A Machine-Learning-Driven Pathophysiology-Based New Approach Method for the Dose-Dependent Assessment of Hazardous Chemical Mixtures and Experimental Validations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collection of Experimental Chemical-Mixtures Data from the Literature
2.2. Collection of Drug Combinations
2.3. Collection of ChemIDPlus Single Chemicals
2.4. Creation of Binary-Mixture Dataset
2.5. Generating Virtual Mixtures: Assumptions and Methods
2.6. Hybrid Neural Network (HNN) Method for the Prediction of Chemical-Mixture Toxicity
2.6.1. Dose-Dependent Relationship of the Chemical Mixtures Using the HNN
Calculation of Dose-Dependent Ratio of Chemicals in a Mixture and Computation of Chemical Interaction Effects
2.6.2. Dose-Dependent Computations Using Mathematical Approach
2.7. Molecular Structural Feature Descriptors Using SMILES of the Chemicals
2.8. SMILES Preprocessing
2.9. Descriptor Calculation
2.10. Binary Classification Criteria
2.11. Multiclass Classification Criteria
- very highly toxic (<0.1 mg/L);
- highly toxic (0.1–1 mg/L);
- moderately toxic (>1–10 mg/L);
- slightly toxic (>10–100 mg/L);
- practically nontoxic (>100 mg/L).
2.12. Developing Binary and Multiclass Classification Models Using Other Machine-Learning Methods
2.13. Developing Regression Models Using Other Machine-Learning Methods
2.14. Ensemble Model
2.15. Robust Model Evaluation
Binary and Multiclass Classification Model Evaluation
Regression Model Evaluation
Compound Out
2.16. Reproducibility
2.17. AI-CPTM Score Computations
3. Results and Discussion
- I.1.
- Dose-Dependent Toxicity Assessment of Chemical Mixtures Using HNN and other Machine-Learning Methods
- I.2.
- Machine-Learning Model Performance using Literature-Derived Experimental Mixtures Data
- II.
- AI-CPTM: the integration of the HNN Machine-Learning Method with the CPTM Pathophysiology Method for the Assessment of Dose-Dependent Toxicity of Chemical Mixtures
- II.1.
- Single-chemical Toxicity—Binary Classification
- II.1.1.
- Accuracy based on Experimental Toxicity
- CPTM performance without HNN predictions added
- CPTM performance with HNN added (AI-CPTM)
- II.1.2.
- Accuracy Based on HNN Predicted Toxicity
- CPTM Performance without HNN Added
- CPTM performance with HNN added
- II.2.
- Chemical-Mixture Toxicity—Binary Classification
- II.2.1.
- Accuracy Based on Experimental Toxicity
- CPTM Performance without HNN Predictions
- CPTM Performance with HNN Added (AI-CPTM)
- II.2.2.
- Accuracy Based on HNN Predicted Toxicity
- CPTM Performance without HNN Predictions
- CPTM Performance with HNN Added (AI-CPTM)
- II.3.
- Experimental Validation
- II.3.1.
- Zebrafish-embryo toxicity studies of single chemicals
- II.3.2.
- Zebrafish-Embryo Toxicity of Chemical Mixtures and Chemical Interactions Analysis
- II.3.2.A.
- Measurement of Mixture Toxicity in Zebrafish Models
- Approach for Assessing Chemical Mixtures in Zebrafish
- Measurement of Developmental Toxicity
- III.1.
- Comparison of zebrafish toxicity outcomes with the results from machine-learning models for chemical mixtures
- III 1.1.
- Determination of EC50 and Measurement of Mixed Chemical Interactions
- III 1.2.
- Comparison of Predicted vs. Experimental Mixed Chemical Interactions
Chemical 1 | Concentration LC50 (µM) | Chemical 2 | Concentration LC50 (µM) | AI-CPTM | AI-HNN | RF | Bagging | Adaboost | Experiment (Zebrafish) | Mixture Chemical Interaction |
---|---|---|---|---|---|---|---|---|---|---|
Pyraclostrobin | 0.01 | Fenpropathrin | 5 | 0 | 0 | 1 | 1 | 1 | 0 | no interaction |
Alpha, alpha’-(1-methylethylenediimino)di-ortho-cresol (motor fuel oil) | 2.5 | 0 | 0 | 1 | 1 | 1 | 0 | no interaction | ||
Paclobutrazol | 50 | 1 | 1 | 1 | 1 | 1 | 0 | inconclusive | ||
2,4,6-Tribromophenol | 2 | 1 | 1 | 1 | 1 | 1 | 1 | inconclusive | ||
Pyridaben | 0.05 | 0 | 1 | 1 | 1 | 1 | 0 | inconclusive | ||
Butachlor | 100 | 1 | 1 | 0 | 0 | 0 | 1 | no interaction | ||
Tetramethrin | 5 | 1 | 0 | 0 | 1 | 1 | 1 | inconclusive | ||
Dicyclohexyl Phthalate (DCHP) | 100 | 1 | 0 | 1 | 1 | 0 | 1 | inconclusive | ||
Fenpropathrin | 5 | Alpha, alpha’-(1-methylethylenediimino)di-ortho-cresol | 2.5 | 1 | 1 | 1 | 0 | 1 | 1 | additive |
Paclobutrazol | 50 | 1 | 1 | 1 | 1 | 1 | 1 | additive | ||
2,4,6-Tribromophenol | 2 | 1 | 1 | 1 | 1 | 1 | 1 | additive | ||
Pyridaben Pestanal | 0.05 | 1 | 1 | 1 | 1 | 1 | 0 | no interaction | ||
Butachlor | 100 | 1 | 1 | 0 | 0 | 0 | 1 | additive | ||
Tetramethrin | 5 | 1 | 1 | 1 | 1 | 1 | 1 | synergistic | ||
Dicyclohexyl Phthalate (DCHP) | 100 | 1 | 1 | 1 | 1 | 0 | 1 | synergistic | ||
Alpha, alpha’-(1-methylethylenediimino)di-ortho-cresol (motor oil) | 2.5 | Paclobutrazol | 50 | 1 | 1 | 1 | 1 | 1 | 1 | additive |
2,4,6-Tribromophenol | 2 | 1 | 1 | 1 | 1 | 1 | 1 | additive | ||
Pyridaben Pestanal | 0.05 | 0 | 0 | 0 | 1 | 1 | 0 | inconclusive | ||
Butachlor | 100 | 0 | 0 | 1 | 0 | 0 | 1 | additive | ||
Tetramethrin | 5 | 0 | 0 | 0 | 0 | 1 | 0 | no interaction | ||
Dicyclohexyl Phthalate (DCHP) | 100 | 0 | 0 | 0 | 0 | 0 | 0 | no interaction | ||
Paclobutrazol | 50 | 2,4,6-Tribromophenol | 2 | 0 | 0 | 1 | 1 | 1 | 0 | no interaction |
Pyridaben | 0.05 | 1 | 1 | 1 | 1 | 1 | 1 | additive | ||
Butachlor | 100 | 1 | 1 | 1 | 1 | 1 | 1 | synergistic | ||
Tetramethrin | 5 | 0 | 0 | 1 | 0 | 1 | 0 | additive | ||
Dicyclohexyl Phthalate (DCHP) | 100 | 1 | 1 | 1 | 0 | 1 | 0 | additive | ||
2,4,6 -Tribromophenol | 2 | Pyridaben Pestanal | 0.05 | 1 | 1 | 1 | 1 | 1 | 0 | no interaction |
Butachlor | 100 | 1 | 1 | 0 | 0 | 0 | 1 | synergistic | ||
Tetramethrin | 5 | 1 | 1 | 1 | 1 | 1 | 1 | additive | ||
Dicyclohexyl Phthalate (DCHP) | 100 | 1 | 1 | 1 | 0 | 0 | 1 | no interaction | ||
Pyridaben | 0.05 | Butachlor | 100 | 1 | 1 | 1 | 1 | 1 | 1 | synergistic |
Tetramethrin | 5 | 1 | 1 | 1 | 1 | 0 | 0 | inconclusive | ||
Dicyclohexyl Phthalate (DCHP) | 100 | 1 | 1 | 1 | 1 | 0 | 0 | inconclusive | ||
Butachlor | 100 | Tetramethrin | 5 | 1 | 1 | 1 | 0 | 1 | 1 | synergistic |
Dicyclohexyl Phthalate (DCHP) | 100 | 1 | 1 | 1 | 1 | 1 | 1 | synergistic | ||
Tetramethrin | 5 | Dicyclohexyl Phthalate (DCHP) | 100 | 1 | 1 | 1 | 1 | 1 | 1 | inconclusive |
Perfluorooctane sulfonic acid (PFOS) | 53 | Perfluorooctanoic acid (PFOA) | 187.5 | 1 | 1 | 1 | 1 | 1 | 1 | synergistic |
- III.2.
- Toxicity Studies of Perfluorooctane Sulfonic Acid (PFOS) and Perfluorooctanoic Acid (PFOA) chemicals and their mixtures on Zebrafish Embryos
Compound | LD50 | EC50 |
---|---|---|
PFOS | 53 µM | 11 µM |
PFOA | 187.5 µM | 29.5 µM |
Concentration of PFOS Present (µM) | 68 µM PFOS | 38 µM PFOS | 22 µM PFOS |
LD50 (added PFOA concentration (µM) | 16.5 µM PFOA | 29 µM PFOA | 29.5 µM PFOA |
- III. 2.1.
- Zebrafish Survival upon exposure to PFOA and PFOS mixtures
- PFOS and PFOA Mixture Zebrafish Survival Assay
4. Limitations
5. Future Studies
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hayes, A.W.; Li, R.; Hoeng, J.; Iskandar, A.; Peistch, M.C.; Dourson, M.L. New approaches to risk assessment of chemical mixtures. Toxicol. Res. Appl. 2019, 3, 2397847318820768. [Google Scholar] [CrossRef]
- Chatterjee, M.; Roy, K. Recent Advances on Modelling the Toxicity of Environmental Pollutants for Risk Assessment: From Single Pollutants to Mixtures. Curr. Pollut. Rep. 2022, 8, 81–97. [Google Scholar] [CrossRef]
- Cherkasov, A.; Muratov, E.N.; Fourches, D.; Varnek, A.; Baskin, I.I.; Cronin, M.; Dearden, J.; Gramatica, P.; Martin, Y.C.; Todeschini, R.; et al. QSAR Modeling: Where Have You Been? Where Are You Going To? J. Med. Chem. 2014, 57, 4977–5010. [Google Scholar] [CrossRef]
- Ankley, G.T.; Bennett, R.S.; Erickson, R.J.; Hoff, D.J.; Hornung, M.W.; Johnson, R.D.; Mount, D.R.; Nichols, J.W.; Russom, C.L.; Schmieder, P.K.; et al. Adverse outcome pathways: A conceptual framework to support ecotoxicology research and risk assessment. Environ. Toxicol. Chem. 2010, 29, 730–741. [Google Scholar] [CrossRef] [PubMed]
- Nigsch, F.; Macaluso, N.M.; Mitchell, J.B.; Zmuidinavicius, D. Computational toxicology: An overview of the sources of data and of modelling methods. Expert Opin. Drug Metab. Toxicol. 2009, 5, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Altenburger, R.; Backhaus, T.; Boedeker, W.; Faust, M.; Scholze, M.; Grimme, L.H. Predictability of the toxicity of multiple chemical mixtures to Vibrio fischeri: Mixtures composed of similarly acting chemicals. Environ. Toxicol. Chem. 2000, 19, 2341–2347. [Google Scholar] [CrossRef]
- Luan, F.; Xu, X.; Liu, H.; Cordeiro, M.N.D.S. Prediction of the baseline toxicity of non-polar narcotic chemical mixtures by QSAR approach. Chemosphere 2013, 90, 1980–1986. [Google Scholar] [CrossRef]
- Qin, L.-T.; Wu, J.; Mo, L.-Y.; Zeng, H.-H.; Liang, Y.-P. Linear regression model for predicting interactive mixture toxicity of pesticide and ionic liquid. Environ. Sci. Pollut. Res. 2015, 22, 12759–12768. [Google Scholar] [CrossRef] [PubMed]
- Toropova, A.P.; Toropov, A.A.; Benfenati, E.; Gini, G.; Leszczynska, D.; Leszczynski, J. CORAL: Models of toxicity of binary mixtures. Chemom. Intell. Lab. Syst. 2012, 119, 39–43. [Google Scholar] [CrossRef]
- Netzeva, T.I.; Worth, A.P.; Aldenberg, T.; Benigni, R.; Cronin, M.T.; Gramatica, P.; Jaworska, J.S.; Kahn, S.; Klopman, G.; Marchant, C.A.; et al. Current Status of Methods for Defining the Applicability Domain of (Quantitative) Structure-Activity Relationships. Altern. Lab. Anim. 2005, 33, 155–173. [Google Scholar] [CrossRef]
- Cash, G.G. Predicting Chemical Toxicity and Fate; Cronin, M.T.D., Livingstone, D.J., Eds.; CRC Press: Boca Raton, FL, USA; p. 472. ISBN 9780415271806.
- Eriksson, L.; Jaworska, J.; Worth, A.P.; Cronin, M.T.D.; McDowell, R.M.; Gramatica, P. Methods for reliability and uncertainty assessment and for applicability evaluations of classification- and regression-based QSARs. Environ. Health Perspect. 2003, 111, 1361–1375. [Google Scholar] [CrossRef]
- Duan, Q.; Hu, Y.; Zheng, S.; Lee, J.; Chen, J.; Bi, S.; Xu, Z. Machine learning for mixture toxicity analysis based on high-throughput printing technology. Talanta 2020, 207, 120299. [Google Scholar] [CrossRef] [PubMed]
- Cipullo, S.; Snapir, B.; Prpich, G.; Campo, P.; Coulon, F. Prediction of bioavailability and toxicity of complex chemical mixtures through machine learning models. Chemosphere 2019, 215, 388–395. [Google Scholar] [CrossRef] [PubMed]
- Heys, K.A.; Shore, R.F.; Pereira, M.G.; Jones, K.C.; Martin, F.L. Risk assessment of environmental mixture effects. RSC Adv. 2016, 6, 47844–47857. [Google Scholar] [CrossRef]
- Rice, G.; MacDonell, M.; Hertzberg, R.C.; Teuschler, L.; Picel, K.; Butler, J.; Chang, Y.-S.; Hartmann, H. An approach for assessing human exposures to chemical mixtures in the environment. Toxicol. Appl. Pharmacol. 2008, 233, 126–136. [Google Scholar] [CrossRef]
- Khan, E.A.; Zhang, X.; Hanna, E.M.; Yadetie, F.; Jonassen, I.; Goksøyr, A.; Arukwe, A. Application of quantitative transcriptomics in evaluating the ex vivo effects of per- and polyfluoroalkyl substances on Atlantic cod (Gadus morhua) ovarian physiology. Sci. Total Environ. 2021, 755, 142904. [Google Scholar] [CrossRef]
- Escher, B.I.; Lamoree, M.; Antignac, J.-P.; Scholze, M.; Herzler, M.; Hamers, T.; Jensen, T.K.; Audebert, M.; Busquet, F.; Maier, D.; et al. Mixture Risk Assessment of Complex Real-Life Mixtures-The PANORAMIX Project. Int. J. Environ. Res. Public Health 2022, 19, 12990. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Taghizadeh, S.F.; Rezaee, R.; Azizi, M.; Hayes, A.W.; Giesy, J.P.; Karimi, G. Assessment of combined exposures to multiple chemicals: Pesticides, metals, and polycyclic aromatic hydrocarbons levels in fig fruits. Int. J. Environ. Anal. Chem. 2024, 104, 827–846. [Google Scholar] [CrossRef]
- Rider, C.V.; Simmons, J.E. Chemical Mixtures and Combined Chemical and Nonchemical Stressors; Springer: Berlin/Heidelberg, Germany, 2018; pp. 1–12. [Google Scholar] [CrossRef]
- Bopp, S.K.; Barouki, R.; Brack, W.; Costa, S.D.; Dorne, J.-L.C.; Drakvik, P.E.; Faust, M.; Karjalainen, T.K.; Kephalopoulos, S.; van Klaveren, J.; et al. Current EU research activities on combined exposure to multiple chemicals. Environ. Int. 2018, 120, 544–562. [Google Scholar] [CrossRef]
- Becker, R.A.; Dreier, D.A.; Manibusan, M.K.; Cox LA, T.; Simon, T.W.; Bus, J.S. How well can carcinogenicity be predicted by high throughput “characteristics of carcinogens” mechanistic data? Regul. Toxicol. Pharmacol. 2017, 90, 185–196. [Google Scholar] [CrossRef]
- Price, P. Interindividual Variation in Source-Specific Doses is a Determinant of Health Impacts of Combined Chemical Exposures. Risk Anal. 2020, 40, 2572–2583. [Google Scholar] [CrossRef] [PubMed]
- Beronius, A.; Zilliacus, J.; Hanberg, A.; Luijten, M.; van der Voet, H.; van Klaveren, J. Methodology for health risk assessment of combined exposures to multiple chemicals. Food Chem. Toxicol. 2020, 143, 111520. [Google Scholar] [CrossRef] [PubMed]
- Rotter, S.; Beronius, A.; Boobis, A.R.; Hanberg, A.; van Klaveren, J.; Luijten, M.; Machera, K.; Nikolopoulou, D.; van der Voet, H.; Zilliacus, J.; et al. Overview on legislation and scientific approaches for risk assessment of combined exposure to multiple chemicals: The potential EuroMix contribution. Crit. Rev. Toxicol. 2018, 48, 796–814. [Google Scholar] [CrossRef] [PubMed]
- Smalling, K.L.; Romanok, K.M.; Bradley, P.M.; Morriss, M.C.; Gray, J.L.; Kanagy, L.K.; Gordon, S.E.; Williams, B.M.; Breitmeyer, S.E.; Jones, D.K.; et al. Per- and polyfluoroalkyl substances (PFAS) in United States tapwater: Comparison of underserved private-well and public-supply exposures and associated health implications. Environ. Int. 2023, 178, 108033. [Google Scholar] [CrossRef] [PubMed]
- Ding, N.; Harlow, S.D.; Randolph, J.F.; Loch-Caruso, R.; Park, S.K. Perfluoroalkyl and polyfluoroalkyl substances (PFAS) and their effects on the ovary. Hum. Reprod. Updat. 2020, 26, 724–752. [Google Scholar] [CrossRef] [PubMed]
- Vieira, V.M.; Hoffman, K.; Shin, H.-M.; Weinberg, J.M.; Webster, T.F.; Fletcher, T. Perfluorooctanoic Acid Exposure and Cancer Outcomes in a Contaminated Community: A Geographic Analysis. Environ. Health Perspect. 2013, 121, 318–323. [Google Scholar] [CrossRef] [PubMed]
- Meek, M.E.B.; Boobis, A.R.; Crofton, K.M.; Heinemeyer, G.; Van Raaij, M.; Vickers, C. Risk assessment of combined exposure to multiple chemicals: A WHO/IPCS framework. Regul. Toxicol. Pharmacol. 2011, 60, S1–S14. [Google Scholar]
- Thayer, K.A.; Heindel, J.J.; Bucher, J.R.; Gallo, M.A. Role of Environmental Chemicals in Diabetes and Obesity: A National Toxicology Program Workshop Review. Environ. Health Perspect. 2012, 120, 779–789. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.; Boobis, A.R.; Moretto, A. Test and Risk Assessment Strategies for combined exposure to multiple chemicals. Food Chem. Toxicol. 2020, 144, 111607. [Google Scholar] [CrossRef]
- Bopp, S.; Kienzler, A.; Worth, A. The challenge of combined exposure to multiple chemicals: Scientific and regulatory approaches to protect human health. Eur. J. Public Health 2020, 30, ckaa165-146. [Google Scholar] [CrossRef]
- Bliss, C.I. The toxicity of poisons applied jointly. Ann. Appl. Biol. 1939, 26, 585–615. [Google Scholar] [CrossRef]
- Hadrup, N.; Taxvig, C.; Pedersen, M.; Nellemann, C.; Hass, U.; Vinggaard, A.M. Concentration Addition, Independent Action and Generalized Concentration Addition Models for Mixture Effect Prediction of Sex Hormone Synthesis In Vitro. PLoS ONE 2013, 8, e70490. [Google Scholar] [CrossRef]
- Tanaka, Y.; Tada, M. Generalized concentration addition approach for predicting mixture toxicity. Environ. Toxicol. Chem. 2017, 36, 265–275. [Google Scholar] [CrossRef]
- Løkke, H.; Ragas, A.M.J.; Holmstrup, M. Tools and perspectives for assessing chemical mixtures and multiple stressors. Toxicology 2013, 313, 73–82. [Google Scholar] [CrossRef]
- Sarigiannis, D.A.; Hansen, U. Considering the cumulative risk of mixtures of chemicals—A challenge for policy makers. Environ. Health 2012, 11, S18. [Google Scholar] [CrossRef] [PubMed]
- Qin, L.-T.; Chen, Y.-H.; Zhang, X.; Mo, L.-Y.; Zeng, H.-H.; Liang, Y.-P. QSAR prediction of additive and non-additive mixture toxicities of antibiotics and pesticide. Chemosphere 2018, 198, 122–129. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Wu, X.; Lin, Z.; Ding, Y. A comparative study on the binary and ternary mixture toxicity of anitbiotics towards three bacteria based on QSAR investigation. Environ. Res. 2018, 162, 127–134. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Nirmalakhandan, N. Use of QSAR models in predicting joint effects in multi-component mixtures of organic chemicals. Water Res. 1998, 32, 2391–2399. [Google Scholar] [CrossRef]
- Rider, C.V.; McHale, C.M.; Webster, T.F.; Lowe, L.; Goodson, W.H.; La Merrill, M.A.; Rice, G.; Zeise, L.; Zhang, L.; Smith, M.T.; et al. Using the Key Characteristics of Carcinogens to Develop Research on Chemical Mixtures and Cancer. Environ. Health Perspect. 2021, 129, 035003. [Google Scholar] [CrossRef]
- Arcos, J.C.; Woo, Y.T.; Lai, D.Y. Database on binary combination effects of chemical carcinogens. Environ. Carcinog. Rev. 1988, 6, R5–R150. [Google Scholar]
- Rider, C.V.; Dinse, G.E.; Umbach, D.M.; Simmons, J.E.; Hertzberg, R.C. Predicting Mixture Toxicity with Models of Additivity. In Chemical Mixtures and Combined Chemical and Nonchemical Stressors; Springer: Berlin/Heidelberg, Germany, 2018; pp. 235–270. [Google Scholar] [CrossRef]
- Conley, J.M.; Lambright, C.S.; Evans, N.; Cardon, M.; Furr, J.; Wilson, V.S.; Gray, L.E., Jr. Mixed “Antiandrogenic” Chemicals at Low Individual Doses Produce Reproductive Tract Malformations in the Male Rat. Toxicol. Sci. 2018, 164, 166–178. [Google Scholar] [CrossRef] [PubMed]
- Limbu, S.; Dakshanamurthy, S. Predicting Dose-Dependent Carcinogenicity of Chemical Mixtures Using a Novel Hybrid Neural Network Framework and Mathematical Approach. Toxics 2023, 11, 605. [Google Scholar] [CrossRef]
- Limbu, S.; Dakshanamurthy, S. A New Hybrid Neural Network Deep Learning Method for Protein–Ligand Binding Affinity Prediction and De Novo Drug Design. Int. J. Mol. Sci. 2022, 23, 13912. [Google Scholar] [CrossRef]
- Limbu, S.; Dakshanamurthy, S. Predicting Chemical Carcinogens Using a Hybrid Neural Network Deep Learning Method. Sensors 2022, 22, 8185. [Google Scholar] [CrossRef] [PubMed]
- Limbu, S.; Zakka, C.; Dakshanamurthy, S. Predicting Dose-Range Chemical Toxicity using Novel Hybrid Deep Machine-Learning Method. Toxics 2022, 10, 706. [Google Scholar] [CrossRef]
- Issa, N.T.; Wathieu, H.; Glasgow, E.; Peran, I.; Parasido, E.; Li, T.; Simbulan-Rosenthal, C.M.; Rosenthal, D.; Medvedev, A.V.; Makarov, S.S.; et al. A novel chemo-phenotypic method identifies mixtures of salpn, vitamin D3, and pesticides involved in the development of colorectal and pancreatic cancer. Ecotoxicol. Environ. Saf. 2022, 233, 113330. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, W.; Zou, B.; Wang, J.; Deng, Y.; Deng, L. DrugCombDB: A comprehensive database of drug combinations toward the discovery of combinatorial therapy. Nucleic Acids Res. 2020, 48, D871–D881, https://doi.org/10.1093/nar/gkz1007. Erratum in: Nucleic Acids Res.2021, 49, 10801–10802. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Schrödinger Molecular Modeling Software, Release version 2024-2: QikProp; Schrödinger, LLC: New York, NY, USA, 2024.
- Moriwaki, H.; Tian, Y.-S.; Kawashita, N.; Takagi, T. Mordred: A molecular descriptor calculator. J. Cheminform. 2018, 10, 4. [Google Scholar] [CrossRef]
- Howard, G.J.; Webster, T.F. Generalized concentration addition: A method for examining mixtures containing partial agonists. J. Theor. Biol. 2009, 259, 469–477. [Google Scholar] [CrossRef]
- Gaudin, T.; Rotureau, P.; Fayet, G. Mixture Descriptors toward the Development of Quantitative Structure–Property Relationship Models for the Flash Points of Organic Mixtures. Ind. Eng. Chem. Res. 2015, 54, 6596–6604. [Google Scholar] [CrossRef]
- Technical Overview of Ecological Risk Assessment—Analysis Phase: Ecological Effects Characterization. Available online: https://www.epa.gov/pesticide-science-and-assessing-pesticide-risks/technical-overview-ecological-risk-assessment-0 (accessed on 1 March 2022).
- Lin, Z.; Yu, H.; Wei, D.; Wang, G.; Feng, J.; Wang, L. Prediction of Mixture Toxicity with Its Total Hydrophobicity. Chemosphere 2002, 46, 305–310. [Google Scholar] [CrossRef]
- Lin, Z.; Zhong, P.; Yin, K.; Wang, L.; Yu, H. Quantification of Joint Effect for Hydrogen Bond and Development of QSARs for Predicting Mixture Toxicity. Chemosphere 2003, 52, 1199–1208. [Google Scholar] [CrossRef]
- Lin, Z.; Du, J.; Yin, K.; Wang, L.; Yu, H. Mechanism of Concentration Addition Toxicity: They Are Different for Nonpolar Narcotic Chemicals, Polar Narcotic Chemicals and Reactive Chemicals. Chemosphere 2004, 54, 1691–1701. [Google Scholar] [CrossRef] [PubMed]
- Ruilian, Y.; Jiaqing, X.; Junjun, L. Evaluation on the Binary Joint Toxicity of Phenol with Substituted Phenols to Photobacterium phosphoreum Using Four Evaluating Methods. In Proceedings of the 2010 International Conference on Digital Manufacturing Automation, Changcha, China, 18–20 December 2010; Volume 1, pp. 674–677. [Google Scholar] [CrossRef]
- Zou, X.; Lin, Z.; Deng, Z.; Yin, D.; Zhang, Y. The Joint Effects of Sulfonamides and Their Potentiator on Photobacterium phosphoreum: Differences between the Acute and Chronic Mixture Toxicity Mechanisms. Chemosphere 2012, 86, 30–35. [Google Scholar] [CrossRef]
- Tian, D.; Lin, Z.; Zhou, X.; Yin, D. The Underlying Toxicological Mechanism of Chemical Mixtures: A Case Study on Mixture Toxicity of Cyanogenic Toxicants and Aldehydes to Photobacterium phosphoreum. Toxicol. Appl. Pharmacol. 2013, 272, 551–558. [Google Scholar] [CrossRef] [PubMed]
- Lin, Z.; Shi, P.; Gao, S.; Wang, L.; Yu, H. Use of Partition Coefficients to Predict Mixture Toxicity. Water Res. 2003, 37, 2223–2227. [Google Scholar] [CrossRef]
- Wang, B.; Yu, G.; Zhang, Z.; Hu, H.; Wang, L. Quantitative Structure-Activity Relationship and Prediction of Mixture Toxicity of Alkanols. Chin. Sci. Bull. 2006, 51, 2717–2723. [Google Scholar] [CrossRef]
- Yao, Z.; Lin, Z.; Wang, T.; Tian, D.; Zou, X.; Gao, Y.; Yin, D. Using Molecular Docking-Based Binding Energy to Predict Toxicity of Binary Mixture with Different Binding Sites. Chemosphere 2013, 92, 1169–1176. [Google Scholar] [CrossRef]
- Wang, T.; Lin, Z.; Yin, D.; Tian, D.; Zhang, Y.; Kong, D. Hydrophobicity-Dependent QSARs to Predict the Toxicity of Perfluorinated Carboxylic Acids and Their Mixtures. Environ. Toxicol. Pharmacol. 2011, 32, 259–265. [Google Scholar] [CrossRef]
- Ding, K.; Lu, L.; Wang, J.; Wang, J.; Zhou, M.; Zheng, C.; Liu, J.; Zhang, C.; Zhuang, S. In Vitro and in Silico Investigations of the Binary-Mixture Toxicity of Phthalate Esters and Cadmium (II) to Vibrio qinghaiensis sp.-Q67. Sci. Total Environ. 2017, 580, 1078–1084. [Google Scholar] [CrossRef]
- Liu, S.-S.; Wang, C.-L.; Zhang, J.; Zhu, X.-W.; Li, W.-Y. Combined Toxicity of Pesticide Mixtures on Green Algae and Photobacteria. Ecotoxicol. Environ. Saf. 2013, 95, 98–103. [Google Scholar] [CrossRef]
- Liu, L.; Liu, S.-S.; Yu, M.; Chen, F. Application of the Combination Index Integrated with Confidence Intervals to Study the Toxicological Interactions of Antibiotics and Pesticides in Vibrio qinghaiensis sp.-Q67. Environ. Toxicol. Pharmacol. 2015, 39, 447–456. [Google Scholar] [CrossRef] [PubMed]
- Long, X.; Wang, D.; Lin, Z.; Qin, M.; Song, C.; Liu, Y. The Mixture Toxicity of Environmental Contaminants Containing Sulfonamides and Other Antibiotics in Escherichia Coli: Differences in Both the Special Target Proteins of Individual Chemicals and Their Effective Combined Concentration. Chemosphere 2016, 158, 193–203. [Google Scholar] [CrossRef] [PubMed]
- Richter, M.; Escher, B.I. Mixture Toxicity of Reactive Chemicals by Using Two Bacterial Growth Assays as Indicators of Protein and DNA Damage. Environ. Sci. Technol. 2005, 39, 8753–8761. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Shi, J.; Xiong, Y.; Hu, J.; Lin, Z.; Qiu, Y.; Cheng, J. A QSAR-Based Mechanistic Study on the Combined Toxicity of Antibiotics and Quorum Sensing Inhibitors against Escherichia Coli. J. Hazard. Mater. 2018, 341, 438–447. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Liu, Y.; Wang, D.; Lin, Z.; An, Q.; Yin, C.; Liu, Y. The Joint Effects of Sulfonamides and Quorum Sensing Inhibitors on Vibrio Fischeri: Differences between the Acute and Chronic Mixed Toxicity Mechanisms. J. Hazard. Mater. 2016, 310, 56–67. [Google Scholar] [CrossRef] [PubMed]
- Rosal, R.; Rodea-Palomares, I.; Boltes, K.; Fernández-Piñas, F.; Leganés, F.; Petre, A. Ecotoxicological Assessment of Surfactants in the Aquatic Environment: Combined Toxicity of Docusate Sodium with Chlorinated Pollutants. Chemosphere 2010, 81, 288–293. [Google Scholar] [CrossRef] [PubMed]
- Rodea-Palomares, I.; Petre, A.L.; Boltes, K.; Leganés, F.; Perdigón-Melón, J.A.; Rosal, R.; Fernández-Piñas, F. Application of the Combination Index (CI)-Isobologram Equation to Study the Toxicological Interactions of Lipid Regulators in Two Aquatic Bioluminescent Organisms. Water Res. 2010, 44, 427–438. [Google Scholar] [CrossRef] [PubMed]
- Rodea-Palomares, I.; Leganés, F.; Rosal, R.; Fernández-Piñas, F. Toxicological Interactions of Perfluorooctane Sulfonic Acid (PFOS) and Perfluorooctanoic Acid (PFOA) with Selected Pollutants. J. Hazard. Mater. 2012, 201, 209–218. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Wang, D.; Lin, Z.; An, Q.; Yin, C.; Huang, Q. Prediction of Mixture Toxicity from the Hormesis of a Single Chemical: A Case Study of Combinations of Antibiotics and Quorum-Sensing Inhibitors with Gram-Negative Bacteria. Chemosphere 2016, 150, 159–167. [Google Scholar] [CrossRef]
- Howe, G.E.; Gillis, R.; Mowbray, R.C. Effect of Chemical Synergy and Larval Stage on the Toxicity of Atrazine and Alachlor to Amphibian Larvae. Environ. Toxicol. Chem. 1998, 17, 519–525. [Google Scholar] [CrossRef]
- Denton, D.L.; Wheelock, C.E.; Murray, S.A.; Deanovic, L.A.; Hammock, B.D.; Hinton, D.E. Joint Acute Toxicity of Esfenvalerate and Diazinon to Larval Fathead Minnows (Pimephales promelas). Environ. Toxicol. Chem. 2003, 22, 336–341. [Google Scholar] [CrossRef] [PubMed]
- Belden, J.B.; Lydy, M.J. Joint Toxicity of Chlorpyrifos and Esfenvalerate to Fathead Minnows and Midge Larvae. Environ. Toxicol. Chem. 2006, 25, 623–629. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, S.; Busch, W.; Altenburger, R.; Küster, E. Mixture Toxicity of Water Contaminants-Effect Analysis Using the Zebrafish Embryo Assay (Danio rerio). Chemosphere 2016, 152, 503–512. [Google Scholar] [CrossRef] [PubMed]
- Coors, A.; Frische, T. Predicting the Aquatic Toxicity of Commercial Pesticide Mixtures. Environ. Sci. Eur. 2011, 23, 22. [Google Scholar] [CrossRef]
- Wang, Y.; Dai, D.; Yu, Y.; Yang, G.; Shen, W.; Wang, Q.; Weng, H.; Zhao, X. Evaluation of Joint Effects of Cyprodinil and Kresoxim-Methyl on Zebrafish, Danio Rerio. J. Hazard. Mater. 2018, 352, 80–91. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Li, X.; Liu, X.; Yang, G.; An, X.; Wang, Q.; Wang, Y. Joint Toxic Effects of Triazophos and Imidacloprid on Zebrafish (Danio Rerio). Environ. Pollut. Barking Essex 1987 2018, 235, 470–481. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Liu, L.; Ren, L.; Feng, W.; Lv, P.; Wu, W.; Yan, Y. The Single and Joint Toxicity Effects of Chlorpyrifos and Beta-Cypermethrin in Zebrafish (Danio rerio) Early Life Stages. J. Hazard. Mater. 2017, 334, 121–131. [Google Scholar] [CrossRef] [PubMed]
- Ding, G.; Zhang, J.; Chen, Y.; Wang, L.; Wang, M.; Xiong, D.; Sun, Y. Combined Effects of PFOS and PFOA on Zebrafish (Danio Rerio) Embryos. Arch. Environ. Contam. Toxicol. 2013, 64, 668–675. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, S.; Chen, J.; Zhang, C.; Xu, Z.; Li, G.; Cai, L.; Shen, W.; Wang, Q. Single and Joint Toxicity Assessment of Four Currently Used Pesticides to Zebrafish (Danio Rerio) Using Traditional and Molecular Endpoints. Chemosphere 2018, 192, 14–23. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, C.; Zhao, X.; Wang, Q.; Qian, Y. Assessing Joint Toxicity of Four Organophosphate and Carbamate Insecticides in Common Carp (Cyprinus Carpio) Using Acetylcholinesterase Activity as an Endpoint. Pestic. Biochem. Physiol. 2015, 122, 81–85. [Google Scholar] [CrossRef] [PubMed]
- Froment, J.; Thomas, K.V.; Tollefsen, K.E. Automated High-Throughput in Vitro Screening of the Acetylcholine Esterase Inhibiting Potential of Environmental Samples, Mixtures and Single Compounds. Ecotoxicol. Environ. Saf. 2016, 130, 74–80. [Google Scholar] [CrossRef] [PubMed]
- Bellas, J. Prediction and Assessment of Mixture Toxicity of Compounds in Antifouling Paints Using the Sea-Urchin Embryo-Larval Bioassay. Aquat. Toxicol. Amst. Neth. 2008, 88, 308–315. [Google Scholar] [CrossRef]
- Anderson, T.D.; Zhu, K.Y. Synergistic and Antagonistic Effects of Atrazine on the Toxicity of Organophosphorodithioate and Organophosphorothioate Insecticides to Chironomus tentans (Diptera: Chironomidae). Pestic. Biochem. Physiol. 2004, 80, 54–64. [Google Scholar] [CrossRef]
- Schuler, L.J.; Trimble, A.J.; Belden, J.B.; Lydy, M.J. Joint Toxicity of Triazine Herbicides and Organophosphate Insecticides to the Midge Chironomus tentans. Arch. Environ. Contam. Toxicol. 2005, 49, 173–177. [Google Scholar] [CrossRef] [PubMed]
- Belden, J.B.; Lydy, M.J. Impact of Atrazine on Organophosphate Insecticide Toxicity. Environ. Toxicol. Chem. 2000, 19, 2266–2274. [Google Scholar] [CrossRef]
- Jin-Clark, Y.; Lydy, M.J.; Zhu, K.Y. Effects of Atrazine and Cyanazine on Chlorpyrifos Toxicity in Chironomus tentans (Diptera: Chironomidae). Environ. Toxicol. Chem. 2002, 21, 598–603. [Google Scholar] [CrossRef] [PubMed]
- Pérez, J.; Monteiro, M.S.; Quintaneiro, C.; Soares, A.M.V.M.; Loureiro, S. Characterization of Cholinesterases in Chironomus riparius and the Effects of Three Herbicides on Chlorpyrifos Toxicity. Aquat. Toxicol. Amst. Neth. 2013, 144–145, 296–302. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Wang, Y.; Zhao, X.; Qian, Y.; Wang, Q. Combined Toxicity of Butachlor, Atrazine and λ-Cyhalothrin on the Earthworm Eisenia Fetida by Combination Index (CI)-Isobologram Method. Chemosphere 2014, 112, 393–401. [Google Scholar] [CrossRef]
- Chen, C.; Wang, Y.; Zhao, X.; Wang, Q.; Qian, Y. Comparative and Combined Acute Toxicity of Butachlor, Imidacloprid and Chlorpyrifos on Earthworm, Eisenia Fetida. Chemosphere 2014, 100, 111–115. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, C.; Qian, Y.; Zhao, X.; Wang, Q.; Kong, X. Toxicity of Mixtures of λ-Cyhalothrin, Imidacloprid and Cadmium on the Earthworm Eisenia Fetida by Combination Index (CI)-Isobologram Method. Ecotoxicol. Environ. Saf. 2015, 111, 242–247. [Google Scholar] [CrossRef] [PubMed]
- 1Forget, J.; Pavillon, J.-F.; Beliaeff, B.; Bocquené, G. Joint action of pollutant combinations (pesticides and metals) on survival (LC50 values) and acetylcholinesterase activity of Tigriopus brevicornis (Copepoda, Harpacticoida). Environ. Toxicol. Chem. 1999, 18, 912–918. [Google Scholar] [CrossRef]
- Woods, M.; Kumar, A.; Correll, R. Acute Toxicity of Mixtures of Chlorpyrifos, Profenofos, and Endosulfan to Ceriodaphnia dubia. Bull. Environ. Contam. Toxicol. 2002, 68, 801–808. [Google Scholar] [CrossRef] [PubMed]
- Henry, T.B.; Black, M.C. Mixture and Single-Substance Acute Toxicity of Selective Serotonin Reuptake Inhibitors in Ceriodaphnia dubia. Environ. Toxicol. Chem. 2007, 26, 1751–1755. [Google Scholar] [CrossRef] [PubMed]
- Choung, C.B.; Hyne, R.V.; Stevens, M.M.; Hose, G.C. Toxicity of the Insecticide Terbufos, Its Oxidation Metabolites, and the Herbicide Atrazine in Binary Mixtures to Ceriodaphnia cf dubia. Arch. Environ. Contam. Toxicol. 2011, 60, 417–425. [Google Scholar] [CrossRef]
- Trimble, A.J.; Lydy, M.J. Effects of Triazine Herbicides on Organophosphate Insecticide Toxicity in Hyalella azteca. Arch. Environ. Contam. Toxicol. 2006, 51, 29–34. [Google Scholar] [CrossRef] [PubMed]
- Dalla Bona, M.; Di Leva, V.; De Liguoro, M. The Sensitivity of Daphnia magna and Daphnia curvirostris to 10 Veterinary Antibacterials and to Some of Their Binary Mixtures. Chemosphere 2014, 115, 67–74. [Google Scholar] [CrossRef] [PubMed]
- Puckowski, A.; Stolte, S.; Wagil, M.; Markiewicz, M.; Łukaszewicz, P.; Stepnowski, P.; Białk-Bielińska, A. Mixture Toxicity of Flubendazole and Fenbendazole to Daphnia magna. Int. J. Hygiene Environ. Health 2017, 220, 575–582. [Google Scholar] [CrossRef] [PubMed]
- Schell, T.; Goedkoop, W.; Zubrod, J.P.; Feckler, A.; Lüderwald, S.; Schulz, R.; Bundschuh, M. Assessing the Effects of Field-Relevant Pesticide Mixtures for Their Compliance with the Concentration Addition Model—An Experimental Approach with Daphnia magna. Sci. Total Environ. 2018, 644, 342–349. [Google Scholar] [CrossRef]
- Bain, P.A.; Kumar, A. Cytotoxicity of Binary Mixtures of Human Pharmaceuticals in a Fish Cell Line: Approaches for Non-Monotonic Concentration-Response Relationships. Chemosphere 2014, 108, 334–342. [Google Scholar] [CrossRef]
- Christen, V.; Crettaz, P.; Fent, K. Additive and Synergistic Antiandrogenic Activities of Mixtures of Azol Fungicides and Vinclozolin. Toxicol. Appl. Pharmacol. 2014, 279, 455–466. [Google Scholar] [CrossRef] [PubMed]
- Takakura, N.; Sanders, P.; Fessard, V.; Le Hégarat, L. In Vitro Combined Cytotoxic Effects of Pesticide Cocktails Simultaneously Found in the French Diet. Food Chem. Toxicol. 2013, 52, 153–162. [Google Scholar] [CrossRef] [PubMed]
- Savary, C.C.; Jossé, R.; Bruyère, A.; Guillet, F.; Robin, M.-A.; Guillouzo, A. Interactions of Endosulfan and Methoxychlor Involving CYP3A4 and CYP2B6 in Human HepaRG Cells. Drug Metab. Dispos. Biol. Fate Chem. 2014, 42, 1235–1240. [Google Scholar] [CrossRef] [PubMed]
- Scelfo, B.; Politi, M.; Reniero, F.; Palosaari, T.; Whelan, M.; Zaldívar, J.-M. Application of Multielectrode Array (MEA) Chips for the Evaluation of Mixtures Neurotoxicity. Toxicology 2012, 299, 172–183. [Google Scholar] [CrossRef] [PubMed]
- Arora, S.; Balotra, S.; Pandey, G.; Kumar, A. Binary Combinations of Organophosphorus and Synthetic Pyrethroids Are More Potent Acetylcholinesterase Inhibitors than Organophosphorus and Carbamate Mixtures: An in Vitro Assessment. Toxicol. Lett. 2017, 268, 8–16. [Google Scholar] [CrossRef] [PubMed]
- Arora, S.; Kumar, A. Binary Combinations of Organophosphorus Pesticides Exhibit Differential Toxicity under Oxidised and Un-Oxidised Conditions. Ecotoxicol. Environ. Saf. 2015, 115, 93–100. [Google Scholar] [CrossRef]
- Khan, H.A.A.; Akram, W.; Shad, S.A.; Lee, J.-J. Insecticide Mixtures Could Enhance the Toxicity of Insecticides in a Resistant Dairy Population of Musca domestica L. PLoS ONE 2013, 8, e60929. [Google Scholar] [CrossRef]
Chemicals | CASRN |
---|---|
Pyraclostrobin | 175013-18-0 |
Fenpropathrin | 39515-41-8 |
Alpha, alpha’-(1-methylethylenediimino)di-ortho-cresol | 94-91-7 |
Paclobutrazol | 76738-62-0 |
2,4,6-Tribromophenol | 118-79-6 |
Pyridaben | 96489-71-3 |
Butachlor | 23184-66-9 |
Tetramethrin | 7696-12-0 |
Dicyclohexyl Phthalate (DCHP) | 84-61-7 |
Perfluorooctanoic acid (PFOA) | 335-67-1 |
Perfluorooctane sulfonic acid (PFOS) | 1763-23-1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Limbu, S.; Glasgow, E.; Block, T.; Dakshanamurthy, S. A Machine-Learning-Driven Pathophysiology-Based New Approach Method for the Dose-Dependent Assessment of Hazardous Chemical Mixtures and Experimental Validations. Toxics 2024, 12, 481. https://doi.org/10.3390/toxics12070481
Limbu S, Glasgow E, Block T, Dakshanamurthy S. A Machine-Learning-Driven Pathophysiology-Based New Approach Method for the Dose-Dependent Assessment of Hazardous Chemical Mixtures and Experimental Validations. Toxics. 2024; 12(7):481. https://doi.org/10.3390/toxics12070481
Chicago/Turabian StyleLimbu, Sarita, Eric Glasgow, Tessa Block, and Sivanesan Dakshanamurthy. 2024. "A Machine-Learning-Driven Pathophysiology-Based New Approach Method for the Dose-Dependent Assessment of Hazardous Chemical Mixtures and Experimental Validations" Toxics 12, no. 7: 481. https://doi.org/10.3390/toxics12070481
APA StyleLimbu, S., Glasgow, E., Block, T., & Dakshanamurthy, S. (2024). A Machine-Learning-Driven Pathophysiology-Based New Approach Method for the Dose-Dependent Assessment of Hazardous Chemical Mixtures and Experimental Validations. Toxics, 12(7), 481. https://doi.org/10.3390/toxics12070481