Temporal Variation and Industry-Specific Differences of the Use of Volatile Organic Compounds from 2018 to 2023 and Their Health Risks in a Typical Industrially Concentrated Area in South China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples Collection
2.2. Analysis of VOCs
2.3. Air Detection
2.4. Human Health Risk Assessment
2.5. Statistical Analysis
3. Results and Discussion
3.1. Overview of VOC Testing Industry and Sample Analysis
3.1.1. Numbers of Organic Solvent Samples in Four Industries
3.1.2. Composition of Organic Solvent Samples from Four Industries
3.2. Analysis of VOCs in Organic Solvents
3.2.1. Categories of VOCs in Organic Solvents
3.2.2. Detection of VOCs in Organic Solvents
3.3. Detection and Analysis of High-Risk Occupational Disease Hazards
3.3.1. Detection of High-Risk Occupational Hazards in Organic Solvents from 2018 to 2023
3.3.2. Detection of High-Risk Occupational Hazards in Organic Solvents Used in Different Industries
3.4. The Health Risk of High-Risk Occupational Hazards
3.4.1. Detection of High-Risk Occupational Hazards in Air Samples
3.4.2. The Health Risk of High-Risk Occupational Hazards in Different Industries
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Joshi, D.R.; Adhikari, N. An Overview on Common Organic Solvents and Their Toxicity. J. Pharm. Res. Int. 2019, 28, 1–18. [Google Scholar] [CrossRef]
- Durrani, T.; Clapp, R.; Harrison, R.; Shusterman, D. Solvent-Based Paint and Varnish Removers: A Focused Toxicologic Review of Existing and Alternative Constituents. J. Appl. Toxicol. 2020, 40, 1325–1341. [Google Scholar] [CrossRef]
- Mo, Z.; Cui, R.; Yuan, B.; Cai, H.; McDonald, B.C.; Li, M.; Zheng, J.; Shao, M. A Mass-Balance-Based Emission Inventory of Non-Methane Volatile Organic Compounds (NMVOCs) for Solvent Use in China. Atmos. Chem. Phys. 2021, 21, 13655–13666. [Google Scholar] [CrossRef]
- Stockwell, C.E.; Coggon, M.M.; Gkatzelis, G.I.; Ortega, J.; McDonald, B.C.; Peischl, J.; Aikin, K.; Gilman, J.B.; Trainer, M.; Warneke, C. Volatile Organic Compound Emissions from Solvent- and Water-Borne Coatings—Compositional Differences and Tracer Compound Identifications. Atmos. Chem. Phys. 2021, 21, 6005–6022. [Google Scholar] [CrossRef]
- Sheldon, R.A. Green Solvents for Sustainable Organic Synthesis: State of the Art. Green Chem. 2005, 7, 267–278. [Google Scholar] [CrossRef]
- Karami, S.; Bassig, B.; Stewart, P.A.; Lee, K.-M.; Rothman, N.; Moore, L.E.; Lan, Q. Occupational Trichloroethylene Exposure and Risk of Lymphatic and Haematopoietic Cancers: A Meta-Analysis. Occup. Environ. Med. 2013, 70, 591–599. [Google Scholar] [CrossRef]
- Spencer, P.S.; Schaumburg, H.H. Organic Solvent Neurotoxicity. Facts and Research Needs. Scand. J. Work Environ. Health 1985, 11 (Suppl. 1), 53–60. [Google Scholar]
- Vlaanderen, J.; Straif, K.; Pukkala, E.; Kauppinen, T.; Kyyrönen, P.; Martinsen, J.I.; Kjaerheim, K.; Tryggvadottir, L.; Hansen, J.; Sparén, P.; et al. Occupational Exposure to Trichloroethylene and Perchloroethylene and the Risk of Lymphoma, Liver, and Kidney Cancer in Four Nordic Countries. Occup. Environ. Med. 2013, 70, 393–401. [Google Scholar] [CrossRef] [PubMed]
- Baker, E.L. A Review of Recent Research on Health Effects of Human Occupational Exposure to Organic Solvents. A Critical Review. J. Occup. Med. 1994, 36, 1079–1092. [Google Scholar] [CrossRef]
- Chao, K.-P.; Wang, P.; Lin, C.-H. Estimation of Diffusion Coefficients and Solubilities for Organic Solvents Permeation through High-Density Polyethylene Geomembrane. J. Environ. Eng. 2006, 132, 519–526. [Google Scholar] [CrossRef]
- Lee, S.C.; Chiu, M.Y.; Ho, K.F.; Zou, S.C.; Wang, X. Volatile Organic Compounds (VOCs) in Urban Atmosphere of Hong Kong. Chemosphere 2002, 48, 375–382. [Google Scholar] [CrossRef]
- Cheng, L.; Wei, W.; Guo, A.; Zhang, C.; Sha, K.; Wang, R.; Wang, K.; Cheng, S. Health Risk Assessment of Hazardous VOCs and Its Associations with Exposure Duration and Protection Measures for Coking Industry Workers. J. Clean. Prod. 2022, 379, 134919. [Google Scholar] [CrossRef]
- Liu, Y.; Li, S.; Wang, Q.; Zheng, X.; Zhao, Y.; Lu, W. Occupational Health Risks of VOCs Emitted from the Working Face of Municipal Solid Waste Landfill: Temporal Variation and Influencing Factors. Waste Manag. 2023, 160, 173–181. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Peng, L.; Cheng, N.; Bai, H.; Mu, L. Health Risk Assessment of Toxic VOCs Species for the Coal Fire Well Drillers. Environ. Sci. Pollut. Res. Int. 2015, 22, 15132–15144. [Google Scholar] [CrossRef]
- Lamplugh, A.; Harries, M.; Xiang, F.; Trinh, J.; Hecobian, A.; Montoya, L.D. Occupational Exposure to Volatile Organic Compounds and Health Risks in Colorado Nail Salons. Environ. Pollut. 2019, 249, 518–526. [Google Scholar] [CrossRef]
- Lin, N.; Rosemberg, M.-A.; Li, W.; Meza-Wilson, E.; Godwin, C.; Batterman, S. Occupational Exposure and Health Risks of Volatile Organic Compounds of Hotel Housekeepers: Field Measurements of Exposure and Health Risks. Indoor Air 2021, 31, 26–39. [Google Scholar] [CrossRef]
- Wolkoff, P.; Wilkins, C.K.; Clausen, P.A.; Nielsen, G.D. Organic Compounds in Office Environments—Sensory Irritation, Odor, Measurements and the Role of Reactive Chemistry. Indoor Air 2006, 16, 7–19. [Google Scholar] [CrossRef] [PubMed]
- Colman Lerner, J.E.; Sanchez, E.Y.; Sambeth, J.E.; Porta, A.A. Characterization and Health Risk Assessment of VOCs in Occupational Environments in Buenos Aires, Argentina. Atmos. Environ. 2012, 55, 440–447. [Google Scholar] [CrossRef]
- Vargas-Ramos, Y.E.; Marrugo-Negrete, J.L. Exposure to VOCs in furniture factories in two populations in northern Colombia. Rev. Salud Publica 2014, 16, 834–846. [Google Scholar]
- Xu, H.; Li, Y.; Feng, R.; He, K.; Ho, S.S.H.; Wang, Z.; Ho, K.F.; Sun, J.; Chen, J.; Wang, Y.; et al. Comprehensive Characterization and Health Assessment of Occupational Exposures to Volatile Organic Compounds (VOCs) in Xi’an, a Major City of Northwestern China. Atmos. Environ. 2021, 246, 118085. [Google Scholar] [CrossRef]
- Li, X.; Tu, H.; Chen, J.; Yu, H.; Zhang, R.; Chen, P.; Hu, S. Trends of 7 Organic Solvent-Induced Occupational Diseases in Guangdong, from 2006 to 2015. Biomed. Environ. Sci. 2020, 33, 862–866. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Qu, H.; Hu, S.; Chen, J.; Tu, H.; Wen, X.; Yu, H.; Zhou, S.; Qi, Y. Study on the Epidemic Characteristics and Trends of Occupational Chemical Poisoning in Guangdong Province. China Occup. Med. 2018, 45, 436–442. [Google Scholar]
- Wang, L.; Weng, S.; Zhu, Z.; Chen, Z.; Dai, Z.; Feng, J. Characteristic and trend analysis of occupational diseases from 2006 to 2021 in Bao’anDistrict of Shenzhen. Ind. Health Occup. Dis. 2023, 49, 215–219. [Google Scholar] [CrossRef]
- Chen, S.; Wang, S.; Lin, B. Study on the Economic Burden of Occupational Poisoning Induced by Organic Solvents in Baoan District of Shenzhen City. Chin. Occup. Med. 2005, 32, 15–17. [Google Scholar] [CrossRef]
- Stephan-Recaido, S.C.; Peckham, T.K.; Lavoué, J.; Baker, M.G. Characterizing the Burden of Occupational Chemical Exposures by Sociodemographic Groups in the United States, 2021. Am. J. Public Health 2024, 114, 57–67. [Google Scholar] [CrossRef]
- Hoang, A.; Fagan, K.; Cannon, D.L.; Rayasam, S.D.G.; Harrison, R.; Shusterman, D.; Singla, V. Assessment of Methylene Chloride-Related Fatalities in the United States, 1980–2018. JAMA Intern. Med. 2021, 181, 797–805. [Google Scholar] [CrossRef] [PubMed]
- Mo, Z.; Lu, S.; Shao, M. Volatile Organic Compound (VOC) Emissions and Health Risk Assessment in Paint and Coatings Industry in the Yangtze River Delta, China. Environ. Pollut. 2021, 269, 115740. [Google Scholar] [CrossRef]
- Şahin, Ü.A.; Oğur, N.E.; Ayvaz, C.; Dumanoğlu, Y.; Onat, B.; Uzun, B.; Özkaya, F.; Akın, Ö. Volatile Organic Compound Concentrations under Two Different Ventilation Structures and Their Health Risks in the Adhesive Tape Manufacturing Workplace. Air Qual. Atmos. Health 2023, 16, 2177–2191. [Google Scholar] [CrossRef]
- Zhu, J.; Su, S.; Wen, C.; Wang, T.; Xu, H.; Liu, M. Application of Multiple Occupational Health Risk Assessment Models in the Prediction of Occupational Health Risks of N-Hexane in the Air-Conditioned Closed Workshop. Front. Public Health 2022, 10, 1017718. [Google Scholar] [CrossRef]
- Mai, J.-L.; Yang, W.-W.; Zeng, Y.; Guan, Y.-F.; Chen, S.-J. Volatile Organic Compounds (VOCs) in Residential Indoor Air during Interior Finish Period: Sources, Variations, and Health Risks. Hyg. Environ. Health Adv. 2024, 9, 100087. [Google Scholar] [CrossRef]
- Huang, Q.; Su, S.; Zhang, X.; Li, X.; Zhu, J.; Wang, T.; Wen, C. Occupational Health Risk Assessment of Workplace Solvents and Noise in the Electronics Industry Using Three Comprehensive Risk Assessment Models. Front. Public Health 2023, 11, 1063488. [Google Scholar] [CrossRef] [PubMed]
- Xiang, Y.; Huang, Y.; Zhong, X.; Zhou, W. Present status of occupational hazards by organic solvents and its risk assessment in wood furniture manufacturing industry in Shenzhen city. Chin. J. Ind. Med. 2023, 36, 442–445. [Google Scholar] [CrossRef]
- Sutton, P.; Wolf, K.; Quint, J. Implementing Safer Alternatives to Lithographic Cleanup Solvents to Protect the Health of Workers and the Environment. J. Occup. Environ. Hyg. 2009, 6, 174–187. [Google Scholar] [CrossRef]
- Bates, M.N.; Reed, B.R.; Liu, S.; Eisen, E.A.; Hammond, S.K. Solvent Exposure and Cognitive Function in Automotive Technicians. Neurotoxicology 2016, 57, 22–30. [Google Scholar] [CrossRef] [PubMed]
- Guangdong Occupational Health Technical Quality Control Center. Technical Guidelines of Guangdong Occupational Health Technology Quality Control Center; Guangdong Occupational Health Technical Quality Control Center: Guangdong, China, 2020; Available online: https://zyjk.xinanli.com/d/file/2024-03-19/GDOHTQC%20003%E2%80%942021%20%E5%B7%A5%E4%BD%9C%E5%9C%BA%E6%89%80%E7%A9%BA%E6%B0%94%E4%B8%AD%E4%B8%99%E7%83%AF%E9%85%B8%E7%94%B2%E9%85%AF%E7%9A%84%E6%BA%B6%E5%89%82%E8%A7%A3%E5%90%B8-%E6%B0%94%E7%9B%B8%E8%89%B2%E8%B0%B1%E6%B3%95.pdf (accessed on 28 July 2024).
- Chen, H.; Qiu, X. Analysis on morbidity status of occupational diseases in Shenzhen, 2006–2012. China Occup. Med. 2014, 41, 478–480. [Google Scholar]
- Li, Y.; Xie, X.; Wang, J.; Du, W.; Liu, Y. Analysis on volatile organic ingredients in adhesives and solvents in 14 cases of 1,2-dichloroethane poisoning accidents. China Occup. Med. 2014, 41, 602–604. [Google Scholar]
- Yu, X.; Qiu, X.; Bian, H.; Zhang, S.; Zhu, Z.; Wu, J. Analysis on occupational disease in Shajing Street Baoan District of Shenzhen from 2003-2012. Occup. Health 2014, 30, 2303–2305. [Google Scholar] [CrossRef]
- Zhu, L.; Guan, X.; Peng, Y.; Li, J.; Zhang, X.; Gong, A.; Li, M.; Xie, H.; Chen, S.; Li, J.; et al. Characterization of VOCs Emissions and Associated Health Risks Inherent to the Packaging and Printing Industries in Shandong Province, China. Sci. Total Environ. 2024, 946, 174108. [Google Scholar] [CrossRef]
- National Bureau of Statistics of China. Industrial Classification for National Economic Activities; National Bureau of Statistics of China: Beijing, China, 2017. Available online: https://www.stats.gov.cn/xxgk/tjbz/gjtjbz/201710/t20171017_1758922.html (accessed on 25 July 2024).
- Constable, D.J.C.; Jimenez-Gonzalez, C.; Henderson, R.K. Perspective on Solvent Use in the Pharmaceutical Industry. Org. Process Res. Dev. 2007, 11, 133–137. [Google Scholar] [CrossRef]
- Chaniago, Y.D.; Minh, L.Q.; Khan, M.S.; Koo, K.-K.; Bahadori, A.; Lee, M. Optimal Design of Advanced Distillation Configuration for Enhanced Energy Efficiency of Waste Solvent Recovery Process in Semiconductor Industry. Energy Convers. Manag. 2015, 102, 92–103. [Google Scholar] [CrossRef]
- Nayak, J.; Mishra, M.; Naik, B.; Swapnarekha, H.; Cengiz, K.; Shanmuganathan, V. An Impact Study of COVID-19 on Six Different Industries: Automobile, Energy and Power, Agriculture, Education, Travel and Tourism and Consumer Electronics. Expert. Syst. 2022, 39, e12677. [Google Scholar] [CrossRef] [PubMed]
- Chaniago, Y.D.; Harvianto, G.R.; Bahadori, A.; Lee, M. Enhanced Recovery of PGME and PGMEA from Waste Photoresistor Thinners by Heterogeneous Azeotropic Dividing-Wall Column. Process Saf. Environ. Prot. 2016, 103, 413–423. [Google Scholar] [CrossRef]
- Geldermann, J.; Peters, N.-H.; Nunge, S.; Rentz, O. Best Available Techniques in the Sector of Adhesives Application. Int. J. Adhes. Adhes. 2004, 24, 85–91. [Google Scholar] [CrossRef]
- Giagnorio, M.; Amelio, A.; Grüttner, H.; Tiraferri, A. Environmental Impacts of Detergents and Benefits of Their Recovery in the Laundering Industry. J. Clean. Prod. 2017, 154, 593–601. [Google Scholar] [CrossRef]
- Baker, H.R.; Leach, P.B.; Singleterry, C.R.; Zisman, W.A. Cleaning by surface displacement of water and oils. Ind. Eng. Chem. 1967, 59, 29–40. [Google Scholar] [CrossRef]
- Joe Lopes, A.; MacDonald, E.; Wicker, R.B. Integrating Stereolithography and Direct Print Technologies for 3D Structural Electronics Fabrication. Rapid Prototyp. J. 2012, 18, 129–143. [Google Scholar] [CrossRef]
- Beltrão, M.; Duarte, F.M.; Viana, J.C.; Paulo, V. A Review on In-Mold Electronics Technology. Polym. Eng. Sci. 2022, 62, 967–990. [Google Scholar] [CrossRef]
- NHS. Occupational Exposure Limits for Hazardous Agents in the Workplace—Part 1: Chemical Hazardous Agents; NHS: London, UK, 2019. [Google Scholar]
- Huang, L.; Peng, Z.; Chi, H.; Zhang, X.; Yin, Q. Analysis of harmful volatile components of organic solvents in workplace of Luohu district of Shenzhen. Chin. J. Public Health Manag. 2014, 30, 593–594. [Google Scholar] [CrossRef]
- Huang, Z.; Liang, N.; Cai, Z.; Zhang, N.; Chen, Z.; Zheng, Y.; Luo, X.; Yuan, L.; Chen, T. Determination of organic solvents in small and medium-sized enterprises of Longgang District, Shenzhen in 2019. Hainan Med. J. 2021, 32, 225–227. [Google Scholar]
- Zhong, W.; Xu, X.; Yin, J. Analysis of main volatile organic compounds in chemicals used by industrial enterprises in Shenzhen. Occup. Health Emerg. Rescue 2020, 38, 478–481. [Google Scholar] [CrossRef]
- Ji, L.; Tan, C.; Yu, B. Analyzing the prevalence of key occupational hazards in 56 printing enterprises in Shenzhen City. China Occup. Med. 2022, 49, 596–600. [Google Scholar] [CrossRef]
- Wang, L.; Zhu, Z.; Dai, Z.; Feng, J.; Weng, S. Analysis of volatile organic components of organic solvents used in Bao’an District of Shenzhen. China J. Ind. Hyg. Occup. Dis. 2022, 40, 867–871. [Google Scholar] [CrossRef]
- Yang, G.; Xiang, Y.; Zhu, X.; Zhou, W. Status survey on occupational disease hazards of organic solvents in 39 electronic enterprises in Shenzhen City. China Occup. Med. 2019, 46, 403–406. [Google Scholar]
- Chan, A.P.L.; Chan, T.Y.K. Methanol as an Unlisted Ingredient in Supposedly Alcohol-Based Hand Rub Can Pose Serious Health Risk. Int. J. Environ. Res. Public Health 2018, 15, 1440. [Google Scholar] [CrossRef]
- Dear, K.; Grayson, L.; Nixon, R. Potential Methanol Toxicity and the Importance of Using a Standardised Alcohol-Based Hand Rub Formulation in the Era of COVID-19. Antimicrob. Resist. Infect. Control 2020, 9, 129. [Google Scholar] [CrossRef]
- Zakharov, S.; Hlusicka, J.; Nurieva, O.; Kotikova, K.; Lischkova, L.; Kacer, P.; Kacerova, T.; Urban, P.; Vaneckova, M.; Seidl, Z.; et al. Neuroinflammation Markers and Methyl Alcohol Induced Toxic Brain Damage. Toxicol. Lett. 2018, 298, 60–69. [Google Scholar] [CrossRef] [PubMed]
- Boogaard, P.J. Human Biomonitoring of Low-Level Benzene Exposures. Crit. Rev. Toxicol. 2022, 52, 799–810. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Ma, Y.; Tang, L.; Li, D.; Xie, J.; Sun, Y.; Tian, Y. Long-Term Exposure to Low Concentrations of Ambient Benzene and Mortality in a National English Cohort. Am. J. Respir. Crit. Care Med. 2024, 209, 987–994. [Google Scholar] [CrossRef]
- He, Y.; Qiu, H.; Wang, W.; Lin, Y.; Ho, K.F. Exposure to BTEX Is Associated with Cardiovascular Disease, Dyslipidemia and Leukocytosis in National US Population. Sci. Total Environ. 2024, 919, 170639. [Google Scholar] [CrossRef]
- He, Y.; Lin, Y.; Qiu, H.; Wu, L.; Ho, K.F. Low-Dose Blood BTEX Are Associated with Pulmonary Function through Changes in Inflammatory Markers among US Adults: NHANES 2007–2012. Environ. Sci. Pollut. Res. Int. 2023, 30, 69064–69079. [Google Scholar] [CrossRef]
- Werder, E.J.; Beier, J.I.; Sandler, D.P.; Falkner, K.C.; Gripshover, T.; Wahlang, B.; Engel, L.S.; Cave, M.C. Blood BTEXS and Heavy Metal Levels Are Associated with Liver Injury and Systemic Inflammation in Gulf States Residents. Food Chem. Toxicol. 2020, 139, 111242. [Google Scholar] [CrossRef]
- Werder, E.J.; Engel, L.S.; Blair, A.; Kwok, R.K.; McGrath, J.A.; Sandler, D.P. Blood BTEX Levels and Neurologic Symptoms in Gulf States Residents. Environ. Res. 2019, 175, 100–107. [Google Scholar] [CrossRef] [PubMed]
- Attarchi, M.; Golabadi, M.; Labbafinejad, Y.; Mohammadi, S. Combined Effects of Exposure to Occupational Noise and Mixed Organic Solvents on Blood Pressure in Car Manufacturing Company Workers. Am. J. Ind. Med. 2013, 56, 243–251. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.-H.; Kim, K. Noise-Induced Hearing Loss in Korean Workers: Co-Exposure to Organic Solvents and Heavy Metals in Nationwide Industries. PLoS ONE 2014, 9, e97538. [Google Scholar] [CrossRef] [PubMed]
- Jiang, W.; Zheng, D.; Qu, L. Effect of benzene series combined with noise on hearing. Occup. Health 2016, 32, 305–307. [Google Scholar] [CrossRef]
- Li, X.; Dong, Q.; Wei, C.; Ding, L.; Song, H. Effect of noise combined with high temperature and n-hexane on human hearing in an engine manufacturer in 2015. Occup. Health 2016, 32, 308–310. [Google Scholar] [CrossRef]
- Jin, J.; Xie, C.; Gao, J.; Wang, H.; Zhang, J.; Zhao, Y.; Gao, M.; Ma, J.; Wang, Z.; Guan, J. Elucidating the Toluene Formation Mechanism in the Reaction of Propargyl Radical with 1,3-Butadiene. Phys. Chem. Chem. Phys. 2023, 25, 13136–13144. [Google Scholar] [CrossRef]
- Pan, S.; Li, X.; Xu, X.; Zhang, D.; Xu, Z. Synthesis and Application of Quaternary Amine-Functionalized Core-Shell-Shell Magnetic Polymers for Determination of Metabolites of Benzene, Toluene and Xylene in Human Urine Samples and Study of Exposure Assessment. J. Chromatogr. A 2023, 1708, 464320. [Google Scholar] [CrossRef]
- Partha, D.B.; Cassidy-Bushrow, A.E.; Huang, Y. Global Preterm Births Attributable to BTEX (Benzene, Toluene, Ethylbenzene, and Xylene) Exposure. Sci. Total Environ. 2022, 838, 156390. [Google Scholar] [CrossRef]
- Li, X.; Yu, T.; Wang, S.; Wang, Q.; Li, M.; Liu, Z.; Xie, K. Diallyl Sulfide-Induced Attenuation of n-Hexane-Induced Peripheral Nerve Impairment Is Associated with Metabolic Inhibition of n-Hexane. Food Chem. Toxicol. 2020, 137, 111167. [Google Scholar] [CrossRef]
- Piao, F.; Chen, Y.; Yu, L.; Shi, X.; Liu, X.; Jiang, L.; Yang, G.; Wang, N.; Gao, B.; Zhang, C. 2,5-Hexanedione-Induced Deregulation of Axon-Related microRNA Expression in Rat Nerve Tissues. Toxicol. Lett. 2020, 320, 95–102. [Google Scholar] [CrossRef]
- Br, D.M.; Jt, G. Trichloroethylene, a Ubiquitous Environmental Contaminant in the Risk for Parkinson’s Disease. Environ. Sci. Process. Impacts 2020, 22, 543–554. [Google Scholar] [CrossRef]
- Horzmann, K.A.; Portales, A.M.; Batcho, K.G.; Freeman, J.L. Developmental Toxicity of Trichloroethylene in Zebrafish (Danio rerio). Environ. Sci. Process. Impacts 2020, 22, 728–739. [Google Scholar] [CrossRef] [PubMed]
- Xie, H.; Gao, W.; Zhao, W.; Han, Y.; Gao, Y.; Liu, B.; Han, Y. Source Profile Study of VOCs Unorganized Emissions from Typical Aromatic Devices in Petrochemical Industry. Sci. Total Environ. 2023, 889, 164098. [Google Scholar] [CrossRef] [PubMed]
- Mu, J.; Zhang, Y.; Xia, Z.; Fan, G.; Zhao, M.; Sun, X.; Liu, Y.; Chen, T.; Shen, H.; Zhang, Z.; et al. Two-Year Online Measurements of Volatile Organic Compounds (VOCs) at Four Sites in a Chinese City: Significant Impact of Petrochemical Industry. Sci. Total Environ. 2023, 858, 159951. [Google Scholar] [CrossRef] [PubMed]
- Keawboonchu, J.; Thepanondh, S.; Kultan, V.; Pinthong, N.; Malakan, W.; Robson, M.G. Integrated Sustainable Management of Petrochemical Industrial Air Pollution. Int. J. Environ. Res. Public Health 2023, 20, 2280. [Google Scholar] [CrossRef] [PubMed]
- Cheng, N.; Jing, D.; Zhang, C.; Chen, Z.; Li, W.; Li, S.; Wang, Q. Process-Based VOCs Source Profiles and Contributions to Ozone Formation and Carcinogenic Risk in a Typical Chemical Synthesis Pharmaceutical Industry in China. Sci. Total Environ. 2021, 752, 141899. [Google Scholar] [CrossRef]
- You, G.; Jin, Z.; Lu, S.; Ren, J.; Zhang, Y.; Hu, K.; Xie, S. Emission Factors and Source Profiles of Volatile Organic Compounds from the Automobile Manufacturing Industry. Sci. Total Environ. 2024, 927, 172183. [Google Scholar] [CrossRef]
- Ghobakhloo, S.; Khoshakhlagh, A.H.; Morais, S.; Mazaheri Tehrani, A. Exposure to Volatile Organic Compounds in Paint Production Plants: Levels and Potential Human Health Risks. Toxics 2023, 11, 111. [Google Scholar] [CrossRef]
- Cruz, S.L.; Rivera-García, M.T.; Woodward, J.J. Review of Toluene Action: Clinical Evidence, Animal Studies and Molecular Targets. J. Drug Alcohol. Res. 2014, 3, 235840. [Google Scholar] [CrossRef]
- Druzhinina, E.S.; Kozyreva, A.A.; Bembeeva, R.T.; Kozlovsky, A.S.; Sokolova, V.E.; Isaev, I.V.; Narbutov, A.G.; Zavadenko, N.N.; Tikhonova, O.A. Neuropathy in N-Hexane Poisoning. S.S. Korsakov J. Neurol. Psychiatry 2024, 124. [Google Scholar] [CrossRef] [PubMed]
- Mokammel, A.; Rostami, R.; Niazi, S.; Asgari, A.; Fazlzadeh, M. BTEX Levels in Rural Households: Heating System, Building Characteristic Impacts and Lifetime Excess Cancer Risk Assessment. Environ. Pollut. 2022, 298, 118845. [Google Scholar] [CrossRef]
- Shanh, F.G.; Rahimnejad, S.; Bahrami, A.; Farhadian, M. Risk Assessment of Workers’ Exposure to Volatile Organic Compounds in the Air of a Petrochemical Complex in Iran. Indian. J. Occup. Environ. Med. 2017, 21, 121–127. [Google Scholar] [CrossRef]
- Chen, R.; Li, T.; Huang, C.; Yu, Y.; Zhou, L.; Hu, G.; Yang, F.; Zhang, L. Characteristics and Health Risks of Benzene Series and Halocarbons near a Typical Chemical Industrial Park. Environ. Pollut. 2021, 289, 117893. [Google Scholar] [CrossRef]
- Hu, R.; Liu, G.; Zhang, H.; Xue, H.; Wang, X. Levels, Characteristics and Health Risk Assessment of VOCs in Different Functional Zones of Hefei. Ecotoxicol. Environ. Saf. 2018, 160, 301–307. [Google Scholar] [CrossRef] [PubMed]
- Khajeh Hoseini, L.; Jalilzadeh Yengejeh, R.; Mohammadi Rouzbehani, M.; Sabzalipour, S. Health Risk Assessment of Volatile Organic Compounds (VOCs) in a Refinery in the Southwest of Iran Using SQRA Method. Front. Public Health 2022, 10, 978354. [Google Scholar] [CrossRef] [PubMed]
- Khoshakhlagh, A.H.; Yazdanirad, S.; Mousavi, M.; Gruszecka-Kosowska, A.; Shahriyari, M.; Rajabi-Vardanjani, H. Summer and Winter Variations of BTEX Concentrations in an Oil Refinery Complex and Health Risk Assessment Based on Monte-Carlo Simulations. Sci. Rep. 2023, 13, 10670. [Google Scholar] [CrossRef]
- Su, M.; Sun, R.; Zhang, X.; Wang, S.; Zhang, P.; Yuan, Z.; Liu, C.; Wang, Q. Assessment of the Inhalation Risks Associated with Working in Printing Rooms: A Study on the Staff of Eight Printing Rooms in Beijing, China. Environ. Sci. Pollut. Res. Int. 2018, 25, 17137–17143. [Google Scholar] [CrossRef]
NO. | Components | DF | DR (%) | PAP (%) | |
---|---|---|---|---|---|
Mean | Range | ||||
1 | Methanol | 415 | 31.1 | 16.9 | 0.10–100 |
2 | Toluene | 300 | 22.5 | 22.1 | 0.10–100 |
3 | n-Hexane | 294 | 22.0 | 4.96 | 0.01–41.4 |
4 | Xylene | 215 | 16.1 | 0.25 | 0.10–99.1 |
5 | Ethylbenzene | 204 | 15.3 | 0.33 | 0.10–56.1 |
6 | Ethyl acetate | 196 | 14.7 | 12.9 | 0.10–100 |
7 | Dichloromethane | 182 | 13.6 | 25.8 | 0.10–100 |
8 | Methyl acetate | 174 | 13.0 | 9.57 | 0.10–92.5 |
9 | Dimethoxymethane | 169 | 12.7 | 13.3 | 0.10–82.9 |
10 | Acetone | 168 | 12.6 | 11.1 | 0.10–100 |
Years | Benzene | 1,2-Dichloroethane | n-Hexane | Trichloroethylene | ||||
---|---|---|---|---|---|---|---|---|
DR (%) | APAP (%) | DR (%) | APAP (%) | DR (%) | APAP (%) | DR (%) | APAP (%) | |
2018 (n = 169) | 5.92 | 0.09 | 0.59 | 1.39 | 9.47 | 3.92 | 9.47 | 13.82 |
2019 (n = 340) | 4.41 | 0.63 | 1.18 | 1.59 | 13.53 | 6.05 | 5 | 9.78 |
2020 (n = 134) | 2.99 | 0.02 | 0.75 | 0.34 | 15.67 | 2.08 | 8.21 | 4.99 |
2021 (n = 199) | 6.53 | 0.04 | 1.51 | 0.58 | 27.64 | 1.77 | 8.04 | 5.13 |
2022 (n = 137) | 12.41 | 0.03 | 1.46 | 0.01 | 30.66 | 1.53 | 3.65 | 1.24 |
2023 (n = 356) | 8.43 | 0.11 | 0.84 | 0.01 | 32.02 | 2.42 | 2.53 | 1.76 |
all samples (n = 1335) | 6.67 a | 0.16 1 | 1.05 b | 0.70 1 | 22.02 c | 2.80 1 | 5.54 a | 7.38 1 |
Years | Toluene | Ethylbenzene | Xylene | Trichloromethane | ||||
DR (%) | APAP (%) | DR (%) | APAP (%) | DR (%) | APAP (%) | DR (%) | APAP (%) | |
2018 (n = 169) | 17.75 | 15.46 | 10.65 | 1.91 | 15.98 | 21.5 | 0 | 0 |
2019 (n = 340) | 21.47 | 25.45 | 16.18 | 4.91 | 12.94 | 22.01 | 0 | 0 |
2020 (n = 134) | 18.66 | 13.58 | 7.46 | 0.62 | 7.46 | 2.89 | 0.75 | 1.53 |
2021 (n = 199) | 27.14 | 9.63 | 21.11 | 2.75 | 21.11 | 10.52 | 1.01 | 1.93 |
2022 (n = 137) | 37.23 | 12.09 | 28.47 | 2.51 | 29.2 | 8.29 | 0.73 | 4.17 |
2023 (n = 356) | 18.82 | 8.16 | 11.24 | 3.02 | 14.61 | 8.26 | 1.12 | 0.43 |
all samples (n = 1335) | 22.47 c | 14.48 2 | 15.28 d | 3.16 1 | 16.10 d | 12.93 2 | 0.60 b | 1.41 1 |
Industry Classification | Benzene | 1,2-Dichloroethane | n-Hexane | Trichloroethylene | ||||
---|---|---|---|---|---|---|---|---|
DR (%) | APAP (%) | DR (%) | APAP (%) | DR (%) | APAP (%) | DR (%) | APAP (%) | |
Electronics industry (n = 413) | 4.84 a | 0.19 | 0.48 b | 0.09 | 24.94 c | 4.38 | 8.96 a,d | 27.47 |
Chemical industry (n = 355) | 6.76 a | 0.22 | 0.85 b | 7.48 | 24.23 c,d | 6.44 | 5.92 a | 54.89 |
Light industry (n = 382) | 8.90 a | 0.1 | 2.09 b | 2.17 | 21.47 c | 2.86 | 1.31 b | 0.48 |
Machinery industry (n = 185) | 6.01 a,b | 1.32 | 0.55 a | 19.5 | 13.11 b | 8.2 | 2.73 a | 55.61 |
Industry classification | Toluene | Ethylbenzene | Xylene | Trichloromethane | ||||
DR (%) | APAP (%) | DR (%) | APAP (%) | DR (%) | APAP (%) | DR (%) | APAP (%) | |
Electronics industry (n = 413) | 12.35 d | 14.96 | 7.26 a,d | 2.55 | 8.23 a,d | 10.97 | 0.48 b | 3.48 |
Chemical industry (n = 355) | 28.73 d | 24.69 | 18.59 c | 5.91 | 21.69 c,d | 21.9 | 0.85 b | 8.98 |
Light industry (n = 382) | 32.2 d | 24.15 | 21.99 c | 3.66 | 22.25 c,d | 16.27 | 0.79 b | 35.71 |
Machinery industry (n = 185) | 12.02 b | 21.12 | 12.57 b | 11.71 | 10.93 b | 43.76 | 0.00 a | 0 |
Industry Classification | Benzene | 1,2-Dichloroethane | n-Hexane | Trichloroethylene | ||||
---|---|---|---|---|---|---|---|---|
DR (%) | Mean (mg/m3) | DR (%) | Mean (mg/m3) | DR (%) | Mean (mg/m3) | DR (%) | Mean (mg/m3) | |
Electronics industry (n = 522) | 10.59 | 0.18 | 7.84 | 0.13 | 40.23 | 2.82 | 7.59 | 105.89 |
Chemical industry (n = 504) | 11.54 | 0.12 | 0 | - | 43.04 | 4.21 | 24.20 | 145.02 |
Light industry (n = 372) | 16.67 | 0.03 | 3.85 | 0.03 | 56.67 | 2.50 | 5.13 | 54.56 |
Machinery industry (n = 156) | 16.67 | 0.03 | 0 | - | 50.00 | 10.73 | 16.67 | 175.68 |
Industry classification | Toluene | Ethylbenzene | Xylene | Trichloromethane | ||||
DR (%) | Mean (mg/m3) | DR (%) | Mean (mg/m3) | DR (%) | Mean (mg/m3) | DR (%) | Mean (mg/m3) | |
Electronics industry (n = 522) | 34.85 | 4.70 | 25.42 | 2.00 | 42.30 | 6.64 | 13.04 | 6.54 |
Chemical industry (n = 504) | 53.62 | 24.52 | 43.55 | 3.27 | 60.00 | 13.66 | 5.88 | 0.20 |
Light industry (n = 372) | 71.15 | 18.60 | 45.83 | 2.04 | 50.00 | 3.87 | 6.25 | 0.04 |
Machinery industry (n = 156) | 50.00 | 10.04 | 40.00 | 3.36 | 50.00 | 30.85 | 0 | - |
Industry Classification | Benzene | n-Hexane | Trichloroethylene | Toluene | Ethylbenzene | Xylene |
---|---|---|---|---|---|---|
Electronics industry | 0.51 | 0.09 | >10 a | 0.08 | 0.06 | 5.61 |
Chemical industry | 0.34 | 0.14 | >10 a | 0.41 | 0.10 | >10 a |
Light industry | 0.08 | 0.08 | >10 a | 0.31 | 0.06 | 3.27 |
Machinery industry | 0.08 | 0.35 | >10 a | 0.17 | 0.10 | >10 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, Y.; Zhu, L.; Zhang, L.; Tang, X.; Li, X.; Ge, Y.; Li, F.; Yang, J.; Lu, S.; Chen, J.; et al. Temporal Variation and Industry-Specific Differences of the Use of Volatile Organic Compounds from 2018 to 2023 and Their Health Risks in a Typical Industrially Concentrated Area in South China. Toxics 2024, 12, 634. https://doi.org/10.3390/toxics12090634
Guo Y, Zhu L, Zhang L, Tang X, Li X, Ge Y, Li F, Yang J, Lu S, Chen J, et al. Temporal Variation and Industry-Specific Differences of the Use of Volatile Organic Compounds from 2018 to 2023 and Their Health Risks in a Typical Industrially Concentrated Area in South China. Toxics. 2024; 12(9):634. https://doi.org/10.3390/toxics12090634
Chicago/Turabian StyleGuo, Yijia, Lihua Zhu, Liyin Zhang, Xinxin Tang, Xinjie Li, Yiming Ge, Feng Li, Jilong Yang, Shaoyou Lu, Jinru Chen, and et al. 2024. "Temporal Variation and Industry-Specific Differences of the Use of Volatile Organic Compounds from 2018 to 2023 and Their Health Risks in a Typical Industrially Concentrated Area in South China" Toxics 12, no. 9: 634. https://doi.org/10.3390/toxics12090634
APA StyleGuo, Y., Zhu, L., Zhang, L., Tang, X., Li, X., Ge, Y., Li, F., Yang, J., Lu, S., Chen, J., & Zhou, X. (2024). Temporal Variation and Industry-Specific Differences of the Use of Volatile Organic Compounds from 2018 to 2023 and Their Health Risks in a Typical Industrially Concentrated Area in South China. Toxics, 12(9), 634. https://doi.org/10.3390/toxics12090634