Forms and Migration Mechanisms of Phosphorus in the Ice, Water, and Sediments of Cold and Arid Lakes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sample Collection and Pretreatment
2.3. Determination Method of Water Quality Indicators
2.4. Determination of P Components in Ice and Water Using 31P-NMR
2.5. Multi-Media Migration Simulation Experiment for Different Types of P Components during the Freezing Process of Lakes
2.6. Data Processing and Analysis
3. Results and Analysis
3.1. Analysis of Phosphorus Content in Lake Ice and Water
3.2. The Contribution of Lake Phosphorus Component Content to Eutrophication
3.3. Analysis of the Composition and Structure of Po in Lakes
3.4. Simulation on the Change of P Concentration during the Ice–Water Phase Transition Process in Lakes
4. Discussion
4.1. Physical and Chemical Properties of Po in Environmental Media
4.2. Qualitative Characterisation of the Chemical Composition of Po
4.3. Environmental Behaviour of Po Components Affected by Environmental Factors
4.4. Biogeochemical Characteristics of Po at Multi-Media Interfaces
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hautier, Y.; Seabloom, E.W.; Borer, E.T.; Adler, P.B.; Harpole, W.S.; Hillebrand, H.; Lind, E.M.; MacDougall, A.S.; Stevens, C.J.; Bakker, J.D.; et al. Eutrophication Weakens Stabilizing Effects of Diversity in Natural Grasslands. Nature 2014, 508, 521–525. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Feng, W.; Liu, J.; Fan, W.; Li, T.; Song, F.; Yang, F.; Liao, H.; Leppäranta, M. Eutrophication in Cold-Arid Lakes: Molecular Characteristics and Transformation Mechanism of DOM under Microbial Action at the Ice-Water Interface. Carbon Res. 2024, 3, 42. [Google Scholar] [CrossRef]
- Feng, W.; Wang, T.; Zhu, Y.; Sun, F.; Giesy, J.P.; Wu, F. Chemical Composition, Sources, and Ecological Effect of Organic Phosphorus in Water Ecosystems: A Review. Carbon Res. 2023, 2, 12. [Google Scholar] [CrossRef]
- Rounce, D.R.; Hock, R.; Maussion, F.; Hugonnet, R.; Kochtitzky, W.; Huss, M.; Berthier, E.; Brinkerhoff, D.; Compagno, L.; Copland, L.; et al. Global Glacier Change in the 21st Century: Every Increase in Temperature Matters. Science 2023, 379, 78–83. [Google Scholar] [CrossRef] [PubMed]
- Super, J. Phosphorus from Land to Sea. Nat. Geosci. 2023, 16, 388–389. [Google Scholar] [CrossRef]
- Han, J.; Liu, Z.; Woods, R.; McVicar, T.R.; Yang, D.; Wang, T.; Hou, Y.; Guo, Y.; Li, C.; Yang, Y. Streamflow Seasonality in a Snow-Dwindling World. Nature 2024, 629, 1075–1081. [Google Scholar] [CrossRef] [PubMed]
- Anderson, H.S.; Johengen, T.H.; Godwin, C.M.; Purcell, H.; Alsip, P.J.; Ruberg, S.A.; Mason, L.A. Continuous In Situ Nutrient Analyzers Pinpoint the Onset and Rate of Internal P Loading under Anoxia in Lake Erie’s Central Basin. ACS EST Water 2021, 1, 774–781. [Google Scholar] [CrossRef]
- Reinhard, C.T.; Planavsky, N.J.; Gill, B.C.; Ozaki, K.; Robbins, L.J.; Lyons, T.W.; Fischer, W.W.; Wang, C.; Cole, D.B.; Konhauser, K.O. Evolution of the Global Phosphorus Cycle. Nature 2017, 541, 386–389. [Google Scholar] [CrossRef] [PubMed]
- McIntyre, C.A.; Arkell, J.J.L.; Arthur, C.J.; Lawrence, P.G.; Butts, C.P.; Lloyd, C.E.M.; Johnes, P.J.; Evershed, R.P. Identification and Quantification of Myo-Inositol Hexakisphosphate in Complex Environmental Matrices Using Ion Chromatography and High-Resolution Mass Spectrometry in Comparison to 31P NMR Spectroscopy. Talanta 2020, 210, 120188. [Google Scholar] [CrossRef]
- Song, K.; Fang, C.; Jacinthe, P.-A.; Wen, Z.; Liu, G.; Xu, X.; Shang, Y.; Lyu, L. Climatic versus Anthropogenic Controls of Decadal Trends (1983–2017) in Algal Blooms in Lakes and Reservoirs across China. Environ. Sci. Technol. 2021, 55, 2929–2938. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, G.; Hu, B.; Chu, G. Land Reclamation Increased Organic P Fractions and Phosphatase Activities, and Strengthened the Co-Occurrence Networks of phoD Community in Calcareous Soils. Carbon Res. 2023, 2, 44. [Google Scholar] [CrossRef]
- Søndergaard, M.; Jensen, J.P.; Jeppesen, E. Role of Sediment and Internal Loading of Phosphorus in Shallow Lakes. Hydrobiologia 2003, 506, 135–145. [Google Scholar] [CrossRef]
- Yuan, M.M.; Guo, X.; Wu, L.; Zhang, Y.; Xiao, N.; Ning, D.; Shi, Z.; Zhou, X.; Wu, L.; Yang, Y.; et al. Climate Warming Enhances Microbial Network Complexity and Stability. Nat. Clim. Chang. 2021, 11, 343–348. [Google Scholar] [CrossRef]
- Li, W.; Joshi, S.R.; Hou, G.; Burdige, D.J.; Sparks, D.L.; Jaisi, D.P. Characterizing Phosphorus Speciation of Chesapeake Bay Sediments Using Chemical Extraction, 31 P NMR, and X-Ray Absorption Fine Structure Spectroscopy. Environ. Sci. Technol. 2015, 49, 203–211. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Wu, Y.-J.; Yu, Z.-L.; Sheng, G.-P.; Yu, H.-Q. Enhanced Nitrogen and Phosphorus Removal from Eutrophic Lake Water by Ipomoea Aquatica with Low-Energy Ion Implantation. Water Res. 2009, 43, 1247–1256. [Google Scholar] [CrossRef] [PubMed]
- Mackey, K.R.M.; Van Mooy, B.; Cade-Menun, B.J.; Paytan, A. Phosphorus Dynamics in the Environment. In Reference Module in Life Sciences; Elsevier: Amsterdam, The Netherlands, 2019; p. B9780128096338209114. [Google Scholar] [CrossRef]
- Cade-Menun, B.J.; Navaratnam, J.A.; Walbridge, M.R. Characterizing Dissolved and Particulate Phosphorus in Water with 31 P Nuclear Magnetic Resonance Spectroscopy. Environ. Sci. Technol. 2006, 40, 7874–7880. [Google Scholar] [CrossRef] [PubMed]
- Ji, N.; Wang, S.; Zhang, L. Characteristics of Dissolved Organic Phosphorus Inputs to Freshwater Lakes: A Case Study of Lake Erhai, Southwest China. Sci. Total Environ. 2017, 601, 1544–1555. [Google Scholar] [CrossRef] [PubMed]
- Bai, X.; Sun, J.; Zhou, Y.; Gu, L.; Zhao, H.; Wang, J. Variations of Different Dissolved and Particulate Phosphorus Classes during an Algae Bloom in a Eutrophic Lake by 31P NMR Spectroscopy. Chemosphere 2017, 169, 577–585. [Google Scholar] [CrossRef]
- Yuan, H.; Tai, Z.; Li, Q.; Zhang, F. Characterization and Source Identification of Organic Phosphorus in Sediments of a Hypereutrophic Lake. Environ. Pollut. 2020, 257, 113500. [Google Scholar] [CrossRef]
- Tsybin, Y.O.; Nagornov, K.O.; Kozhinov, A.N. Advanced Fundamentals in Fourier Transform Mass Spectrometry. In Fundamentals and Applications of Fourier Transform Mass Spectrometry; Elsevier: Amsterdam, The Netherlands, 2019; pp. 113–132. [Google Scholar] [CrossRef]
- Mosley, L.M. Drought Impacts on the Water Quality of Freshwater Systems; Review and Integration. Earth-Sci. Rev. 2015, 140, 203–214. [Google Scholar] [CrossRef]
- Feng, W.; Deng, Y.; Yang, F.; Li, T.; Wang, F.; Zhang, Q.; Yao, H.; Liao, H. Underlying Mechanisms Governing on Distribution and Stratification of DOM during Seasonal Freeze-Thaw Cycles. Sci. Total Environ. 2024, 928, 172211. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Ruan, M.; Cao, Y.; Feng, W.; Song, F.; Bai, Y.; Zhao, X.; Wu, F. Molecular-Level Insights into the Temperature-Dependent Formation Dynamics and Mechanism of Water-Soluble Dissolved Organic Carbon Derived from Biomass Pyrolysis Smoke. Water Res. 2024, 252, 121176. [Google Scholar] [CrossRef] [PubMed]
- Pierce, R.H.; Henry, M.S. Harmful Algal Toxins of the Florida Red Tide (Karenia Brevis): Natural Chemical Stressors in South Florida Coastal Ecosystems. Ecotoxicology 2008, 17, 623–631. [Google Scholar] [CrossRef] [PubMed]
- Feng, W.; Yang, F.; Zhang, C.; Liu, J.; Song, F.; Chen, H.; Zhu, Y.; Liu, S.; Giesy, J.P. Composition Characterization and Biotransformation of Dissolved, Particulate and Algae Organic Phosphorus in Eutrophic Lakes. Environ. Pollut. 2020, 265, 114838. [Google Scholar] [CrossRef] [PubMed]
- Guo, M.; Li, X.; Song, C.; Liu, G.; Zhou, Y. Photo-Induced Phosphate Release during Sediment Resuspension in Shallow Lakes: A Potential Positive Feedback Mechanism of Eutrophication. Environ. Pollut. 2020, 258, 113679. [Google Scholar] [CrossRef] [PubMed]
- Fang, C.; Song, C.; Wang, X.; Wang, Q.; Tao, H.; Wang, X.; Ma, Y.; Song, K. A Novel Total Phosphorus Concentration Retrieval Method Based on Two-Line Classification in Lakes and Reservoirs across China. Sci. Total Environ. 2024, 906, 167522. [Google Scholar] [CrossRef] [PubMed]
- Qu, Y.; Wang, C.; Guo, J.; Huang, J.; Fang, F.; Xiao, Y.; Ouyang, W.; Lu, L. Characteristics of Organic Phosphorus Fractions in Soil from Water-Level Fluctuation Zone by Solution 31P-Nuclear Magnetic Resonance and Enzymatic Hydrolysis. Environ. Pollut. 2019, 255, 113209. [Google Scholar] [CrossRef] [PubMed]
- Qin, B.; Zhou, J.; Elser, J.J.; Gardner, W.S.; Deng, J.; Brookes, J.D. Water Depth Underpins the Relative Roles and Fates of Nitrogen and Phosphorus in Lakes. Environ. Sci. Technol. 2020, 54, 3191–3198. [Google Scholar] [CrossRef]
- Gao, J.; Feng, W.; Yang, F.; Liu, J.; Fan, W.; Wang, Y.; Zhang, Q.; Yang, W. Effects of Water Quality and Bacterial Community Composition on Dissolved Organic Matter Structure in Daihai Lake and the Mechanisms. Environ. Res. 2022, 214, 114109. [Google Scholar] [CrossRef]
- Song, S.; Li, C.; Shi, X.; Zhao, S.; Tian, W.; Li, Z.; Bai, Y.; Cao, X.; Wang, Q.; Huotari, J.; et al. Under-ice Metabolism in a Shallow Lake in a Cold and Arid Climate. Freshw. Biol. 2019, 64, 1710–1720. [Google Scholar] [CrossRef]
- Qian, X.Y.; Li, J.B.; Wen, A.; Pang, B.; Saru, B.; Wang, Q.; Liu, B.; Wang, Z. L Seasonal Dynamics of Phytoplankton and Its Relationship with Environmental Factors in Lake Hulun. J. Lake Sci. 2022, 34, 1814–1827. [Google Scholar] [CrossRef]
- Zhu, Y.; Wu, F.; He, Z.; Guo, J.; Qu, X.; Xie, F.; Giesy, J.P.; Liao, H.; Guo, F. Characterization of Organic Phosphorus in Lake Sediments by Sequential Fractionation and Enzymatic Hydrolysis. Environ. Sci. Technol. 2013, 47, 7679–7687. [Google Scholar] [CrossRef]
- Yang, H. Brief Analysis on Water Ecological Environment Problems and Control Measures of Daihai Lake. Inn. Mong. Water Resour. 2020, 9, 33–34. (In Chinese) [Google Scholar]
- Ding, H.; Wan, H.; Qin, P.; Liu, X.; Liu, T.; Nan, L.; Guo, X.; Bi, B.; Yang, Y.; Lu, S. Occurrence, sources and Risk Assessment of Organophosphorus Pesticides in the Environment. Environ. Chem. 2019, 38, 463–479. (In Chinese) [Google Scholar]
- Chen, J.; Gao, C. Application and Development of the Redfield Ratio in the Study of Eutrophication. Sichuan Environ. 2016, 35, 109–114. (In Chinese) [Google Scholar] [CrossRef]
- Ji, P.; Xu, H.; Zhan, X.; Zhu, G.; Zou, W.; Zhu, M.; Kang, L. Spatial-Temporal Variations and Driving of Nitrogen and Phosphorus Ratios in Lakes in the Middle and Lower Reaches of Yangtze River. Environ. Sci. 2020, 41, 4030–4041. (In Chinese) [Google Scholar] [CrossRef]
- Jiang, H.; Ma, J.; Wu, M. Preparation of Inositol Triphosphate by Microwave Radiation. Chem. Res. Appl. 2005, 3, 424–426. [Google Scholar]
- Matsui, T.; Murakami, Y.; Yano, H.; Fujikawa, H.; Osawa, T.; Asai, Y. Phytate and Phosphorus Movements in the Digestive Tract of Horses. Equine Vet. J. 1999, 31, 505–507. [Google Scholar] [CrossRef]
- Polonovski, M.; Bourrillon, R. Choline et Phosphates Libres de La Bile. Enzymologia 1952, 15, 246. [Google Scholar]
- Cademenun, B. Characterizing Phosphorus in Environmental and Agricultural Samples by 31P Nuclear Magnetic Resonance Spectroscopy. Talanta 2005, 66, 359–371. [Google Scholar] [CrossRef]
- Dou, Z.; Ramberg, C.F.; Toth, J.D.; Wang, Y.; Sharpley, A.N.; Boyd, S.E.; Chen, C.R.; Williams, D.; Xu, Z.H. Phosphorus Speciation and Sorption-Desorption Characteristics in Heavily Manured Soils. Soil Sci. Soc. Am. J. 2009, 73, 93–101. [Google Scholar] [CrossRef]
- Wang, H.; Song, S.; Zhang, J.; Liu, Y. Research Advance in Soil Phosphorus Fractionations and Their Characterization by Chemical Sequential Methods and 31P-NMR Techniques. J. Plant Nutr. Fertil. 2017, 23, 512–523. (In Chinese) [Google Scholar]
- Yuan, B.; Wu, W.; Guo, M.; Zheng, X.; Zhou, X. Fluorescence Spectroscopic Characteristics of DOM and Its Effects on Bacterial Composition in Bahe River Basin. China Environ. Sci. 2019, 39, 3383–3395. (In Chinese) [Google Scholar] [CrossRef]
- Ni, Z.; Wang, S.; Cai, J.; Li, H.; Jenkins, A.; Maberly, S.C.; May, L. The Potential Role of Sediment Organic Phosphorus in Algal Growth in a Low Nutrient Lake. Environ. Pollut. 2019, 255, 113235. [Google Scholar] [CrossRef] [PubMed]
- Ulrich, E.C.; Kamat, S.S.; Hove-Jensen, B.; Zechel, D.L. Methylphosphonic Acid Biosynthesis and Catabolism in Pelagic Archaea and Bacteria. Methods Enzymol. 2018, 605, 351–426. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; He, Z.; Tang, Z.; Liu, L.; Hou, J.; Li, T.; Zhang, Y.; Shi, Q.; Giesy, J.P.; Wu, F. Linking the Molecular Composition of Autochthonous Dissolved Organic Matter to Source Identification for Freshwater Lake Ecosystems by Combination of Optical Spectroscopy and FT-ICR-MS Analysis. Sci. Total Environ. 2020, 703, 134764. [Google Scholar] [CrossRef] [PubMed]
- Miranda, M.L.; Osterholz, H.; Giebel, H.-A.; Bruhnke, P.; Dittmar, T.; Zielinski, O. Impact of UV Radiation on DOM Transformation on Molecular Level Using FT-ICR-MS and PARAFAC. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 230, 118027. [Google Scholar] [CrossRef]
- Gonsior, M. FT-ICR MS and Orbitrap Mass Spectrometry Approaches in Environmental Chemistry. In Fundamentals and Applications of Fourier Transform Mass Spectrometry; Elsevier: Amsterdam, The Netherlands, 2019; pp. 407–423. [Google Scholar] [CrossRef]
- Lü, C.; He, J.; Wang, B. Spatial and Historical Distribution of Organic Phosphorus Driven by Environment Conditions in Lake Sediments. J. Environ. Sci. 2018, 64, 32–41. [Google Scholar] [CrossRef] [PubMed]
- Jin, X.; Rong, N.; Zhang, W.; Meng, X.; Shan, B. Bioavailability of Organic Phosphorus in an Eutrophic Lake: Insights from an in-Situ Experiment. Ecol. Indic. 2019, 107, 105622. [Google Scholar] [CrossRef]
- Li, X.; Guo, M.; Duan, X.; Zhao, J.; Hua, Y.; Zhou, Y.; Liu, G.; Dionysiou, D.D. Distribution of Organic Phosphorus Species in Sediment Profiles of Shallow Lakes and Its Effect on Photo-Release of Phosphate during Sediment Resuspension. Environ. Int. 2019, 130, 104916. [Google Scholar] [CrossRef]
- Shinohara, R.; Ouellette, L.; Nowell, P.; Parsons, C.T.; Matsuzaki, S.S.; Paul Voroney, R. The Composition of Particulate Phosphorus: A Case Study of the Grand River, Canada. J. Great Lakes Res. 2018, 44, 527–534. [Google Scholar] [CrossRef]
- Xie, F.; Li, L.; Song, K.; Li, G.; Wu, F.; Giesy, J.P. Characterization of Phosphorus Forms in a Eutrophic Lake, China. Sci. Total Environ. 2019, 659, 1437–1447. [Google Scholar] [CrossRef]
- Chengxin, F. Advances and Prospect in Sediment-Water Interface of Lakes: A Review. J. Lake Sci. 2019, 31, 1191–1218. [Google Scholar] [CrossRef]
- Tye, A.M.; Rushton, J.; Vane, C.H. Distribution and Speciation of Phosphorus in Foreshore Sediments of the Thames Estuary, UK. Mar. Pollut. Bull. 2018, 127, 182–197. [Google Scholar] [CrossRef]
- Copetti, D.; Tartari, G.; Valsecchi, L.; Salerno, F.; Viviano, G.; Mastroianni, D.; Yin, H.; Viganò, L. Phosphorus Content in a Deep River Sediment Core as a Tracer of Long-Term (1962–2011) Anthropogenic Impacts: A Lesson from the Milan Metropolitan Area. Sci. Total Environ. 2019, 646, 37–48. [Google Scholar] [CrossRef]
- Li, H.; Song, C.-L.; Cao, X.-Y.; Zhou, Y.-Y. The Phosphorus Release Pathways and Their Mechanisms Driven by Organic Carbon and Nitrogen in Sediments of Eutrophic Shallow Lakes. Sci. Total Environ. 2016, 572, 280–288. [Google Scholar] [CrossRef]
Samples | Ortho-P (mg/L) | Mon-P (mg/L) | Pyro-P (mg/L) | |
---|---|---|---|---|
Adenosine Monophosphate | Glucose-1-Phosphate | |||
DH2 water | 0.034 | 0.002 | 0.011 | 0.005 |
DH3 water | 0.021 | 0.002 | 0.003 | 0.003 |
W4 water | 0.013 | —— | 0.002 | 0.003 |
W6 water | 0.010 | —— | 0.003 | 0.002 |
DH2 ice | 0.007 | —— | 0.003 | 0.001 |
DH3 ice | 0.005 | —— | —— | —— |
W4 ice | 0.017 | —— | 0.013 | 0.001 |
W6 ice | 0.010 | —— | —— | —— |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, W.; Tao, Y.; Wang, T.; Yang, F.; Zhao, M.; Li, Y.; Miao, Q.; Li, T.; Liao, H. Forms and Migration Mechanisms of Phosphorus in the Ice, Water, and Sediments of Cold and Arid Lakes. Toxics 2024, 12, 523. https://doi.org/10.3390/toxics12070523
Feng W, Tao Y, Wang T, Yang F, Zhao M, Li Y, Miao Q, Li T, Liao H. Forms and Migration Mechanisms of Phosphorus in the Ice, Water, and Sediments of Cold and Arid Lakes. Toxics. 2024; 12(7):523. https://doi.org/10.3390/toxics12070523
Chicago/Turabian StyleFeng, Weiying, Yingru Tao, Tengke Wang, Fang Yang, Meng Zhao, Yuxin Li, Qingfeng Miao, Tingting Li, and Haiqing Liao. 2024. "Forms and Migration Mechanisms of Phosphorus in the Ice, Water, and Sediments of Cold and Arid Lakes" Toxics 12, no. 7: 523. https://doi.org/10.3390/toxics12070523
APA StyleFeng, W., Tao, Y., Wang, T., Yang, F., Zhao, M., Li, Y., Miao, Q., Li, T., & Liao, H. (2024). Forms and Migration Mechanisms of Phosphorus in the Ice, Water, and Sediments of Cold and Arid Lakes. Toxics, 12(7), 523. https://doi.org/10.3390/toxics12070523