, 27–37. [Google Scholar] [CrossRef]
- Holliday, R. Understanding Ageing; Cambridge University Press (CUP): Cambridge, UK, 1995. [Google Scholar]
Characteristics | Total (n = 12,891) | Without Frailty Progression (n = 6081) | Frailty Progression (n = 6810) | p |
---|---|---|---|---|
Age (mean ± SD, year) | 58.6 ± 8.8 | 58.4 ± 8.7 | 58.7 ± 9.0 | 0.037 |
Sex (n, %) | <0.001 | |||
Male | 6240 (48.4) | 3048 (50.1) | 3192 (46.9) | |
Female | 6651 (51.6) | 3033 (49.9) | 3618 (53.1) | |
BMI (mean ± SD, kg/m2) | 23.62 ± 3.83 | 23.56 ± 3.77 | 23.68 ± 3.89 | 0.096 |
Residence (n, %) | 0.024 | |||
Rural | 8243 (63.9) | 3827 (62.9) | 4416 (64.8) | |
Urban | 4648 (36.1) | 2254 (37.1) | 2394 (35.2) | |
Marital status (n, %) | <0.001 | |||
Separated or divorced | 1416 (11.0) | 678 (11.1) | 738 (10.8) | |
Married but temporarily separated | 835 (6.5) | 337 (5.5) | 498 (7.3) | |
Married and living together | 10,640 (82.5) | 5066 (83.3) | 5574 (81.9) | |
Education level (n, %) | 0.034 | |||
Primary school and below | 8664 (67.2) | 4018 (66.1) | 4646 (68.2) | |
Junior high school | 2747 (21.3) | 1338 (22) | 1409 (20.7) | |
High school and above | 1480 (11.5) | 725 (11.9) | 755 (11.1) | |
Drinking status (n, %) | <0.001 | |||
>1 time/month | 3342 (25.9) | 1668 (27.4) | 1674 (24.6) | |
<1 time/month | 1025 (8.0) | 491 (8.1) | 534 (7.8) | |
Never | 8524 (66.1) | 3922 (64.5) | 4602 (67.6) | |
Smoking (n, %) | 5140 (39.9) | 2502 (41.1) | 2638 (38.7) | 0.005 |
Sleeping time (mean ± SD, hours) | 6.34 ± 1.82 | 6.27 ± 1.88 | 6.39 ± 1.76 | <0.001 |
Napping time (mean ± SD, minutes) | 37.48 ± 43.34 | 37.72 ± 43.71 | 37.27 ± 43.01 | 0.554 |
Insurance (n, %) | 12,171 (94.4) | 5744 (94.5) | 6427 (94.4) | 0.839 |
Social activity (n, %) | 6890 (53.4) | 3144 (51.7) | 3746 (55.0) | <0.001 |
Cooking fuel (n, %) | 0.442 | |||
Clean fuel | 5515 (42.8) | 2580 (42.4) | 2935 (43.1) | |
Solid fuel | 7376 (57.2) | 3501 (57.6) | 3875 (56.9) | |
FI (mean ± SD) | 0.22 ± 0.11 | 0.26 ± 0.11 | 0.19 ± 0.11 | <0.001 |
Pollutant | Total (μg/m3) | Without Frailty Progression (μg/m3) | Frailty Progression (μg/m3) | p |
---|---|---|---|---|
2011 | ||||
PM1 | 40.02 ± 13.78 | 40.37 ± 13.61 | 39.71 ± 13.92 | 0.006 |
PM2.5 | 52.35 ± 16.07 | 52.79 ± 15.90 | 51.95 ± 16.21 | 0.003 |
PM10 | 93.14 ± 28.35 | 94.15 ± 28.26 | 92.24 ± 28.40 | <0.001 |
NO2 | 29.37 ± 10.80 | 29.70 ± 10.78 | 29.08 ± 10.80 | 0.001 |
O3 | 95.08 ± 6.92 | 95.21 ± 6.92 | 94.96 ± 6.91 | 0.045 |
2015 | ||||
PM1 | 38.98 ± 9.80 | 39.19 ± 9.71 | 38.80 ± 9.88 | 0.025 |
PM2.5 | 53.50 ± 14.21 | 53.81 ± 14.10 | 53.22 ± 14.30 | 0.019 |
PM10 | 79.16 ± 19.42 | 79.65 ± 19.28 | 78.73 ± 19.53 | 0.008 |
NO2 | 30.57 ± 8.70 | 30.82 ± 8.72 | 30.35 ± 8.68 | 0.002 |
O3 | 88.52 ± 7.54 | 88.59 ± 7.75 | 88.45 ± 7.35 | 0.294 |
∆2011–2015 | ||||
∆PM1 | 0.81 (−2.68, 5.30) | 1.07 (−2.39, 5.40) | 0.79 (−2.82, 5.20) | 0.002 |
∆PM2.5 | −1.20 (−5.27, 3.21) | −1.03 (−5.14, 3.26) | −1.20 (−5.45, 2.61) | 0.008 |
∆PM10 | 13.40 (6.39, 22.92) | 14.51 (6.52, 23.38) | 12.27 (5.71, 22.73) | <0.001 |
∆NO2 | −1.45 (−4.51, 2.02) | −1.34 (−4.30, 2.12) | −1.53 (−4.73, 1.96) | 0.01 |
∆O3 | 6.52 (3.82, 9.42) | 6.52 (3.90, 9.44) | 6.52 (3.78, 9.42) | 0.309 |
Model 1 | Model 2 | Model 3 | Model 4 | |
---|---|---|---|---|
OR (95%CI) | OR (95%CI) | OR (95%CI) | OR (95%CI) | |
∆PM1 | ||||
Q1 | 1.00 (ref) | 1.00 (ref) | 1.00 (ref) | 1.00 (ref) |
Q2 | 0.91 (0.83~1.01) | 0.91 (0.821~0.999) | 0.91 (0.83~1.01) | 0.87 (0.78~0.98) |
Q3 | 0.90 (0.82~0.99) | 0.89 (0.81~0.99) | 0.89 (0.81~0.986) | 0.74 (0.66~0.82) |
Q4 | 0.86 (0.78~0.95) | 0.85 (0.77~0.94) | 0.86 (0.78~0.95) | 0.75 (0.68~0.84) |
p for Trend | 0.003 | 0.002 | 0.003 | <0.001 |
∆PM2.5 | ||||
Q1 | 1.00 (ref) | 1.00 (ref) | 1.00 (ref) | 1.00 (ref) |
Q2 | 0.90 (0.81~0.99) | 0.89 (0.81~0.99) | 0.88 (0.80~0.98) | 0.78 (0.72~0.89) |
Q3 | 0.99 (0.89~1.09) | 0.98 (0.89~1.08) | 0.98 (0.89~1.09) | 0.82 (0.74~0.91) |
Q4 | 0.84 (0.76~0.92) | 0.83 (0.75~0.91) | 0.83 (0.75~0.91) | 0.72 (0.65~0.80) |
p for Trend | 0.005 | 0.003 | 0.004 | <0.001 |
∆PM10 | ||||
Q1 | 1.00 (ref) | 1.00 (ref) | 1.00 (ref) | 1.00 (ref) |
Q2 | 1.01 (0.92~1.12) | 1.01 (0.92~1.12) | 1.01 (0.91~1.11) | 0.92 (0.83~1.03) |
Q3 | 0.84 (0.76~0.92) | 0.83 (0.75~0.91) | 0.84 (0.76~0.93) | 0.78 (0.71~0.87) |
Q4 | 0.81 (0.74~0.89) | 0.80 (0.73~0.88) | 0.80 (0.73~0.88) | 0.73 (0.66~0.81) |
p for Trend | <0.001 | <0.001 | <0.001 | <0.001 |
∆NO2 | ||||
Q1 | 1.00 (ref) | 1.00 (ref) | 1.00 (ref) | 1.00 (ref) |
Q2 | 0.89 (0.81~0.98) | 0.88 (0.80~0.98) | 0.90 (0.81~0.99) | 0.89 (0.80~0.99) |
Q3 | 0.84 (0.77~0.93) | 0.84 (0.76~0.92) | 0.86 (0.77~0.94) | 0.86 (0.77~0.95) |
Q4 | 0.88 (0.80~0.97) | 0.87 (0.79~0.97) | 0.89 (0.80~0.98) | 0.79 (0.71~0.88) |
p for Trend | 0.006 | 0.004 | 0.012 | <0.001 |
∆O3 | ||||
Q1 | 1.00 (ref) | 1.00 (ref) | 1.00 (ref) | 1.00 (ref) |
Q2 | 0.98 (0.89~1.08) | 0.98 (0.89~1.09) | 0.96 (0.87~1.06) | 0.95 (0.86~1.05) |
Q3 | 0.99 (0.89~1.09) | 0.99 (0.90~1.09) | 0.98 (0.88~1.08) | 0.93 (0.84~1.03) |
Q4 | 0.97 (0.88~1.07) | 0.97 (0.88~1.06) | 0.98 (0.89~1.08) | 0.94 (0.85~1.04) |
p for Trend | 0.518 | 0.515 | 0.747 | 0.199 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, M.; Zeeshan, M.; Sun, T.; Hu, X.; Nie, Z.; Dong, H.; Dong, G.; Ou, Y. Association of Air Quality Improvement and Frailty Progression: A National Study across China. Toxics 2024, 12, 464. https://doi.org/10.3390/toxics12070464
Liu M, Zeeshan M, Sun T, Hu X, Nie Z, Dong H, Dong G, Ou Y. Association of Air Quality Improvement and Frailty Progression: A National Study across China. Toxics. 2024; 12(7):464. https://doi.org/10.3390/toxics12070464
Chicago/Turabian StyleLiu, Mingqin, Mohammed Zeeshan, Tiantian Sun, Xiangming Hu, Zhiqiang Nie, Haojian Dong, Guanghui Dong, and Yanqiu Ou. 2024. "Association of Air Quality Improvement and Frailty Progression: A National Study across China" Toxics 12, no. 7: 464. https://doi.org/10.3390/toxics12070464
APA StyleLiu, M., Zeeshan, M., Sun, T., Hu, X., Nie, Z., Dong, H., Dong, G., & Ou, Y. (2024). Association of Air Quality Improvement and Frailty Progression: A National Study across China. Toxics, 12(7), 464. https://doi.org/10.3390/toxics12070464