Toxicity of Per- and Polyfluoroalkyl Substances and Their Substitutes to Terrestrial and Aquatic Invertebrates—A Review
Abstract
:1. Introduction
2. Methods
3. Factors Contributing to the Accumulation of PFASs in Invertebrates
4. Toxicity Studies of PFASs in Invertebrates
4.1. Invertebrate Lethal Concentration 50/Effect Concentration (LC50/EC50) for PFASs and Their Substitutes
4.2. Oxidative Stress
4.3. Neurobehavioral Toxicity
4.4. Developmental and Reproductive Toxicity
4.5. Immunogenetic Toxicity
4.6. Genotoxicity
4.7. Lifetime Impact
5. Mixed Toxicity
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lau, C.; Anitole, K.; Hodes, C.; Lai, D.; Pfahles-Hutchens, A.; Seed, J. Perfluoroalkyl acids: A review of monitoring and toxicological findings. Toxicol. Sci. 2007, 99, 366–394. [Google Scholar] [CrossRef] [PubMed]
- Buck, R.C.; Franklin, J.; Berger, U.; Conder, J.M.; Cousins, I.T.; de Voogt, P.; Jensen, A.A.; Kannan, K.; Mabury, S.A.; van Leeuwen, S.P. Perfluoroalkyl and polyfluoroalkyl substances in the environment: Terminology, classification, and origins. Integr. Environ. Assess. Manag. 2011, 7, 513–541. [Google Scholar] [CrossRef]
- Renner, R. Growing concern over perfluorinated chemicals. Environ. Sci. Technol. 2001, 35, 154a–160a. [Google Scholar] [CrossRef]
- Houde, M.; De Silva, A.O.; Muir, D.C.; Letcher, R.J. Monitoring of perfluorinated compounds in aquatic biota: An updated review. Environ. Sci. Technol. 2011, 45, 7962–7973. [Google Scholar] [CrossRef]
- Wang, M.; Chen, J.; Lin, K.; Chen, Y.; Hu, W.; Tanguay, R.L.; Huang, C.; Dong, Q. Chronic zebrafish PFOS exposure alters sex ratio and maternal related effects in F1 offspring. Environ. Toxicol. Chem. 2011, 30, 2073–2080. [Google Scholar] [CrossRef]
- Zhou, J.; Baumann, K.; Mead, R.N.; Skrabal, S.A.; Kieber, R.J.; Avery, G.B.; Shimizu, M.; DeWitt, J.C.; Sun, M.; Vance, S.A.; et al. PFOS dominates PFAS composition in ambient fine particulate matter (PM2.5) collected across North Carolina nearly 20 years after the end of its US production. Environ. Sci. Process. Impacts 2021, 23, 580–587. [Google Scholar] [CrossRef]
- Li, X.; Wang, Y.; Qian, C.; Zheng, Z.; Shi, Y.; Cui, J.; Cai, Y. Perfluoroalkyl acids (PFAAs) in urban surface water of Shijiazhuang, China: Occurrence, distribution, sources and ecological risks. J. Environ. Sci. 2023, 125, 185–193. [Google Scholar] [CrossRef]
- Li, Y.-C.; Zhong, D.-L.; Rao, G.-Y.; Wen, J.; Ren, Y.; Zhang, J.-Q. Gone with the trees: Phylogeography of Rhodiola sect. Trifida (Crassulaceae) reveals multiple refugia on the Qinghai-Tibetan Plateau. Mol. Phylogenet. Evol. 2018, 121, 110–120. [Google Scholar] [CrossRef]
- MacInnis, J.J.; Lehnherr, I.; Muir, D.C.G.; St Pierre, K.A.; St Louis, V.L.; Spencer, C.; De Silva, A.O. Fate and Transport of Perfluoroalkyl Substances from Snowpacks into a Lake in the High Arctic of Canada. Environ. Sci. Technol. 2019, 53, 10753–10762. [Google Scholar] [CrossRef]
- Xie, Z.; Wang, Z.; Magand, O.; Thollot, A.; Ebinghaus, R.; Mi, W.; Dommergue, A. Occurrence of legacy and emerging organic contaminants in snow at Dome C in the Antarctic. Sci. Total Environ. 2020, 741, 140200. [Google Scholar] [CrossRef]
- Casas, G.; Iriarte, J.; D’Agostino, L.A.; Roscales, J.L.; Martinez-Varela, A.; Vila-Costa, M.; Martin, J.W.; Jiménez, B.; Dachs, J. Inputs, amplification and sinks of perfluoroalkyl substances at coastal Antarctica. Environ. Pollut. 2023, 338, 122608. [Google Scholar] [CrossRef]
- Aker, A.; Ayotte, P.; Caron-Beaudoin, É.; Ricard, S.; Gaudreau, É.; Lemire, M. Cardiometabolic health and per and polyfluoroalkyl substances in an Inuit population. Environ. Int. 2023, 181, 108283. [Google Scholar] [CrossRef] [PubMed]
- Semerád, J.; Hatasová, N.; Grasserová, A.; Černá, T.; Filipová, A.; Hanč, A.; Innemanová, P.; Pivokonský, M.; Cajthaml, T. Screening for 32 per- and polyfluoroalkyl substances (PFAS) including GenX in sludges from 43 WWTPs located in the Czech Republic—Evaluation of potential accumulation in vegetables after application of biosolids. Chemosphere 2020, 261, 128018. [Google Scholar] [CrossRef] [PubMed]
- Koch, A.; Jonsson, M.; Yeung, L.W.Y.; Kärrman, A.; Ahrens, L.; Ekblad, A.; Wang, T. Per- and Polyfluoroalkyl-Contaminated Freshwater Impacts Adjacent Riparian Food Webs. Environ. Sci. Technol. 2020, 54, 11951–11960. [Google Scholar] [CrossRef] [PubMed]
- Judy, J.D.; Gravesen, C.; Christopher Wilson, P.; Lee, L.; Sarchapone, J.; Hinz, F.; Broadbent, E. Trophic transfer of PFAS from tomato (Solanum lycopersicum) to tobacco hornworm (Manduca sexta) caterpillars. Environ. Pollut. 2022, 310, 119814. [Google Scholar] [CrossRef]
- Du, D.; Lu, Y.; Yang, S.; Wang, R.; Wang, C.; Yu, M.; Chen, C.; Zhang, M. Biomagnification and health risks of perflfluoroalkyl acids (PFAAs) in seafood from the Yangtze river estuary of China. Environ. Pollut. 2024, 341, 122930. [Google Scholar] [CrossRef]
- Liang, X.; Zhou, J.; Yang, X.; Jiao, W.; Wang, T.; Zhu, L. Disclosing the bioaccumulation and biomagnification behaviors of emerging per/polyfluoroalkyl substances in aquatic food web based on field investigation and model simulation. J. Hazard. Mater. 2023, 445, 130566. [Google Scholar] [CrossRef]
- Cheng, X.; Wei, Y.; Zhang, Z.; Wang, F.; He, J.; Wang, R.; Xu, Y.; Keerman, M.; Zhang, S.; Zhang, Y.; et al. Plasma PFOA and PFOS Levels, DNA Methylation, and Blood Lipid Levels: A Pilot Study. Environ. Sci. Technol. 2022, 56, 17039–17051. [Google Scholar] [CrossRef]
- LaKind, J.S.; Naiman, J.; Verner, M.A.; Lévêque, L.; Fenton, S. Per- and polyfluoroalkyl substances (PFAS) in breast milk and infant formula: A global issue. Environ. Res. 2023, 219, 115042. [Google Scholar] [CrossRef]
- Hassan, H.F.; Bou Ghanem, H.; Abi Kharma, J.; Abiad, M.G.; Elaridi, J.; Bassil, M. Perfluorooctanoic Acid and Perfluorooctane Sulfonate in Human Milk: First Survey from Lebanon. Int. J. Environ. Res. Public Health 2023, 20, 821. [Google Scholar] [CrossRef]
- Eisenhauer, N.; Ochoa-Hueso, R.; Huang, Y.; Barry, K.E.; Gebler, A.; Guerra, C.A.; Hines, J.; Jochum, M.; Andraczek, K.; Bucher, S.F.; et al. Ecosystem consequences of invertebrate decline. Curr. Biol. 2023, 33, 4538–4547.e4535. [Google Scholar] [CrossRef] [PubMed]
- Lewis, A.J.; Yun, X.; Spooner, D.E.; Kurz, M.J.; McKenzie, E.R.; Sales, C.M. Exposure pathways and bioaccumulation of per- and polyfluoroalkyl substances in freshwater aquatic ecosystems: Key considerations. Sci. Total Environ. 2022, 822, 153561. [Google Scholar] [CrossRef] [PubMed]
- Martin, J.W.; Mabury, S.A.; Solomon, K.R.; Muir, D.C. Progress toward understanding the bioaccumulation of perfluorinated alkyl acids. Environ. Toxicol. Chem. 2013, 32, 2421–2423. [Google Scholar] [CrossRef] [PubMed]
- Giesy, J.P.; Kannan, K. Global distribution of perfluorooctane sulfonate in wildlife. Environ. Sci. Technol. 2001, 35, 1339–1342. [Google Scholar] [CrossRef]
- Liu, W.; He, W.; Wu, J.; Qin, N.; He, Q.; Xu, F. Residues, bioaccumulations and biomagnification of perfluoroalkyl acids (PFAAs) in aquatic animals from Lake Chaohu, China. Environ. Pollut. 2018, 240, 607–614. [Google Scholar] [CrossRef]
- Liu, C.; Gin, K.Y.; Chang, V.W.; Goh, B.P.; Reinhard, M. Novel perspectives on the bioaccumulation of PFCs—The concentration dependency. Environ. Sci. Technol. 2011, 45, 9758–9764. [Google Scholar] [CrossRef]
- Wen, W.; Xia, X.; Hu, D.; Zhou, D.; Wang, H.; Zhai, Y.; Lin, H. Long-Chain Perfluoroalkyl acids (PFAAs) Affect the Bioconcentration and Tissue Distribution of Short-Chain PFAAs in Zebrafish (Danio rerio). Environ. Sci. Technol. 2017, 51, 12358–12368. [Google Scholar] [CrossRef]
- Du, D.; Lu, Y.; Zhou, Y.; Li, Q.; Zhang, M.; Han, G.; Cui, H.; Jeppesen, E. Bioaccumulation, trophic transfer and biomagnification of perfluoroalkyl acids (PFAAs) in the marine food web of the South China Sea. J. Hazard. Mater. 2021, 405, 124681. [Google Scholar] [CrossRef]
- Li, D.; Zhang, J.; Liu, X.; Wang, X.; Li, B.; Du, Z.; Juhasz, A.; Wang, J.; Wang, J.; Zhu, L. Are PFBS, PFHxS, and 6:2FTSA more friendly to the soil environment compared to PFOS? A new insight based on ecotoxicity study in soil invertebrates (Eisenia fetida). Sci. Total Environ. 2023, 904, 166689. [Google Scholar] [CrossRef]
- Zhang, L.; Niu, J.; Li, Y.; Wang, Y.; Sun, D. Evaluating the sub-lethal toxicity of PFOS and PFOA using rotifer Brachionus calyciflorus. Environ. Pollut. 2013, 180, 34–40. [Google Scholar] [CrossRef]
- Naile, J.E.; Khim, J.S.; Wang, T.; Chen, C.; Luo, W.; Kwon, B.O.; Park, J.; Koh, C.H.; Jones, P.D.; Lu, Y.; et al. Perfluorinated compounds in water, sediment, soil and biota from estuarine and coastal areas of Korea. Environ. Pollut. 2010, 158, 1237–1244. [Google Scholar] [CrossRef] [PubMed]
- Ding, G.; Wang, L.; Zhang, J.; Wei, Y.; Wei, L.; Li, Y.; Shao, M.; Xiong, D. Toxicity and DNA methylation changes induced by perfluorooctane sulfonate (PFOS) in sea urchin Glyptocidaris crenularis. Chemosphere 2015, 128, 225–230. [Google Scholar] [CrossRef] [PubMed]
- Naile, J.E.; Khim, J.S.; Hong, S.; Park, J.; Kwon, B.O.; Ryu, J.S.; Hwang, J.H.; Jones, P.D.; Giesy, J.P. Distributions and bioconcentration characteristics of perfluorinated compounds in environmental samples collected from the west coast of Korea. Chemosphere 2013, 90, 387–394. [Google Scholar] [CrossRef] [PubMed]
- Taylor, M.D. Animal size impacts perfluoroalkyl acid (PFAA) concentrations in muscle tissue of estuarine fish and invertebrate species. Environ. Pollut. 2020, 267, 115595. [Google Scholar] [CrossRef]
- Wang, Q.W.; Yang, G.P.; Zhang, Z.M.; Jian, S. Perfluoroalkyl acids in surface sediments of the East China Sea. Environ. Pollut. 2017, 231, 59–67. [Google Scholar] [CrossRef]
- Bellasi, A.; Binda, G.; Pozzi, A.; Galafassi, S.; Volta, P.; Bettinetti, R. Microplastic Contamination in Freshwater Environments: A Review, Focusing on Interactions with Sediments and Benthic Organisms. Environments 2020, 7, 30. [Google Scholar] [CrossRef]
- Ma, T.; Ye, C.; Wang, T.; Li, X.; Luo, Y. Toxicity of Per- and Polyfluoroalkyl Substances to Aquatic Invertebrates, Planktons, and Microorganisms. Int. J. Environ. Res. Public Health 2022, 19, 6729. [Google Scholar] [CrossRef]
- Jeon, J.; Kannan, K.; Lim, H.K.; Moon, H.B.; Ra, J.S.; Kim, S.D. Bioaccumulation of perfluorochemicals in Pacific oyster under different salinity gradients. Environ. Sci. Technol. 2010, 44, 2695–2701. [Google Scholar] [CrossRef]
- Rich, C.D.; Blaine, A.C.; Hundal, L.; Higgins, C.P. Bioaccumulation of perfluoroalkyl acids by earthworms (Eisenia fetida) exposed to contaminated soils. Environ. Sci. Technol. 2015, 49, 881–888. [Google Scholar] [CrossRef]
- Barzen-Hanson, K.A.; Davis, S.E.; Kleber, M.; Field, J.A. Sorption of Fluorotelomer Sulfonates, Fluorotelomer Sulfonamido Betaines, and a Fluorotelomer Sulfonamido Amine in National Foam Aqueous Film-Forming Foam to Soil. Environ. Sci. Technol. 2017, 51, 12394–12404. [Google Scholar] [CrossRef]
- Higgins, C.P.; Luthy, R.G. Sorption of perfluorinated surfactants on sediments. Environ. Sci. Technol. 2006, 40, 7251–7256. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.M.H.; Bräunig, J.; Thompson, K.; Thompson, J.; Kabiri, S.; Navarro, D.A.; Kookana, R.S.; Grimison, C.; Barnes, C.M.; Higgins, C.P.; et al. Influences of Chemical Properties, Soil Properties, and Solution pH on Soil-Water Partitioning Coefficients of Per- and Polyfluoroalkyl Substances (PFASs). Environ. Sci. Technol. 2020, 54, 15883–15892. [Google Scholar] [CrossRef] [PubMed]
- Xia, X.; Rabearisoa, A.H.; Dai, Z.; Jiang, X.; Zhao, P.; Wang, H. Inhibition effect of Na+ and Ca2+ on the bioaccumulation of perfluoroalkyl substances by Daphnia magna in the presence of protein. Environ. Toxicol. Chem. 2015, 34, 429–436. [Google Scholar] [CrossRef]
- Lewis, A.J.; Yun, X.; Lewis, M.G.; McKenzie, E.R.; Spooner, D.E.; Kurz, M.J.; Suri, R.; Sales, C.M. Impacts of divalent cations (Mg2+ and Ca2+) on PFAS bioaccumulation in freshwater macroinvertebrates representing different foraging modes. Environ. Pollut. 2023, 331, 121938. [Google Scholar] [CrossRef]
- Krupa, P.M.; Lotufo, G.R.; Mylroie, E.J.; May, L.K.; Gust, K.A.; Kimble, A.N.; Jung, M.G.; Boyda, J.A.; Garcia-Reyero, N.; Moore, D.W. Chronic aquatic toxicity of perfluorooctane sulfonic acid (PFOS) to Ceriodaphnia dubia, Chironomus dilutus, Danio rerio, and Hyalella azteca. Ecotoxicol. Environ. Saf. 2022, 241, 113838. [Google Scholar] [CrossRef]
- Ding, G.H.; Frömel, T.; van den Brandhof, E.J.; Baerselman, R.; Peijnenburg, W.J. Acute toxicity of poly- and perfluorinated compounds to two cladocerans, Daphnia magna and Chydorus sphaericus. Environ. Toxicol. Chem. 2012, 31, 605–610. [Google Scholar] [CrossRef]
- Giesy, J.P.; Naile, J.E.; Khim, J.S.; Jones, P.D.; Newsted, J.L. Aquatic toxicology of perfluorinated chemicals. In Reviews of Environmental Contamination and Toxicology; Springer: Berlin/Heidelberg, Germany, 2010; Volume 202, pp. 1–52. [Google Scholar] [CrossRef]
- Lu, G.-h.; Liu, J.-c.; Sun, L.-s.; Yuan, L.-j. Toxicity of perfluorononanoic acid and perfluorooctane sulfonate to Daphnia magna. Water Sci. Eng. 2015, 8, 40–48. [Google Scholar] [CrossRef]
- Ji, K.; Kim, Y.; Oh, S.; Ahn, B.; Jo, H.; Choi, K. Toxicity of perfluorooctane sulfonic acid and perfluorooctanoic acid on freshwater macroinvertebrates (Daphnia magna and Moina macrocopa) and fish (Oryzias latipes). Environ. Toxicol. Chem. 2008, 27, 2159–2168. [Google Scholar] [CrossRef]
- Barmentlo, S.H.; Stel, J.M.; van Doorn, M.; Eschauzier, C.; de Voogt, P.; Kraak, M.H. Acute and chronic toxicity of short chained perfluoroalkyl substances to Daphnia magna. Environ. Pollut. 2015, 198, 47–53. [Google Scholar] [CrossRef]
- Logeshwaran, P.; Sivaram, A.K.; Surapaneni, A.; Kannan, K.; Naidu, R.; Megharaj, M. Exposure to perfluorooctanesulfonate (PFOS) but not perflurorooctanoic acid (PFOA) at ppb concentration induces chronic toxicity in Daphnia carinata. Sci. Total Environ. 2021, 769, 144577. [Google Scholar] [CrossRef] [PubMed]
- Li, M.H. Toxicity of perfluorooctane sulfonate and perfluorooctanoic acid to plants and aquatic invertebrates. Environ. Toxicol. 2009, 24, 95–101. [Google Scholar] [CrossRef] [PubMed]
- Bartlett, A.J.; De Silva, A.O.; Schissler, D.M.; Hedges, A.M.; Brown, L.R.; Shires, K.; Miller, J.; Sullivan, C.; Spencer, C.; Parrott, J.L. Lethal and sublethal toxicity of perfluorooctanoic acid (PFOA) in chronic tests with Hyalella azteca (amphipod) and early-life stage tests with Pimephales promelas (fathead minnow). Ecotoxicol. Environ. Saf. 2021, 207, 111250. [Google Scholar] [CrossRef] [PubMed]
- Hazelton, P.D.; Cope, W.G.; Pandolfo, T.J.; Mosher, S.; Strynar, M.J.; Barnhart, M.C.; Bringolf, R.B. Partial life-cycle and acute toxicity of perfluoroalkyl acids to freshwater mussels. Environ. Toxicol. Chem. 2012, 31, 1611–1620. [Google Scholar] [CrossRef]
- Razak, M.R.; Aris, A.Z.; Zainuddin, A.H.; Yusoff, F.M.; Balia Yusof, Z.N.; Kim, S.D.; Kim, K.W. Acute toxicity and risk assessment of perfluorooctanoic acid (PFOA) and perfluorooctanesulfonate (PFOS) in tropical cladocerans Moina micrura. Chemosphere 2023, 313, 137377. [Google Scholar] [CrossRef]
- Hayman, N.T.; Rosen, G.; Colvin, M.A.; Conder, J.; Arblaster, J.A. Aquatic toxicity evaluations of PFOS and PFOA for five standard marine endpoints. Chemosphere 2021, 273, 129699. [Google Scholar] [CrossRef]
- Mhadhbi, L.; Rial, D.; Pérez, S.; Beiras, R. Ecological risk assessment of perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) in marine environment using Isochrysis galbana, Paracentrotus lividus, Siriella armata and Psetta maxima. J. Environ. Monit. 2012, 14, 1375–1382. [Google Scholar] [CrossRef]
- Liu, C.; Chang, V.W.; Gin, K.Y.; Nguyen, V.T. Genotoxicity of perfluorinated chemicals (PFCs) to the green mussel (Perna viridis). Sci. Total Environ. 2014, 487, 117–122. [Google Scholar] [CrossRef]
- Mommaerts, V.; Hagenaars, A.; Meyer, J.; De Coen, W.; Swevers, L.; Mosallanejad, H.; Smagghe, G. Impact of a perfluorinated organic compound PFOS on the terrestrial pollinator Bombus terrestris (Insecta, Hymenoptera). Ecotoxicology 2011, 20, 447–456. [Google Scholar] [CrossRef]
- Kim, H.M.; Long, N.P.; Yoon, S.J.; Anh, N.H.; Kim, S.J.; Park, J.H.; Kwon, S.W. Omics approach reveals perturbation of metabolism and phenotype in Caenorhabditis elegans triggered by perfluorinated compounds. Sci. Total Environ. 2020, 703, 135500. [Google Scholar] [CrossRef]
- Chen, F.; Wei, C.; Chen, Q.; Zhang, J.; Wang, L.; Zhou, Z.; Chen, M.; Liang, Y. Internal concentrations of perfluorobutane sulfonate (PFBS) comparable to those of perfluorooctane sulfonate (PFOS) induce reproductive toxicity in Caenorhabditis elegans. Ecotoxicol. Environ. Saf. 2018, 158, 223–229. [Google Scholar] [CrossRef]
- Chowdhury, M.I.; Sana, T.; Panneerselvan, L.; Dharmarajan, R.; Megharaj, M. Acute Toxicity and Transgenerational Effects of Perfluorobutane Sulfonate on Caenorhabditis elegans. Environ. Toxicol. Chem. 2021, 40, 1973–1982. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, M.I.; Sana, T.; Panneerselvan, L.; Sivaram, A.K.; Megharaj, M. Perfluorooctane sulfonate (PFOS) induces several behavioural defects in Caenorhabditis elegans that can also be transferred to the next generations. Chemosphere 2022, 291, 132896. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Z.; Zhang, J.; Zhao, L.; Li, J.; Liu, H. Effects of perfluorooctanoic acid and perfluorooctane sulfonate on acute toxicity, superoxide dismutase, and cellulase activity in the earthworm Eisenia fetida. Environ. Sci. Pollut. Res. Int. 2017, 24, 18188–18194. [Google Scholar] [CrossRef] [PubMed]
- Ge, Y.; Wang, Z.; Chen, X.; Wang, W.; Liu, Z.; Sun, H.; Zhang, L. Comparative Toxicological Effects of Perfluorooctane Sulfonate and Its Alternative 6:2 Chlorinated Polyfluorinated Ether Sulfonate on Earthworms. Environ. Toxicol. Chem. 2024, 43, 170–181. [Google Scholar] [CrossRef] [PubMed]
- Bizzotto, E.C.; Libralato, G.; Breda, S.; Siciliano, A.; Scanferla, P.; Vighi, M.; Marcomini, A. Toxicity and bioaccumulation of the fluorosurfactant cC(6)O(4) in the earthworm Eisenia foetida (Savigny, 1826). Sci Total Environ. 2024, 919, 170677. [Google Scholar] [CrossRef]
- Joung, K.E.; Jo, E.; Kim, H.-m.; Choi, K.; Yoon, J. Toxicological Effects of PFOS and PFOA on Earthworm, Eisenia fetida. Environ. Anal. Health Toxicol. 2010, 25, 181–186. [Google Scholar]
- Wang, Z.; Qi, F.; Shi, Y.; Zhang, Z.; Liu, L.; Li, C.; Meng, L. Evaluation of single and joint toxicity of perfluorooctanoic acid and arsenite to earthworm (Eisenia fetida): A multi-biomarker approach. Chemosphere 2022, 291, 132942. [Google Scholar] [CrossRef]
- Zheng, X.-q.; Shi, Y.-j.; Lu, Y.-l.; Xu, X.-b. Growth inhibition and DNA damage in the earthworm (Eisenia fetida) exposed to perfluorooctane sulphonate and perfluorooctanoic acid. Chem. Ecol. 2016, 32, 103–116. [Google Scholar] [CrossRef]
- Princz, J.; Jatar, M.; Lemieux, H.; Scroggins, R. Perfluorooctane sulfonate in surface soils: Effects on reproduction in the collembolan, Folsomia candida, and the oribatid mite, Oppia nitens. Chemosphere 2018, 208, 757–763. [Google Scholar] [CrossRef]
- Guo, X.; Li, Q.; Shi, J.; Shi, L.; Li, B.; Xu, A.; Zhao, G.; Wu, L. Perfluorooctane sulfonate exposure causes gonadal developmental toxicity in Caenorhabditis elegans through ROS-induced DNA damage. Chemosphere 2016, 155, 115–126. [Google Scholar] [CrossRef]
- Rijnders, J.; Bervoets, L.; Prinsen, E.; Eens, M.; Beemster, G.T.S.; AbdElgawad, H.; Groffen, T. Perfluoroalkylated acids (PFAAs) accumulate in field-exposed snails (Cepaea sp.) and affect their oxidative status. Sci. Total Environ. 2021, 790, 148059. [Google Scholar] [CrossRef] [PubMed]
- Xu, D.; Li, C.; Wen, Y.; Liu, W. Antioxidant defense system responses and DNA damage of earthworms exposed to perfluorooctane sulfonate (PFOS). Environ. Pollut. 2013, 174, 121–127. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Jagani, R.; Nwobodo, N.; Ma, J. Toxicity of environmentally relevant concentration of PFAS chemicals in Lumbriculus variegatus (Oligochaeta, Lumbriculidae)—A multi-bioindicator study. Ecotoxicol. Environ. Saf. 2023, 268, 115722. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, G.; Qi, D.; Sun, L.; Wen, C.; Yin, S. Biomarker responses of earthworms (Eisenia fetida) to soils contaminated with perfluorooctanoic acid. Environ. Sci. Pollut. Res. Int. 2017, 24, 22073–22081. [Google Scholar] [CrossRef]
- Wang, Z.; Li, C.; Shao, Y.; Xue, W.; Wang, N.; Xu, X.; Zhang, Z. Antioxidant defense system responses, lysosomal membrane stability and DNA damage in earthworms (Eisenia fetida) exposed to perfluorooctanoic acid: An integrated biomarker approach to evaluating toxicity. RSC Adv. 2021, 11, 26481–26492. [Google Scholar] [CrossRef]
- Adedara, I.A.; Abioye, O.O.; Oyedele, G.T.; Ikeji, C.N.; Afolabi, B.A.; Rocha, J.B.T.; Farombi, E.O. Perfluorooctanoic acid induces behavioral impairment and oxidative injury in Nauphoeta cinerea nymphs. Environ. Sci. Pollut. Res. Int. 2023, 30, 110340–110351. [Google Scholar] [CrossRef]
- Fangninou, F.F.; Yu, Z.; Li, W.; Xue, L.; Yin, D. Metastatic effects of perfluorooctanoic acid (PFOA) on Drosophila melanogaster with metabolic reprogramming and dysrhythmia in a multigenerational exposure scenario. Sci. Total Environ. 2024, 912, 169305. [Google Scholar] [CrossRef]
- Liang, R.; He, J.; Shi, Y.; Li, Z.; Sarvajayakesavalu, S.; Baninla, Y.; Guo, F.; Chen, J.; Xu, X.; Lu, Y. Effects of Perfluorooctane sulfonate on immobilization, heartbeat, reproductive and biochemical performance of Daphnia magna. Chemosphere 2017, 168, 1613–1618. [Google Scholar] [CrossRef]
- Jeong, T.Y.; Yuk, M.S.; Jeon, J.; Kim, S.D. Multigenerational effect of perfluorooctane sulfonate (PFOS) on the individual fitness and population growth of Daphnia magna. Sci. Total Environ. 2016, 569–570, 1553–1560. [Google Scholar] [CrossRef]
- Yuan, Z.; Miao, Z.; Gong, X.; Zhao, B.; Zhang, Y.; Ma, H.; Zhang, J.; Zhao, B. Changes on lipid peroxidation,enzymatic activities and gene expression in planarian (Dugesia japonica) following exposure to perfluorooctanoic acid. Ecotoxicol. Environ. Saf. 2017, 145, 564–568. [Google Scholar] [CrossRef]
- Li, F.; Yu, Y.; Guo, M.; Lin, Y.; Jiang, Y.; Qu, M.; Sun, X.; Li, Z.; Zhai, Y.; Tan, Z. Integrated analysis of physiological, transcriptomics and metabolomics provides insights into detoxication disruption of PFOA exposure in Mytilus edulis. Ecotoxicol. Environ. Saf. 2021, 214, 112081. [Google Scholar] [CrossRef] [PubMed]
- Cunha, M.; Nardi, A.; Soares, A.; Gil, A.M.; Freitas, R. Revealing hidden risks: In vitro analysis of PFAS hazards in Mytilus galloprovincialis gills and digestive gland. J. Hazard. Mater. 2024, 485, 136823. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Gin, K.Y.; Chang, V.W. Multi-biomarker responses in green mussels exposed to PFCs: Effects at molecular, cellular, and physiological levels. Environ. Sci. Pollut. Res. Int. 2014, 21, 2785–2794. [Google Scholar] [CrossRef]
- Liu, C.; Chang, V.W.; Gin, K.Y. Oxidative toxicity of perfluorinated chemicals in green mussel and bioaccumulation factor dependent quantitative structure-activity relationship. Environ. Toxicol. Chem. 2014, 33, 2323–2332. [Google Scholar] [CrossRef]
- Chen, N.; Li, J.; Li, D.; Yang, Y.; He, D. Chronic exposure to perfluorooctane sulfonate induces behavior defects and neurotoxicity through oxidative damages, in vivo and in vitro. PLoS ONE 2014, 9, e113453. [Google Scholar] [CrossRef]
- Sammi, S.R.; Foguth, R.M.; Nieves, C.S.; De Perre, C.; Wipf, P.; McMurray, C.T.; Lee, L.S.; Cannon, J.R. Perfluorooctane Sulfonate (PFOS) Produces Dopaminergic Neuropathology in Caenorhabditis elegans. Toxicol. Sci. 2019, 172, 417–434. [Google Scholar] [CrossRef]
- Mayilswami, S.; Krishnan, K.; Megharaj, M.; Naidu, R. Chronic PFOS exposure alters the expression of neuronal development-related human homologues in Eisenia fetida. Ecotoxicol. Environ. Saf. 2014, 110, 288–297. [Google Scholar] [CrossRef]
- Mayilswami, S.; Krishnan, K.; Megharaj, M.; Naidu, R. Gene expression profile changes in Eisenia fetida chronically exposed to PFOA. Ecotoxicology 2016, 25, 759–769. [Google Scholar] [CrossRef]
- Babalola, A.A.; Mohammed, K.A.; Olaseni, A.A.; Oyedele, G.T.; Adedara, I.A.; Rocha, J.B.T.; Farombi, E.O. Persistent oxidative injury and neurobehavioral impairment in adult male and female Nauphoeta cinerea exposed to perfluorooctanoic acid. Environ. Toxicol. Pharmacol. 2023, 100, 104135. [Google Scholar] [CrossRef]
- Yuan, Z.; Shao, X.; Miao, Z.; Zhao, B.; Zheng, Z.; Zhang, J. Perfluorooctane sulfonate induced neurotoxicity responses associated with neural genes expression, neurotransmitter levels and acetylcholinesterase activity in planarians Dugesia japonica. Chemosphere 2018, 206, 150–156. [Google Scholar] [CrossRef]
- Wang, J.; Li, Y.; Liu, Y.; Zhang, H.; Dai, J. Disturbance of perfluorooctanoic acid on development and behavior in Drosophila larvae. Environ. Toxicol. Chem. 2010, 29, 2117–2122. [Google Scholar] [CrossRef] [PubMed]
- Van Gossum, H.; Bots, J.; Snijkers, T.; Meyer, J.; Van Wassenbergh, S.; De Coen, W.; De Bruyn, L. Behaviour of damselfly larvae (Enallagma cyathigerum) (Insecta, Odonata) after long-term exposure to PFOS. Environ. Pollut. 2009, 157, 1332–1336. [Google Scholar] [CrossRef] [PubMed]
- Porseryd, T.; Larsson, J.; Lindman, J.; Malmström, E.; Smolarz, K.; Grahn, M.; Dinnétz, P. Effects on food intake of Gammarus spp. after exposure to PFBA in very low concentrations. Mar. Pollut. Bull. 2024, 202, 116369. [Google Scholar] [CrossRef]
- Coy, C.O.; Steele, A.N.; Abdulelah, S.A.; Belanger, R.M.; Crile, K.G.; Stevenson, L.M.; Moore, P.A. Differing behavioral changes in crayfish and bluegill under short- and long-chain PFAS exposures: Field study in Northern Michigan, USA. Ecotoxicol. Environ. Saf. 2022, 247, 114212. [Google Scholar] [CrossRef]
- Omagamre, E.W.; Ojo, F.; Zebelo, S.A.; Pitula, J.S. Influence of Perfluorobutanoic Acid (PFBA) on the Developmental Cycle and Damage Potential of the Beet Armyworm Spodoptera exigua (Hübner) (Insecta: Lepidoptera: Noctuidae). Arch. Environ. Contam. Toxicol. 2020, 79, 500–507. [Google Scholar] [CrossRef]
- Sonter, C.A.; Rader, R.; Stevenson, G.; Stavert, J.R.; Wilson, S.C. Biological and behavioral responses of European honey bee (Apis mellifera) colonies to perfluorooctane sulfonate exposure. Integr. Environ. Assess. Manag. 2021, 17, 673–683. [Google Scholar] [CrossRef]
- Lenaerts, C.; Van Wielendaele, P.; Peeters, P.; Vanden Broeck, J.; Marchal, E. Ecdysteroid signalling components in metamorphosis and development of the desert locust, Schistocerca gregaria. Insect Biochem. Mol. Biol. 2016, 75, 10–23. [Google Scholar] [CrossRef]
- Tokishita, S.; Kato, Y.; Kobayashi, T.; Nakamura, S.; Ohta, T.; Yamagata, H. Organization and repression by juvenile hormone of a vitellogenin gene cluster in the crustacean, Daphnia magna. Biochem. Biophys. Res. Commun. 2006, 345, 362–370. [Google Scholar] [CrossRef]
- Seyoum, A.; Pradhan, A.; Jass, J.; Olsson, P.E. Perfluorinated alkyl substances impede growth, reproduction, lipid metabolism and lifespan in Daphnia magna. Sci. Total Environ. 2020, 737, 139682. [Google Scholar] [CrossRef]
- Han, J.; Won, E.J.; Lee, M.C.; Seo, J.S.; Lee, S.J.; Lee, J.S. Developmental retardation, reduced fecundity, and modulated expression of the defensome in the intertidal copepod Tigriopus japonicus exposed to BDE-47 and PFOS. Aquat. Toxicol. 2015, 165, 136–143. [Google Scholar] [CrossRef]
- Currie, S.D.; Doherty, J.P.; Xue, K.S.; Wang, J.S.; Tang, L. The stage-specific toxicity of per- and polyfluoroalkyl substances (PFAS) in nematode Caenorhabditis elegans. Environ. Pollut. 2023, 336, 122429. [Google Scholar] [CrossRef] [PubMed]
- Cara, Á.L.; dos Santos Barboza Ortega, A.; Pusceddu, F.H.; de Souza Abessa, D.M.; Pereira, C.D.S.; Maranho, L.A. Could Aqueous Film-Forming Foams (AFFFs) and Encapsulator Agents (EAs) Interfere on the Reproduction and Growth of Daphnia similis? Water Air Soil Pollut. 2021, 232, 416. [Google Scholar] [CrossRef]
- Schumacher, B.; Schertel, C.; Wittenburg, N.; Tuck, S.; Mitani, S.; Gartner, A.; Conradt, B.; Shaham, S.C. elegans ced-13 can promote apoptosis and is induced in response to DNA damage. Cell Death Differ. 2005, 12, 153–161. [Google Scholar] [CrossRef]
- Kim, J.H.; Barbagallo, B.; Annunziato, K.; Farias-Pereira, R.; Doherty, J.J.; Lee, J.; Zina, J.; Tindal, C.; McVey, C.; Aresco, R.; et al. Maternal preconception PFOS exposure of Drosophila melanogaster alters reproductive capacity, development, morphology and nutrient regulation. Food Chem. Toxicol. 2021, 151, 112153. [Google Scholar] [CrossRef]
- Bots, J.; De Bruyn, L.; Snijkers, T.; Van den Branden, B.; Van Gossum, H. Exposure to perfluorooctane sulfonic acid (PFOS) adversely affects the life-cycle of the damselfly Enallagma cyathigerum. Environ. Pollut. 2010, 158, 901–905. [Google Scholar] [CrossRef]
- Yin, J.; Jian, Z.; Zhu, G.; Yu, X.; Pu, Y.; Yin, L.; Wang, D.; Bu, Y.; Liu, R. Male reproductive toxicity involved in spermatogenesis induced by perfluorooctane sulfonate and perfluorooctanoic acid in Caenorhabditis elegans. Environ. Sci. Pollut. Res. Int. 2021, 28, 1443–1453. [Google Scholar] [CrossRef]
- Yue, Y.; Li, S.; Qian, Z.; Pereira, R.F.; Lee, J.; Doherty, J.J.; Zhang, Z.; Peng, Y.; Clark, J.M.; Timme-Laragy, A.R.; et al. Perfluorooctanesulfonic acid (PFOS) and perfluorobutanesulfonic acid (PFBS) impaired reproduction and altered offspring physiological functions in Caenorhabditis elegans. Food Chem. Toxicol. 2020, 145, 111695. [Google Scholar] [CrossRef]
- Feng, Z.; McLamb, F.; Vu, J.P.; Gong, S.; Gersberg, R.M.; Bozinovic, G. Physiological and transcriptomic effects of hexafluoropropylene oxide dimer acid in Caenorhabditis elegans during development. Ecotoxicol. Environ. Saf. 2022, 244, 114047. [Google Scholar] [CrossRef]
- Yang, H.B.; Zhao, Y.Z.; Tang, Y.; Gong, H.Q.; Guo, F.; Sun, W.H.; Liu, S.S.; Tan, H.; Chen, F. Antioxidant defence system is responsible for the toxicological interactions of mixtures: A case study on PFOS and PFOA in Daphnia magna. Sci. Total Environ. 2019, 667, 435–443. [Google Scholar] [CrossRef]
- Houde, M.; Douville, M.; Giraudo, M.; Jean, K.; Lépine, M.; Spencer, C.; De Silva, A.O. Endocrine-disruption potential of perfluoroethylcyclohexane sulfonate (PFECHS) in chronically exposed Daphnia magna. Environ. Pollut. 2016, 218, 950–956. [Google Scholar] [CrossRef]
- Zhang, L.; Niu, J.; Wang, Y.; Shi, J.; Huang, Q. Chronic effects of PFOA and PFOS on sexual reproduction of freshwater rotifer Brachionus calyciflorus. Chemosphere 2014, 114, 114–120. [Google Scholar] [CrossRef] [PubMed]
- Savoca, D.; Pace, A.; Arizza, V.; Arculeo, M.; Melfi, R. Controlled uptake of PFOA in adult specimens of Paracentrotus lividus and evaluation of gene expression in their gonads and embryos. Environ. Sci. Pollut. Res. Int. 2023, 30, 26094–26106. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Liu, Z.; Yao, L.; Jiang, Y.; Qu, M.; Yu, Y.; Gong, X.; Tan, Z.; Li, Z. Immunotoxicity of Perfluorooctanoic Acid to the Marine Bivalve Species Ruditapes philippinarum. Environ. Toxicol. Chem. 2022, 41, 426–436. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Gong, X.; Zhou, Y.; Geng, Q.; Jiang, Y.; Yao, L.; Qu, M.; Tan, Z. Integrated evidence of transcriptional, metabolic, and intestinal microbiota changes in Ruditapes philippinarum due to perfluorooctanoic acid-induced immunotoxicity. Sci. Total Environ. 2024, 916, 170341. [Google Scholar] [CrossRef]
- Zhang, L.; Sun, W.; Chen, H.; Tian, F.; Cai, W. Transcriptome analysis of acute exposure of the Manila clam, Ruditapes philippinarum to perfluorooctane sulfonate (PFOS). Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2020, 231, 108736. [Google Scholar] [CrossRef]
- Liu, C.; Gin, K.Y. Immunotoxicity in green mussels under perfluoroalkyl substance (PFAS) exposure: Reversible response and response model development. Environ. Toxicol. Chem. 2018, 37, 1138–1145. [Google Scholar] [CrossRef]
- Zhang, F.; Wei, J.; Li, Q.; Jiang, R.; Yu, N.; Qin, J.; Chen, L. Effects of perfluorooctane sulfonate on the immune responses and expression of immune-related genes in Chinese mitten-handed crab Eriocheir sinensis. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2015, 172–173, 13–18. [Google Scholar] [CrossRef]
- Bernardini, I.; Matozzo, V.; Valsecchi, S.; Peruzza, L.; Rovere, G.D.; Polesello, S.; Iori, S.; Marin, M.G.; Fabrello, J.; Ciscato, M.; et al. The new PFAS C6O4 and its effects on marine invertebrates: First evidence of transcriptional and microbiota changes in the Manila clam Ruditapes philippinarum. Environ. Int. 2021, 152, 106484. [Google Scholar] [CrossRef]
- Zhang, J.; Shao, X.; Zhao, B.; Zhai, L.; Liu, N.; Gong, F.; Ma, X.; Pan, X.; Zhao, B.; Yuan, Z.; et al. Neurotoxicity of perfluorooctanoic acid and post-exposure recovery due to blueberry anthocyanins in the planarians Dugesia japonica. Environ. Pollut. 2020, 263, 114471. [Google Scholar] [CrossRef]
- Shao, X.; Zhao, B.; Wang, B.; Zhao, B.; Zhu, Y.; Yuan, Z.; Zhang, J. Neuroprotective effects of blueberry anthocyanins against perfluorooctanoic sulfonate on planarian Dugesia japonica. Ecotoxicol. Environ. Saf. 2019, 175, 39–47. [Google Scholar] [CrossRef]
- Delor, L.; Louzon, M.; Pelosi, C.; Michel, E.; Maillet, G.; Carronnier, H. Ecotoxicity of single and mixture of perfluoroalkyl substances (PFOS and PFOA) in soils to the earthworm Aporrectodea caliginosa. Environ. Pollut. 2023, 335, 122221. [Google Scholar] [CrossRef] [PubMed]
- Kawamoto, K.; Oashi, T.; Oami, K.; Liu, W.; Jin, Y.; Saito, N.; Sato, I.; Tsuda, S. Perfluorooctanoic acid (PFOA) but not perfluorooctane sulfonate (PFOS) showed DNA damage in comet assay on Paramecium caudatum. J. Toxicol. Sci. 2010, 35, 835–841. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.; Hong, M.; Hou, X.; Zhu, C.; Chen, D.; Chen, X.; Guang, S.; Feng, X. H3K9me1/2 methylation limits the lifespan of daf-2 mutants in C. elegans. eLife 2022, 11, e74812. [Google Scholar] [CrossRef] [PubMed]
- Xu, T.; Li, P.; Wu, S.; Li, D.; Wu, J.; Raley-Susman, K.M.; He, D. Chronic Exposure to Perfluorooctane Sulfonate Reduces Lifespan of Caenorhabditis elegans Through Insulin/IGF-1 Signaling. Bull. Environ. Contam. Toxicol. 2016, 97, 119–123. [Google Scholar] [CrossRef] [PubMed]
- Meng, L.; Yang, S.; Feng, M.; Qu, R.; Li, Y.; Liu, J.; Wang, Z.; Sun, C. Toxicity and bioaccumulation of copper in Limnodrilus hoffmeisteri under different pH values: Impacts of perfluorooctane sulfonate. J. Hazard. Mater. 2016, 305, 219–228. [Google Scholar] [CrossRef]
- Prosser, R.S.; Mahon, K.; Sibley, P.K.; Poirier, D.; Watson-Leung, T. Bioaccumulation of perfluorinated carboxylates and sulfonates and polychlorinated biphenyls in laboratory-cultured Hexagenia spp., Lumbriculus variegatus and Pimephales promelas from field-collected sediments. Sci. Total Environ. 2016, 543, 715–726. [Google Scholar] [CrossRef]
- Zhao, S.; Yang, Q.; Wang, B.; Peng, Y.; Zhan, J.; Liu, L. Effects of combined exposure to perfluoroalkyl acids and heavy metals on bioaccumulation and subcellular distribution in earthworms (Eisenia fetida) from co-contaminated soil. Environ. Sci. Pollut. Res. Int. 2018, 25, 29335–29344. [Google Scholar] [CrossRef]
- Wang, Z.; Xue, W.; Qi, F.; Zhang, Z.; Li, C.; Cao, X.; Cui, X.; Wang, N.; Cui, Z. How do different arsenic species affect the joint toxicity of perfluorooctanoic acid and arsenic to earthworm Eisenia fetida: A multi-biomarker approach. Ecotoxicol. Environ. Saf. 2023, 251, 114528. [Google Scholar] [CrossRef]
- Liu, Y.; Junaid, M.; Xu, P.; Zhong, W.; Pan, B.; Xu, N. Suspended sediment exacerbates perfluorooctane sulfonate mediated toxicity through reactive oxygen species generation in freshwater clam Corbicula fluminea. Environ. Pollut. 2020, 267, 115671. [Google Scholar] [CrossRef]
- Chen, C.C.; Shi, Y.; Zhu, Y.; Zeng, J.; Qian, W.; Zhou, S.; Ma, J.; Pan, K.; Jiang, Y.; Tao, Y.; et al. Combined toxicity of polystyrene microplastics and ammonium perfluorooctanoate to Daphnia magna: Mediation of intestinal blockage. Water Res. 2022, 219, 118536. [Google Scholar] [CrossRef]
- Huang, J.; Zhang, J.; Sun, J.; Gong, M.; Yuan, Z. Exposure to polystyrene microplastics and perfluorooctane sulfonate disrupt the homeostasis of intact planarians and the growth of regenerating planarians. Sci. Total Environ. 2024, 924, 171653. [Google Scholar] [CrossRef] [PubMed]
- Sun, B.; Hu, M.; Lan, X.; Waiho, K.; Lv, X.; Xu, C.; Wang, Y. Nano-titanium dioxide exacerbates the harmful effects of perfluorooctanoic acid on the health of mussels. Environ. Int. 2024, 187, 108681. [Google Scholar] [CrossRef] [PubMed]
- Sun, B.; Hu, M.; Bock, C.; Shao, Y.; Chen, H.; Waiho, K.; Liu, W.; Khadka, K.; Xu, C.; Wang, Y. Effects of perfluorooctanoic acid and nano titanium dioxide on the immune response and energy allocation in Mytilus coruscus. Chemosphere 2024, 370, 143958. [Google Scholar] [CrossRef] [PubMed]
- Sun, B.; Shang, Y.; Chen, H.; Khadka, K.; Pan, Y.; Hu, M.; Wang, Y. Perfluorooctanoate and nano titanium dioxide impair the byssus performance of the mussel Mytilus coruscus. J. Hazard. Mater. 2024, 469, 134062. [Google Scholar] [CrossRef]
- Geng, Q.; Zou, L.; Guo, M.; Peng, J.; Li, F.; Bi, Y.; Jiang, S.; Qin, H.; Tan, Z. Insights into the combined toxicity and mechanisms of BDE-47 and PFOA in marine blue mussel: An integrated study at the physiochemical and molecular levels. Aquat. Toxicol. 2024, 273, 106999. [Google Scholar] [CrossRef]
Species | PFAS Type | LC50/EC50 (95% Confidential Interval) | Test Duration | Reference |
---|---|---|---|---|
Aquatic invertebrate | ||||
Brachionus calyciflorus | PFOS | 61.8 mg/L | 24 h–LC50 | [30] |
PFOA | 150 mg/L | 24 h–LC50 | ||
Chironomus dilutus | PFOS | 0.0075 (0.0066–0.0085) mg/L | 16 d–LC50 | [45] |
20 (15–26) mg/L | 6 d–LC50 | |||
Chydorus sphaericu | PFBA | 462.32 (443.06–481.37) mg/mL | 48 h–EC50 | [46] |
PFOA | 116.77 (50.52–142.85) mg/mL | 48 h–EC50 | ||
PFNA | 27.84 (21.81–32.49) mg/mL | 48 h–EC50 | ||
PFDA | 45.24 (26.22–63.75) mg/mL | 48 h–EC50 | ||
PFUnA | 19.18 (12.41–23.69) mg/mL | 48 h–EC50 | ||
PFDoA | 28.25 (20.88–49.74) mg/mL | 48 h–EC50 | ||
Daphnia magna | PFBA | 181.5 (180–183.21) mg/mL | 48 h–EC50 | [46] |
PFOA | 211.59 (184.68–255.48) mg/mL | 48 h–EC50 | ||
PFNA | 151.29 130.46–181) mg/mL | 48 h–EC50 | ||
PFDA | 163.48 (143–177.36) mg/mL | 48 h–EC50 | ||
PFUnA | 133.13 (91.95–184.46) mg/mL | 48 h–EC50 | ||
PFDoA | 79.22 (60.18–98.26) mg/mL | 48 h–EC50 | ||
PFBS | 2183 (1707–3767) mg/L | 48 h–LC50 | [47] | |
PFNA | 43.42 mg/L | 48 h–EC50 | [48] | |
PFOS | 23.41 mg/L | 48 h–EC50 | ||
PFOA | 476.5 (375.72–577.72) mg/L | 48 h–EC50 | [49] | |
PFBA | 5251 (3889–6614) mg/L | 48 h–EC50 | [50] | |
PFHxA | 1048 (802–1294) mg/L | 48 h–EC50 | ||
PFOA | 239 (190–287) mg/L | 48 h–EC50 | ||
PFOS | 8.8 (6.4–11.6) mg/L | 48 h–LC50 | [51] | |
PFOA | 78.2 (54.9–105) mg/L | 48 h–LC50 | ||
Dugesia japonica | PFOS | 34 (30–38) mg/L | 24 h–LC50 | [52] |
27 (24–31) mg/L | 48 h–LC50 | |||
26 (23–29) mg/L | 72 h–LC50 | |||
23 (20–25) mg/L | 96 h–LC50 | |||
PFOA | 352 (331–374) mg/L | 24 h–LC50 | ||
345 (325–366) mg/L | 48 h–LC50 | |||
343 (324–364) mg/L | 72 h–LC50 | |||
337 (318–357) mg/L | 96 h–LC50 | |||
Hyalella azteca | PFOA | 113 (103–124) mg/L | 7 d–LC50 | [53] |
87.8 (79.8–96.5) mg/L | 14 d–LC50 | |||
70.2 (63.6–77.5) mg/L | 21 d–LC50 | |||
57.5 (51.3–64.5) mg/L | 28 d–LC50 | |||
55.1 (49.0–62.0) mg/L | 35 d–LC50 | |||
51.5 (45.6–58.1) mg/L | 42 d–LC50 | |||
PFOS | 15 (13– 18) mg/L | 42 d–LC50 | [45] | |
Lampsilis siliquoidea | PFOS | 16.5 (8.0–33.9) mg/L | 24 h–EC50 | [54] |
17.7 (7.2–43.5) mg/L | 48 h–EC50 | |||
PFOA | 164.4 (116.0–232.8) mg/L | 24 h–EC50 | ||
162.6 (130.6–202.3) mg/L | 48 h–EC50 | |||
Ligumia recta | PFOS | 13.5 (5.7–31.8) mg/L | 24 h–EC50 | |
17.1 (9.4–31.1) mg/L | 48 h–EC50 | |||
PFOA | 161.0 (135.8–191.0) mg/L | 24 h–EC50 | ||
161.3 (135.0–192.7) mg/L | 48 h–EC50 | |||
Moina macrocopa | PFOA | 199.51 (153.89–245.13) mg/L | 48 h–EC50 | [49] |
Moina micrura | PFOS | 549.6 (407.2–743.9) μg/L | 48 h–LC50 | [55] |
PFOA | 474.77 (350.4–644.5) μg/L | 48 h–LC50 | ||
Mytilus galloprovincialis | PFOS | 1.07 (1.06–1.08) mg/L | 48 h–LC50 | [56] |
PFOA | 9.98 (9.6–10) mg/L | 48 h–LC50 | ||
Neocaridina denticulate | PFOS | 57 (43–75) mg/L | 48 h–LC50 | [52] |
20 (17–24) mg/L | 72 h–LC50 | |||
10 (9–12) mg/L | 96 h–LC50 | |||
PFOA | 712 (663–764) mg/L | 48 h–LC50 | ||
546 (502–594) mg/L | 72 h–LC50 | |||
454 (418–494) mg/L | 96 h–LC50 | |||
Paracentrotus lividus | PFOS | 20 (15.8–25.3) mg/L | 72 h–EC50 | [57] |
PFOA | 110 (99.2–121.9) mg/L | 72 h–EC50 | ||
Perna viridis | PFOS | 33 (29–37) μg/L | 7 d–EC50 | [58] |
PFOA | 594 (341–1036) μg/L | 7 d–EC50 | ||
PFNA | 195 (144–265) μg/L | 7 d–EC50 | ||
PFDA | 78 (73–84) μg/L | 7 d–EC50 | ||
Siriella armata | PFOS | 6.9 (6.8–7.0) mg/L | 72 h–EC50 | |
PFOA | 15.5 (13.0–18.6) mg/L | 72 h–EC50 | [57] | |
Terrestrial invertebrate | ||||
Bombus terrestris | PFOS | 1.01 (0.6–1.8) mg/L | 11 weeks–LC50 | [59] |
Caenorhabditis elegans | PFOS | 4.522 mg/L | 24 h–LC50 | [60] |
PFOA | 22.655 mg/L | 24 h–LC50 | ||
PFBS | 238.28 (187.26–302.8) μg/mL | 48 h–LC50 | [61] | |
PFOA | 0.58 (0.45–0.66) μg/mL | 48 h–LC50 | ||
PFBS | 481.5 mg/L | 48 h–LC50 | [62] | |
PFOS | 1.57 (1.36–1.8) μg/mL | 48 h–LC50 | [63] | |
Eisenia fetida | PFOS | 32.40 μg/cm2 | 24 h–LC50 | [64] |
26.28 μg/cm2 | 48 h–LC50 | |||
PFOA | 21.34 μg/cm2 | 24 h–LC50 | ||
14.95 μg/cm2 | 48 h–LC50 | |||
PFOS | 1302.57 mg/kg | 7 d–LC50 | [65] | |
913.3 mg/kg | 14 d–LC50 | |||
F-53B | 1118.52 mg/kg | 7 d–LC50 | ||
816.06 mg/kg | 14 d–LC50 | |||
cC6O4 | 10.4 mg/kg | 56 d–EC50 | [66] | |
PFOS | 405.3 (373.8–439.5) mg/kg | 7 d–LC50 | [67] | |
365.4 (333.6–400.2) mg/kg | 14 d–LC50 | |||
PFOA | 1307 (1236.1–1394.5) mg/kg | 7 d–LC50 | ||
1000.8 (926.2–1081.5) mg/kg | 14 d–LC50 | |||
PFOA | 812 mg/kg | 14 d–LC50 | [68] | |
PFOS | 478.0 mg/kg | 14 d–LC50 | [69] | |
PFOA | 759.6 mg/kg | 14 d–LC50 | ||
Folsomia candida | PFOS | 130 (101–167) mg/kg | 28 d–LC50 | [70] |
Oppia nitens | PFOS | 65 (59–72) mg/kg | 28 d–LC50 | [70] |
Physa acuta | PFOS | 271 mg/L | 24 h–LC50 | [52] |
233 (226–241) mg/L | 48 h–LC50 | |||
208 (197–219) mg/L | 72 h–LC50 | |||
178 (167–189) mg/L | 96 h–LC50 | |||
PFOA | 856 (768–954) mg/L | 24 h–LC50 | ||
732 (688–779) mg/L | 48 h–LC50 | |||
697 (661–735) mg/L | 72 h–LC50 | |||
672 (635–711) mg/L | 96 h–LC50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Naveed, H.; Chen, K.; Chen, L. Toxicity of Per- and Polyfluoroalkyl Substances and Their Substitutes to Terrestrial and Aquatic Invertebrates—A Review. Toxics 2025, 13, 47. https://doi.org/10.3390/toxics13010047
Zhang J, Naveed H, Chen K, Chen L. Toxicity of Per- and Polyfluoroalkyl Substances and Their Substitutes to Terrestrial and Aquatic Invertebrates—A Review. Toxics. 2025; 13(1):47. https://doi.org/10.3390/toxics13010047
Chicago/Turabian StyleZhang, Jiaxin, Hassan Naveed, Keping Chen, and Liang Chen. 2025. "Toxicity of Per- and Polyfluoroalkyl Substances and Their Substitutes to Terrestrial and Aquatic Invertebrates—A Review" Toxics 13, no. 1: 47. https://doi.org/10.3390/toxics13010047
APA StyleZhang, J., Naveed, H., Chen, K., & Chen, L. (2025). Toxicity of Per- and Polyfluoroalkyl Substances and Their Substitutes to Terrestrial and Aquatic Invertebrates—A Review. Toxics, 13(1), 47. https://doi.org/10.3390/toxics13010047