A Robust Method for Simultaneous Determination and Risk Assessment of Multiresidual Pesticides in Fishery Products
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Sample Preparation
2.3. Optimization of Analytical Methods
2.4. LC–MS/MS Analytical Conditions
2.5. Method Validation
2.6. Risk Assessment
2.7. Statistical Analysis
3. Results and Discussion
3.1. Specificity
3.2. Establishment of Sample Extraction and Purification Methods
3.3. Final Extraction and Purification
3.4. Recovery, Linearity, LOD, LOQ, Matrix Effect
3.5. Accuracy and Precision
3.6. Monitoring Results for Pesticides
3.7. Risk Assessment for Fishery Product Consumption
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- FAO. The State of World Fisheries and Aquaculture 2022. In Towards Blue Transformation; FAO: Rome, Italy, 2022. [Google Scholar] [CrossRef]
- Magalhães, K.M.; Carreira, R.S.; Rosa Filho, J.S.; Rocha, P.P.; Santana, F.M.; Yogui, G.T. Polycyclic aromatic hydrocarbons (PAHs) in fishery resources affected by the 2019 oil spill in Brazil: Short-term environmental health and seafood safety. Mar. Pollut. Bull. 2022, 175, 113334. [Google Scholar] [CrossRef]
- Udofia, U.S.; Ameh, C.; Miller, E.; Ekpenyong, M.S. Investigating the origin and tissue concentration of polycyclic aromatic hydrocarbons in seafood and health risk in Niger Delta, Nigeria. Environ. Sci. Process. Impacts 2021, 23, 1803–1814. [Google Scholar] [CrossRef] [PubMed]
- Shariatifar, N.; Sharifiarab, G.; Kargarghomsheh, P.; Moazzen, M.; Arabameri, M.; Seddighi, M.; Pirhadi, M. Polycyclic aromatic hydrocarbons (PAHs) in potato and related products in Tehran: A health risk assessment study. Int. J. Environ. Anal. Chem. 2022, 1–14. Available online: https://www.tandfonline.com/doi/citedby/10.1080/03067319.2022.2100258?scroll=top&needAccess=true (accessed on 30 April 2022). [CrossRef]
- MOF (Ministry of Oceans and Fisheries). Seafood Consumption (Per Person Per Year) and Self-Sufficiency. Available online: https://www.index.go.kr/potal/main/EachDtlPageDetail.do?idx_cd=1317 (accessed on 28 January 2022).
- MOF (Ministry of Oceans and Fisheries). Fishery Production and Aquaculture. Available online: https://www.index.go.kr/unity/potal/main/EachDtlPageDetail.do?idx_cd=2748 (accessed on 28 April 2022).
- MFDS (Ministry of Food and Drug Safety). The Veterinary Drugs Monitoring and Their Analytical Methods Development in Fishery Products from Domestic Market. 2017. Available online: https://scienceon.kisti.re.kr/srch/selectPORSrchReport.do?cn=TRKO201800035693 (accessed on 4 August 2024). [CrossRef]
- Oh, J.H.; Kwon, C.H.; Jeon, J.S.; Choi, D.M. Management of veterinary drug residues in food. Korean J. Environ. Agric. 2009, 28, 310–325. [Google Scholar] [CrossRef]
- KHIDI (Korea Health Industry Development Institute). Intake by Food Group. 2022. Available online: https://www.khidi.or.kr/eps (accessed on 30 April 2022).
- Kim, D.; Yoon, J.; Yoo, J.; Kim, S.J.; Yang, J.E. Status and management strategy of pesticide use in golf courses in Korea. J. Appl. Biol. Chem. 2014, 57, 267–277. [Google Scholar] [CrossRef]
- Aktar, W.; Sengupta, D.; Chowdhury, A. Impact of pesticides use in agriculture: Their benefits and hazards. Interdiscip. Toxicol. 2009, 2, 1–12. [Google Scholar] [CrossRef]
- Afful, S.; Anim, A.K.; Serfor-Armah, Y. Spectrum of organochlorine pesticide residues in fish samples from the Densu Basin. Res. J. Environ. Earth Sci. 2010, 2, 133–138. [Google Scholar]
- Hwang, I.S.; Oh, Y.J.; Kwon, H.Y.; Ro, J.H.; Kim, D.B.; Moon, B.C.; Lee, H.S. Monitoring of pesticide residues concerned in stream water. Korean J. Environ. Agric. 2019, 38, 173–184. [Google Scholar] [CrossRef]
- Ccanccapa, A.; Masiá, A.; Navarro-Ortega, A.; Picó, Y.; Barceló, D. Pesticides in the Ebro River basin: Occurrence and risk assessment. Environ. Pollut. 2016, 211, 414–424. [Google Scholar] [CrossRef]
- Garabrant, D.H.; Held, J.; Langholz, B.; Peters, J.M.; Mack, T.M. DDT and related compounds and risk of pancreatic cancer. JNCI J. Natl. Cancer Inst. 1992, 84, 764–771. [Google Scholar] [CrossRef]
- Magnusson, K.; Ekelund, R.; Grabic, R.; Bergqvist, P.A. Bioaccumulation of PCB congeners in marine benthic infauna. Mar. Environ. Res. 2006, 61, 379–395. [Google Scholar] [CrossRef] [PubMed]
- Adami, H.O.; Lipworth, L.; Titus-Ernstoff, L.; Hsieh, C.C.; Hanberg, A.; Ahlborg, U.; Trichopoulos, D. Organochlorine compounds and estrogen-related cancers in women. Cancer Causes Control 1995, 6, 551–566. [Google Scholar] [CrossRef] [PubMed]
- Lazartigues, A.; Fratta, C.; Baudot, R.; Wiest, L.; Feidt, C.; Thomas, M.; Cren-Olivé, C. Multiresidue method for the determination of 13 pesticides in three environmental matrices: Water, sediments and fish muscle. Talanta 2011, 85, 1500–1507. [Google Scholar] [CrossRef] [PubMed]
- Forsberg, N.D.; Wilson, G.R.; Anderson, K.A. Determination of parent and substituted polycyclic aromatic hydrocarbons in high-fat salmon using a modified QuEChERS extraction, dispersive SPE and GC–MS. J. Agric. Food Chem. 2011, 59, 8108–8116. [Google Scholar] [CrossRef]
- Berntssen, M.H.; Måge, A.; Julshamn, K.; Oeye, B.E.; Lundebye, A.K. Carry-over of dietary organochlorine pesticides, PCDD/Fs, PCBs, and brominated flame retardants to Atlantic salmon (Salmo salar L.) fillets. Chemosphere 2011, 83, 95–103. [Google Scholar] [CrossRef]
- Schenck, F.J.; Calderon, L.; Podhorniak, L.V. Determination of organochlorine pesticide and polychlorinated biphenyl residues in fatty fish by tandem solid-phase extraction cleanup. J. AOAC Int. 1996, 79, 1209–1214. [Google Scholar] [CrossRef]
- Holmes, B.; Dunkin, A.; Schoen, R.; Wiseman, C. Single-laboratory ruggedness testing and validation of a modified QuEChERS approach to quantify 185 pesticide residues in salmon by liquid chromatography–and gas chromatography–tandem mass spectrometry. J. Agric. Food Chem. 2015, 63, 5100–5106. [Google Scholar] [CrossRef]
- Lazartigues, A.; Wiest, L.; Baudot, R.; Thomas, M.; Feidt, C.; Cren-Olivé, C. Multiresidue method to quantify pesticides in fish muscle by QuEChERS-based extraction and LC-MS/MS. Anal. Bioanal. Chem. 2011, 400, 2185–2193. [Google Scholar] [CrossRef]
- Rawn, D.F.; Judge, J.; Roscoe, V. Application of the QuEChERS method for the analysis of pyrethrins and pyrethroids in fish tissues. Anal. Bioanal. Chem. 2010, 397, 2525–2531. [Google Scholar] [CrossRef]
- Chamkasem, N.; Ollis, L.W.; Harmon, T.; Lee, S.; Mercer, G. Analysis of 136 pesticides in avocado using a modified QuEChERS method with LC-MS/MS and GC-MS/MS. J. Agric. Food Chem. 2013, 61, 2315–2329. [Google Scholar] [CrossRef]
- Abbassy, M.A.; Khalifa, M.A.; Nassar, A.M.; El-Deen, E.E.N.; Salim, Y.M. Analysis of organochlorine pesticides residues in fish from Edko Lake (North of Egypt) using eco-friendly method and their health implications for humans. Toxicol. Res. 2021, 37, 495–503. [Google Scholar] [CrossRef]
- Kim, K.; Choi, Y.; Mok, S.; Moon, H.B.; Jeon, J. Optimization of the QuEChERS method for multi-residue analysis of pharmaceuticals and pesticides in aquaculture products. Food Chem. 2023, 399, 133958. [Google Scholar] [CrossRef]
- Cho, H.R.; Park, J.S.; Kim, J.; Han, S.B.; Choi, Y.S. Multiresidue method for the quantitation of 20 pesticides in aquatic products. Anal. Bioanal. Chem. 2015, 407, 9043–9052. [Google Scholar] [CrossRef] [PubMed]
- Ministry of Food and Drug Safety (MFDS). Food Code (N. 2021-54). Available online: https://www.mfds.go.kr/eng/brd/m_15/view.do?seq=72437&srchFr=&srchTo=&srchWord=&srchTp=&itm_seq_1=0&itm_seq_2=0&multi_itm_seq=0&company_cd=&company_nm=&page=1 (accessed on 7 June 2022).
- Lehotay, S.J. Determination of pesticide residues in foods by acetonitrile extraction and partitioning with magnesium sulfate: Collaborative study. J. AOAC Int. 2007, 90, 485–520. [Google Scholar] [CrossRef] [PubMed]
- FAO; WHO. Codex Alimentarius Commission Procedural Manual, 28th ed.; Revised; FAO: Rome, Italy; WHO: Geneva, Switzerland, 2023. [Google Scholar] [CrossRef]
- Kim, M.; Cho, M.; Kim, S.H.; Lee, Y.; Jo, M.R.; Moon, Y.S.; Im, M.H. Monitoring and risk assessment of pesticide residues in fishery products using GC–MS/MS in South Korea. Toxics 2024, 12, 299. [Google Scholar] [CrossRef]
- KNHANES (Korea National Health and Nutrition Examination Survey). Available online: https://knhanes.kdca.go.kr/knhanes/main.do (accessed on 29 July 2021).
- BS EN 15662; Foods of Plant Origin-Determination of Pesticide Residues Using GC-MS and. or LC-MS/MS Following Acetonitrile Extraction/Partitioning and Clean-up by Dispersive SPE-QuEChERS-Method. 2008. Available online: http://esearch.cen.euesearch (accessed on 29 July 2021).
- Kwak, S.Y.; Lee, S.H.; Jeong, H.R.; Nam, A.J.; Sarker, A.; Kim, H.Y.; Kim, J.E. Variation of pesticide residues in strawberries by washing and boiling processes. Korean J. Environ. Agric. 2019, 38, 281–290. [Google Scholar] [CrossRef]
- Lehotay, S.J.; Son, K.A.; Kwon, H.; Koesukwiwat, U.; Fu, W.; Mastovska, K.; Leepipatpiboon, N. Comparison of QuEChERS sample preparation methods for the analysis of pesticide residues in fruits and vegetables. J. Chromatogr. A 2010, 1217, 2548–2560. [Google Scholar] [CrossRef]
- Anastassiades, M.; Lehotay, S.J.; Štajnbaher, D.; Schenck, F.J. Fast and easy multiresidue method employing acetonitrile extraction/partitioning and “dispersive solid-phase extraction” for the determination of pesticide residues in produce. J. AOAC Int. 2003, 86, 412–431. [Google Scholar] [CrossRef]
- Herrmann, S.S.; Poulsen, M.E. Clean-up of cereal extracts for gas chromatography and mass spectrometry. J. Chromatogr. A 2015, 1423, 47–53. [Google Scholar] [CrossRef]
- Tuner, J.A. The Pesticide Manual: A World Compendium, 17th ed.; BCPC: Alton, UK, 2015. [Google Scholar]
- Korea Crop Protection Association. Crop Protection Agent Guidelines. 2022. Available online: http://www.koreacpa.org/korea/bbs/board.php?bo_table=3_3 (accessed on 30 April 2022).
- Joint FAO/WHO Expert Committee on Food Additives (JECFA). Procedures for Recommending Maximum Residue Limits: Residues of Veterinary Drugs in Food; JECFA: Geneva, Switzerland, 2000. [Google Scholar]
No | Pesticide | Retention Time (min) | Precursor Ion (m/z) | Product Ion (m/z) | Collision Energy (eV) |
---|---|---|---|---|---|
1 | Acetamiprid | 5.448 | 223.1 | 126.1 | −11 |
55.9 | −16 | ||||
2 | Azinphos-methyl | 8.218 | 318.0 | 132.0 | −16 |
160.1 | −7 | ||||
3 | Azoxystrobin | 8.04 | 404.0 | 328.9 | −26 |
343.9 | −20 | ||||
4 | Carbendazim | 5.269 | 192.1 | 132.1 | −25 |
105.1 | −37 | ||||
5 | Carbofuran | 6.449 | 222.1 | 165.0 | −6 |
123.1 | −11 | ||||
6 | Clothianidin | 5.274 | 250.0 | 132.0 | −16 |
169.1 | −13 | ||||
7 | Dichlorvos | 6.487 | 238.0 | 109.1 | −21 |
220.9 | −11 | ||||
8 | Dinotefuran | 4.603 | 203.1 | 114.1 | −13 |
87.0 | −16 | ||||
9 | Diuron (DCMU) | 7.699 | 233.0 | 46.1 | −17 |
−8.0 | 39 | ||||
10 | Flubendiamide | 9.605 | 683.0 | 408.0 | −11 |
274.0 | −29 | ||||
11 | Hexaconazole | 10.210 | 314.1 | 70.0 | −22 |
159.0 | −30 | ||||
12 | Pyrimisulfan | 7.421 | 420.1 | 370.1 | −19 |
388.1 | −13 | ||||
13 | Terbuthylazine | 8.652 | 230.1 | 174.0 | −7 |
68.1 | −38 | ||||
14 | Thiacloprid | 5.741 | 253.0 | 126.0 | −11 |
90.1 | −39 | ||||
15 | Thiamethoxam | 4.943 | 292.0 | 181.1 | −22 |
132.0 | −22 | ||||
16 | Tricyclazole | 6.006 | 190.1 | 136.0 | −24 |
109.0 | −36 | ||||
17 | Azimsulfuron | 7.42 | 424.9 | 182.1 | −17 |
156.0 | −34 | ||||
18 | Trifroxystrobin | 11.222 | 409.4 | 186.0 | −20 |
144.9 | −45 | ||||
19 | Difenoconazole | 10.816 | 405.9 | 250.9 | −25 |
337.0 | −19 | ||||
20 | Fenobucarb | 8.04 | 208.0 | 95.1 | −14 |
151.9 | −10 | ||||
21 | Tebufenozide | 9.454 | 353.0 | 133.0 | −11 |
297.1 | −9 | ||||
22 | Lufenuron | 12.291 | 510.8 | 158.1 | −21 |
141.1 | −42 | ||||
23 | Indoxacarb | 10.823 | 528.1 | 203.0 | −38 |
150.1 | −22 | ||||
24 | Daimuron | 8.717 | 269.2 | 151.2 | −12 |
119.2 | −21 |
Fish Species | Food Consumption (g/Person/Day) in KNHANES a (2017–2021) | |
---|---|---|
Mean | Extreme (99th Percentile) | |
Abalone | 0.6000 | 13.8000 |
Carp | 0.4800 | 12.1200 |
Chinese muddy loach | 0.9600 | 43.6800 |
Crucian carp | 0.4800 | 12.1200 |
Eel | 1.3200 | 24.2400 |
Far eastern catfish | 0.4800 | 12.1200 |
Flathead mullet | 0.4800 | 12.1200 |
Korean rockfish | 1.2000 | 31.2000 |
Mirror carp | 0.4800 | 12.1200 |
Olive flounder | 1.3500 | 48.4500 |
Rainbow trout | 0.4800 | 12.1200 |
Red seabream | 0.4800 | 12.1200 |
Sea bass | 0.4800 | 12.1200 |
Starry flounder | 0.4800 | 12.1200 |
Whiteleg shrimp | 1.8000 | 50.4000 |
Pesticide | Recoveries (Mean ± Standard Deviation) (%) | |||
---|---|---|---|---|
Extraction Method | Clean-Up Materials | |||
EN 15662 a | AOAC b | C18 50 mg | PSA 50 mg + C18 50 mg | |
Acetamiprid | 87.9 ± 4.6 | 77.8 ± 6.7 | 75.9 ± 0.6 | 75.4 ± 1.3 |
Azinphos-methyl | 84.0 ± 1.8 | 68.3 ± 7.4 | 75.4 ± 4.8 | 74.2 ± 3.4 |
Azoxystrobin | 80.8 ± 1.6 | 90.9 ± 4.2 | 88.1 ± 2.5 | 80.5 ± 2.2 |
Carbendazim | 89.7 ± 3.1 | 49.9 ± 2.6 | 86.2 ± 2.8 | 75.0 ± 2.7 |
Carbofuran | 69.1 ± 4.2 | 70.5 ± 7.7 | 81.8 ± 6.5 | 80.5 ± 1.9 |
Clothianidin | 72.1 ± 3.3 | 74.7 ± 6.8 | 80.8 ± 1.5 | 84.2 ± 6.0 |
Dichlorvos | 63.5 ± 6.4 | 54.4 ± 7.0 | 77.2 ± 3.0 | 69.7 ± 2.0 |
Dinotefuran | 72.7 ± 1.9 | 64.3 ± 6.0 | 77.9 ± 3.8 | 92.8 ± 3.4 |
Diuron | 70.3 ± 4.3 | 68.0 ± 5.6 | 80.2 ± 0.3 | 75.4 ± 2.7 |
Flubendiamide | 89.3 ± 4.8 | 55.2 ± 1.6 | 80.2 ± 2.5 | 73.4 ± 4.9 |
Hexaconazole | 70.4 ± 5.1 | 65.2 ± 5.1 | 81.9 ± 1.7 | 77.6 ± 2.8 |
Pyrimisulfan | 86.5 ± 4.0 | 77.9 ± 4.4 | 83.6 ± 4.6 | 265.7 ± 26.1 |
Terbuthylazine | 76.6 ± 3.5 | 57.6 ± 3.2 | 81.4 ± 4.0 | 76.6 ± 1.9 |
Thiacloprid | 81.9 ± 5.9 | 75.4 ± 7.2 | 80.3 ± 3.7 | 76.8 ± 2.9 |
Thiamethoxam | 78.7 ± 6.5 | 30.0 ± 3.1 | 86.2 ± 2.8 | 54.8 ± 3.4 |
Tricyclazole | 78.4 ± 3.2 | 60.8 ± 4.7 | 85.4 ± 3.7 | 77.5 ± 2.4 |
Azimsulfuron | 77.6 ± 0.3 | 60.8 ± 3.1 | 83.3 ± 0.5 | −3.5 ± 4.9 |
Trifroxystrobin | 74.6 ± 4.2 | 59.5 ± 1.5 | 82.2 ± 1.8 | 80.6 ± 1.9 |
Difenoconazole | 76.9 ± 3.8 | 48.4 ± 5.0 | 73.6 ± 4.5 | 79.5 ± 2.0 |
Fenobucarb | 76.5 ± 5.9 | 74.6 ± 2.8 | 86.4 ± 3.1 | 80.7 ± 3.4 |
Tebufenozide | 76.7 ± 3.7 | 90.4 ± 3.4 | 76.0 ± 2.7 | 76.6 ± 0.5 |
Lufenuron | 96.7 ± 5.0 | 74.5 ± 3.9 | 77.5 ± 5.6 | 80.0 ± 3.6 |
Indoxacarb | 79.4 ± 2.8 | 67.8 ± 3.6 | 79.1 ± 3.3 | 98.4 ± 3.2 |
Daimuron | 80.5 ± 1.7 | 36.5 ± 2.2 | 87.8 ± 3.4 | 80.7 ± 1.3 |
Pesticides | Matrix | Linearity (R2) | Matrix Effect | LOD (ng/g Wet Weight) | LOQ (ng/g Wet Weight) | Relative Recovery (%) | RSD a (%) | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
LOQ | 10 × LOQ | 50 × LOQ | LOQ | 10 × LOQ | 50 × LOQ | ||||||
Acetamiprid | Eel | 0.9999 | 16.80 | 0.4 | 5 | 88.8 | 90.1 | 92.7 | 2.2 | 1.4 | 2.8 |
Flatfish | 0.9993 | −2.73 | 0.4 | 5 | 84.4 | 78.9 | 93.2 | 1.5 | 9.0 | 1.1 | |
Avalone | 1.0000 | −5.60 | 0.25 | 3 | 88.9 | 90.1 | 87.9 | 2.8 | 1.1 | 2.9 | |
Shrimp | 0.9997 | −9.55 | 0.6 | 7 | 90.8 | 92.8 | 93.7 | 1.5 | 1.4 | 2.1 | |
Azinphos-methyl | Eel | 0.9995 | 24.87 | 0.25 | 3 | 89.7 | 89.8 | 90.7 | 12.1 | 1.9 | 2.5 |
Flatfish | 0.9990 | 5.85 | 0.25 | 3 | 84.0 | 86.6 | 93.1 | 6.1 | 3.1 | 4.6 | |
Avalone | 0.9989 | −1.87 | 0.3 | 4 | 85.1 | 91.7 | 90.5 | 7.3 | 2.5 | 5.0 | |
Shrimp | 0.9998 | 0.77 | 0.4 | 5 | 95.4 | 90.0 | 92.7 | 4.1 | 2.3 | 1.0 | |
Azoxystrobin | Eel | 0.9998 | 19.44 | 0.3 | 4 | 89.4 | 90.5 | 92.1 | 2.2 | 1.1 | 4.1 |
Flatfish | 0.9994 | −0.002 | 0.25 | 3 | 83.9 | 87.9 | 94.6 | 5.7 | 1.4 | 2.1 | |
Avalone | 0.9998 | −4.59 | 0.25 | 3 | 90.4 | 91.4 | 91.4 | 7.1 | 3.3 | 2.9 | |
Shrimp | 0.9995 | −5.99 | 0.3 | 4 | 85.8 | 93.8 | 94.0 | 5.7 | 1.5 | 3.3 | |
Carbendazim | Eel | 0.9995 | 15.06 | 0.3 | 4 | 86.7 | 85.8 | 88.6 | 4.5 | 3.4 | 4.9 |
Flatfish | 0.9989 | −8.80 | 0.6 | 7 | 80.2 | 79.0 | 87.7 | 4.1 | 3.5 | 2.1 | |
Avalone | 0.9999 | −11.90 | 0.4 | 5 | 86.7 | 88.3 | 85.7 | 3.9 | 1.9 | 4.7 | |
Shrimp | 0.9992 | −15.11 | 0.25 | 3 | 87.6 | 91.0 | 89.1 | 8.4 | 3.3 | 5.2 | |
Carbofuran | Eel | 0.9996 | 24.36 | 0.25 | 3 | 91.8 | 88.8 | 92.7 | 4.7 | 1.2 | 3.8 |
Flatfish | 0.9994 | 0.83 | 0.25 | 3 | 87.2 | 87.9 | 93.7 | 4.2 | 1.4 | 1.4 | |
Avalone | 0.9998 | −0.31 | 0.3 | 4 | 93.4 | 89.5 | 88.4 | 5.0 | 0.7 | 2.9 | |
Shrimp | 0.9995 | −4.04 | 0.4 | 5 | 90.0 | 92.3 | 94.1 | 5.2 | 2.1 | 2.2 | |
Clothianidin | Eel | 0.9994 | 23.75 | 0.25 | 3 | 95.4 | 91.0 | 93.9 | 5.1 | 4.2 | 4.0 |
Flatfish | 0.9992 | −2.45 | 0.3 | 4 | 75.2 | 83.4 | 91.0 | 11.2 | 1.9 | 2.9 | |
Avalone | 0.9997 | −6.90 | 0.3 | 4 | 85.8 | 88.6 | 85.9 | 10.5 | 3.7 | 2.4 | |
Shrimp | 0.9983 | −6.53 | 0.4 | 5 | 84.2 | 92.5 | 91.5 | 2.8 | 2.7 | 2.0 | |
Dichlorvos | Eel | 0.9996 | 15.87 | 0.4 | 5 | 84.0 | 88.1 | 92.7 | 7.1 | 2.1 | 1.7 |
Flatfish | 0.9988 | −4.16 | 0.4 | 5 | 82.7 | 85.1 | 93.7 | 8.5 | 1.5 | 3.2 | |
Avalone | 0.9999 | −6.48 | 0.8 | 10 | 88.9 | 90.8 | 91.4 | 5.6 | 2.4 | 2.7 | |
Shrimp | 0.9993 | −9.03 | 0.8 | 10 | 71.7 | 89.7 | 92.6 | 9.9 | 1.6 | 2.3 | |
Dinotefuran | Eel | 0.9998 | 5.45 | 0.3 | 4 | 87.1 | 88.9 | 91.4 | 5.3 | 1.6 | 1.6 |
Flatfish | 0.9990 | −1.80 | 0.3 | 4 | 82.1 | 84.8 | 90.2 | 3.9 | 2.5 | 1.6 | |
Avalone | 0.9999 | −9.93 | 0.4 | 5 | 89.2 | 88.7 | 87.1 | 6.5 | 1.3 | 3.0 | |
Shrimp | 0.9996 | 25.45 | 0.4 | 5 | 88.1 | 89.5 | 91.9 | 1.6 | 2.7 | 2.0 | |
Diuron | Eel | 0.9996 | 27.79 | 0.4 | 5 | 91.5 | 89.0 | 92.0 | 4.3 | 1.6 | 1.6 |
Flatfish | 0.9991 | −1.96 | 0.25 | 3 | 84.8 | 83.5 | 92.0 | 5.7 | 1.8 | 0.5 | |
Avalone | 0.9999 | −3.49 | 0.3 | 4 | 93.2 | 89.3 | 89.6 | 3.6 | 1.9 | 2.1 | |
Shrimp | 0.9991 | −3.49 | 0.3 | 4 | 93.2 | 89.3 | 89.6 | 3.6 | 1.9 | 2.1 | |
Flubendiamide | Eel | 0.9991 | 21.29 | 0.25 | 3 | 88.3 | 87.3 | 88.5 | 6.2 | 2.7 | 5.9 |
Flatfish | 0.9976 | 7.12 | 0.4 | 4 | 92.8 | 88.8 | 95.1 | 5.6 | 3.1 | 3.8 | |
Avalone | 0.9995 | 2.04 | 0.4 | 4 | 86.2 | 93.4 | 90.7 | 8.1 | 1.5 | 4.3 | |
Shrimp | 0.9965 | 0.89 | 0.25 | 3 | 95.3 | 92.8 | 93.7 | 10.7 | 4.1 | 4.9 | |
Hexaconazole | Eel | 0.9921 | −1.77 | 0.25 | 3 | 88.3 | 93.9 | 97.1 | 4.9 | 1.2 | 3.8 |
Flatfish | 0.9988 | −2.58 | 0.25 | 3 | 83.7 | 84.9 | 89.3 | 5.8 | 3.2 | 2.9 | |
Avalone | 0.9996 | −8.25 | 0.25 | 3 | 77.6 | 90.5 | 87.9 | 13.2 | 2.3 | 3.1 | |
Shrimp | 0.9990 | −7.47 | 0.25 | 3 | 82.9 | 91.4 | 92.9 | 5.8 | 2.9 | 5.2 | |
Pyrimisulfan | Eel | 0.9998 | 13.62 | 0.4 | 5 | 90.3 | 89.0 | 92.2 | 1.9 | 1.2 | 3.8 |
Flatfish | 0.9990 | 6.35 | 0.3 | 4 | 87.6 | 86.6 | 93.4 | 2.0 | 1.2 | 1.1 | |
Avalone | 0.9996 | 1.08 | 0.25 | 3 | 90.2 | 90.2 | 89.2 | 2.7 | 1.1 | 2.5 | |
Shrimp | 0.9997 | 3.16 | 0.3 | 4 | 88.6 | 90.9 | 92.8 | 1.2 | 1.8 | 2.1 | |
Terbuthylazine | Eel | 0.9995 | 28.46 | 0.4 | 5 | 88.8 | 86.7 | 90.1 | 2.6 | 0.6 | 3.7 |
Flatfish | 0.9994 | −1.35 | 0.25 | 3 | 87.0 | 85.7 | 90.9 | 5.1 | 1.8 | 1.5 | |
Avalone | 0.9999 | −5.93 | 0.3 | 4 | 90.1 | 91.6 | 89.7 | 4.4 | 1.3 | 2.9 | |
Shrimp | 0.9994 | −4.81 | 0.3 | 4 | 82.4 | 92.1 | 91.5 | 6.2 | 3.5 | 3.8 | |
Thiacloprid | Eel | 0.9999 | 20.48 | 0.4 | 5 | 84.8 | 90.3 | 91.9 | 2.8 | 1.2 | 4.2 |
Flatfish | 0.9995 | 0.82 | 0.4 | 5 | 85.0 | 86.0 | 92.5 | 2.3 | 1.9 | 1.1 | |
Avalone | 0.9939 | −2.12 | 0.3 | 4 | 88.4 | 89.9 | 86.7 | 2.8 | 1.7 | 0.4 | |
Shrimp | 0.9994 | −6.37 | 0.6 | 7 | 86.1 | 93.0 | 93.0 | 2.4 | 1.3 | 1.4 | |
Thiamethoxam | Eel | 0.9997 | 16.73 | 0.25 | 3 | 93.4 | 90.2 | 93.9 | 7.7 | 1.1 | 2.7 |
Flatfish | 0.9995 | −11.66 | 0.6 | 7 | 81.2 | 82.5 | 91.9 | 2.8 | 2.6 | 1.8 | |
Avalone | 1.0000 | −14.10 | 0.3 | 4 | 90.6 | 89.0 | 87.5 | 5.1 | 1.1 | 2.3 | |
Shrimp | 0.9991 | −6.82 | 0.4 | 5 | 85.0 | 92.1 | 94.2 | 4.5 | 2.3 | 2.4 | |
Tricyclazole | Eel | 0.9997 | −0.08 | 0.25 | 3 | 90.1 | 90.7 | 101.3 | 3.3 | 0.8 | 2.4 |
Flatfish | 0.9993 | −20.33 | 0.4 | 5 | 86.3 | 87.3 | 106.3 | 1.0 | 2.0 | 1.9 | |
Avalone | 0.9998 | −19.23 | 0.4 | 5 | 85.6 | 88.9 | 93.9 | 5.1 | 0.8 | 2.2 | |
Shrimp | 0.9979 | −26.81 | 0.3 | 4 | 90.6 | 95.4 | 101.0 | 3.6 | 1.1 | 1.7 | |
Azimsulfuron | Eel | 0.9998 | 15.92 | 0.3 | 4 | 87.5 | 88.2 | 91.1 | 3.1 | 1.5 | 2.2 |
Flatfish | 0.9993 | 6.15 | 0.3 | 4 | 83.0 | 83.4 | 90.5 | 3.6 | 1.7 | 1.9 | |
Avalone | 0.9997 | 1.80 | 0.3 | 4 | 85.8 | 90.0 | 89.2 | 3.7 | 2.1 | 2.1 | |
Shrimp | 0.9997 | 4.49 | 0.25 | 3 | 85.1 | 88.2 | 90.9 | 3.8 | 1.7 | 2.8 | |
Trifroxystrobin | Eel | 0.9990 | 27.81 | 0.4 | 5 | 96.8 | 90.9 | 92.7 | 4.5 | 3.0 | 3.8 |
Flatfish | 0.9984 | −3.56 | 0.25 | 3 | 90.4 | 90.5 | 95.8 | 2.7 | 2.3 | 1.8 | |
Avalone | 0.9998 | −3.16 | 0.25 | 3 | 87.8 | 90.5 | 88.7 | 4.3 | 2.1 | 2.1 | |
Shrimp | 0.9986 | −10.76 | 0.25 | 3 | 87.1 | 94.6 | 100.5 | 7.8 | 2.1 | 1.5 | |
Difenoconazole | Eel | 0.9993 | 16.22 | 0.3 | 4 | 86.3 | 88.7 | 92.5 | 1.8 | 1.4 | 2.2 |
Flatfish | 0.9990 | 1.25 | 0.3 | 4 | 83.0 | 86.1 | 91.9 | 3.4 | 0.7 | 1.0 | |
Avalone | 1.0000 | −5.08 | 0.25 | 3 | 87.6 | 91.8 | 90.5 | 5.8 | 0.8 | 2.5 | |
Shrimp | 0.9996 | −4.78 | 0.25 | 3 | 86.3 | 92.3 | 91.7 | 4.8 | 1.5 | 2.4 | |
Fenobucarb | Eel | 0.9997 | 18.71 | 0.3 | 4 | 87.6 | 88.9 | 92.2 | 3.9 | 1.8 | 2.2 |
Flatfish | 0.9990 | −0.45 | 0.3 | 4 | 81.7 | 86.0 | 91.7 | 7.4 | 1.2 | 2.3 | |
Avalone | 0.9997 | −4.37 | 0.3 | 4 | 88.7 | 92.2 | 89.1 | 5.3 | 1.8 | 2.9 | |
Shrimp | 0.9994 | −2.13 | 0.25 | 3 | 90.1 | 93.7 | 93.1 | 3.1 | 1.7 | 2.0 | |
Tebufenozide | Eel | 0.9998 | 22.51 | 0.25 | 3 | 92.1 | 90.6 | 93.9 | 2.8 | 1.8 | 3.9 |
Flatfish | 0.9993 | 0.71 | 0.4 | 5 | 83.1 | 86.8 | 94.4 | 3.6 | 1.7 | 1.6 | |
Avalone | 0.9998 | −3.82 | 0.3 | 4 | 84.2 | 91.5 | 89.0 | 4.6 | 1.7 | 1.9 | |
Shrimp | 0.9989 | −3.61 | 0.4 | 5 | 90.5 | 91.6 | 93.8 | 3.7 | 2.1 | 4.3 | |
Lufenuron | Eel | 0.9993 | 20.25 | 0.4 | 5 | 87.6 | 86.6 | 87.2 | 5.3 | 2.4 | 6.7 |
Flatfish | 0.9997 | −10.19 | 0.4 | 5 | 78.8 | 91.9 | 91.6 | 12.0 | 7.0 | 3.1 | |
Avalone | 0.9997 | −17.85 | 0.3 | 4 | 80.4 | 91.9 | 84.1 | 14.2 | 2.2 | 6.9 | |
Shrimp | 0.9992 | −3.16 | 0.25 | 3 | 93.7 | 94.0 | 95.0 | 12.9 | 2.5 | 4.9 | |
Indoxacarb | Eel | 0.9997 | 15.40 | 0.4 | 5 | 90.8 | 89.2 | 92.6 | 2.2 | 2.4 | 5.1 |
Flatfish | 0.9976 | 5.46 | 0.3 | 4 | 81.6 | 88.7 | 93.7 | 12.5 | 2.6 | 2.7 | |
Avalone | 0.9997 | −1.23 | 0.4 | 5 | 94.1 | 90.9 | 90.5 | 7.7 | 2.0 | 1.2 | |
Shrimp | 0.9988 | −2.55 | 0.3 | 4 | 89.2 | 90.8 | 92.8 | 7.2 | 2.3 | 6.6 | |
Daimuron | Eel | 0.9998 | 16.93 | 0.3 | 4 | 87.2 | 88.9 | 91.4 | 1.3 | 1.5 | 3.6 |
Flatfish | 0.9993 | 1.61 | 0.3 | 4 | 87.2 | 86.7 | 93.1 | 1.7 | 0.8 | 0.9 | |
Avalone | 0.9999 | −2.36 | 0.25 | 3 | 88.7 | 91.4 | 90.4 | 1.6 | 0.9 | 2.3 | |
Shrimp | 0.9997 | −3.47 | 0.25 | 3 | 89.1 | 91.6 | 93.3 | 3.0 | 1.6 | 2.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, M.; Kim, T.-h.; Park, J.-W.; Lee, Y.; Jo, M.-R.; Moon, Y.-S.; Im, M.-H. A Robust Method for Simultaneous Determination and Risk Assessment of Multiresidual Pesticides in Fishery Products. Toxics 2024, 12, 633. https://doi.org/10.3390/toxics12090633
Kim M, Kim T-h, Park J-W, Lee Y, Jo M-R, Moon Y-S, Im M-H. A Robust Method for Simultaneous Determination and Risk Assessment of Multiresidual Pesticides in Fishery Products. Toxics. 2024; 12(9):633. https://doi.org/10.3390/toxics12090633
Chicago/Turabian StyleKim, Myungheon, Tae-hwa Kim, Jong-Woo Park, Yoonmi Lee, Mi-Ra Jo, Yong-Sun Moon, and Moo-Hyeog Im. 2024. "A Robust Method for Simultaneous Determination and Risk Assessment of Multiresidual Pesticides in Fishery Products" Toxics 12, no. 9: 633. https://doi.org/10.3390/toxics12090633
APA StyleKim, M., Kim, T. -h., Park, J. -W., Lee, Y., Jo, M. -R., Moon, Y. -S., & Im, M. -H. (2024). A Robust Method for Simultaneous Determination and Risk Assessment of Multiresidual Pesticides in Fishery Products. Toxics, 12(9), 633. https://doi.org/10.3390/toxics12090633