Blood Trihalomethanes and Human Cancer: A Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Methods
2.1. Database Selection
- High academic authority: PubMed, managed by the U.S. National Library of Medicine (NLM), is a free search engine for life sciences and medical research. It contains a vast collection of academic journal articles, research reports, and papers in the fields of life sciences and medicine, ensuring high academic quality and credibility.
- Free access and timely updates: users can freely access the resources available on PubMed, making it easier to obtain the latest research findings and academic advancements in the medical and life sciences fields.
- Wide coverage: PubMed collects research from around the world in the life sciences and medical fields, covering multiple disciplines, including basic medicine, clinical medicine, biomedical engineering, biochemistry, biotechnology, and more.
- Powerful search and filtering features: users can search for and filter the literature using various criteria such as keywords, authors, journals, and publication dates, enabling them to quickly find the information they need.
2.2. Literature Collection
2.3. Literature Screening and Evaluation
2.4. Visualization Analysis
2.5. Statistical Analysis
2.5.1. Study Characteristics
2.5.2. Study Subjects
2.5.3. Risk of Bias Assessment
- Study Quality Assessment: evaluates the quality level of the included studies.
- Result Credibility: assesses the credibility of the meta-analysis results.
- Conclusion Reliability: ensures the reliability and stability of conclusions.
- Clinical Practice Guidance: provides valuable information for clinical decision-making.
- Research Improvement: offers directions for future research improvements.
- Scientific Research Standards: promotes the standardization and normalization of scientific research.
2.5.4. Blood Sample Collection
2.5.5. Covariates
2.5.6. Software Selection
2.5.7. Chart Creation
3. Results
3.1. Covariate—Age
3.2. Statistical Analysis of THM Concentration
3.3. Analysis of Chloroform Concentration
3.4. Sensitivity Analysis
4. Discussion
5. Limitations and Future Directions
5.1. Limitations
5.2. Future Directions
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Angelakis, A.N.; Capodaglio, A.G.; Dialynas, E.G. Wastewater management: From ancient greece to modern times and future. Water 2022, 15, 43. [Google Scholar] [CrossRef]
- Salehi, M. Global water shortage and potable water safety; Today’s concern and tomorrow’s crisis. Environ. Int. 2022, 158, 106936. [Google Scholar] [CrossRef] [PubMed]
- Angelakis, A.N.; Vuorinen, H.S.; Nikolaidis, C.; Juuti, P.S.; Katko, T.S.; Juuti, R.P.; Zhang, J.; Samonis, G. Water quality and life expectancy: Parallel courses in time. Water 2021, 13, 752. [Google Scholar] [CrossRef]
- AuRook, J.J. Formation of haloforms during chlorination of natural waters. Water Treat. Exam. 1974, 23, 234–243. [Google Scholar]
- Bellar, T.A.; Lichtenberg, J.J.; Kroner, R.C. The occurrence of organohalides in chlorinated drinking waters. J. Am. Water Work. Assoc. 1974, 66, 703–706. [Google Scholar] [CrossRef]
- Cotruvo, J.A. Trihalomethanes (THMs) in drinking water. Environ. Sci. Technol. 1981, 15, 268–274. [Google Scholar] [CrossRef]
- Li, J.; Zhang, Z.; Aziz, M.T.; Granger, C.O.; Qiang, Z.; Richardson, S.D.; Dong, H. Simple and sensitive method for synchronous quantification of regulated and unregulated priority disinfection byproducts in drinking water. Anal. Chem. 2023, 95, 10975–10983. [Google Scholar] [CrossRef]
- Chang, C.Y.; Hsieh, Y.H.; Hsu, S.S.; Hu, P.Y.; Wang, K.H. The formation of disinfection by-products in water treated with chlorine dioxide. J. Hazard. Mater. 2000, 79, 89–102. [Google Scholar] [CrossRef]
- Wei, J.R.; Wang, Z.G. Research Progress on Disinfection By-products in Drinking Water. J. Hyg. Res. 2004, 33, 115–118. [Google Scholar]
- Kumari, M.; Gupta, S.K. Occurrence and exposure to trihalomethanes in drinking water: A systematic review and meta-analysis. Expo. Health 2022, 14, 915–939. [Google Scholar] [CrossRef]
- Jorgenson, T.A.; Meierhenry, E.F.; Rushbrook, C.J.; Bull, R.J.; Robinson, M. Carcinogenicity of chloroform in drinking water to male Osborne-Mendel rats and female B6C3F1 mice. Fundam. Appl. Toxicol. 1985, 5, 760–769. [Google Scholar] [CrossRef] [PubMed]
- Coleman, W.E.; Lingg, R.D.; Melton, R.G.; Kopfler, F.C. The Occurrence of Volatile Organics in Five Drinking Water Supplies Using Gas Chromatography/Mass Spectrometry; Ann Arbor Science: Ann Arbor, MI, USA, 1976; p. 305. [Google Scholar]
- Riederer, A.M.; Dhingra, R.; Blount, B.C.; Steenland, K. Predictors of blood trihalomethane concentrations in NHANES 1999–2006. Environ. Health Perspect. 2014, 122, 695–702. [Google Scholar] [CrossRef] [PubMed]
- Parveen, N.; Goel, S. Trihalomethane cancer risk assessment for private and shared residences: Addressing the differences in inhalation exposure. Toxics 2023, 11, 295. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhang, N.; Niu, Z. Health risk assessment of trihalomethanes mixtures from daily water-related activities via multi-pathway exposure based on PBPK model. Ecotoxicol. Environ. Saf. 2018, 163, 427–435. [Google Scholar] [CrossRef]
- Niu, Z.; Zang, X.; Zhang, Y. Using physiologically based pharmacokinetic models to estimate the health risk of mixtures of trihalomethanes from reclaimed water. J. Hazard. Mater. 2015, 285, 190–198. [Google Scholar] [CrossRef]
- Liu, C.; Wang, Y.X.; Chen, Y.J.; Sun, Y.; Huang, L.L.; Cheng, Y.H.; Liu, E.N.; Lu, W.Q.; Messerlian, C. Blood and urinary biomarkers of prenatal exposure to disinfection byproducts and oxidative stress: A repeated measurement analysis. Environ. Int. 2020, 137, 105518. [Google Scholar] [CrossRef]
- Regli, S.; Chen, J.; Messner, M.; Elovitz, M.S.; Letkiewicz, F.J.; Pegram, R.A.; Pepping, T.J.; Richardson, S.D.; Wright, J.M. Estimating potential increased bladder cancer risk due to increased bromide concentrations in sources of disinfected drinking waters. Environ. Sci. Technol. 2015, 49, 13094–13102. [Google Scholar] [CrossRef]
- Leavens, T.L.; Blount, B.C.; DeMarini, D.M.; Madden, M.C.; Valentine, J.L.; Case, M.W.; Silva, L.K.; Warren, S.H.; Hanley, N.M.; Pegram, R.A. Disposition of bromodichloromethane in humans following oral and dermal exposure. Toxicol. Sci. 2007, 99, 432–445. [Google Scholar] [CrossRef]
- Villanueva, C.M.; Cantor, K.P.; Grimalt, J.O.; Malats, N.; Silverman, D.; Tardon, A.; Garcia-Closas, R.; Serra, C.; Carrato, A.; Castaño-Vinyals, G.; et al. Bladder cancer and exposure to water disinfection by-products through ingestion, bathing, showering, and swimming in pools. Am. J. Epidemiol. 2007, 165, 148–156. [Google Scholar] [CrossRef]
- Villanueva, C.M.; Cordier, S.; Font-Ribera, L.; Salas, L.A.; Levallois, P. Overview of disinfection by-products and associated health effects. Curr. Environ. Health Rep. 2015, 2, 107–115. [Google Scholar] [CrossRef]
- Shi, Y.; Xia, W.; Liu, H.; Liu, J.; Cao, S.; Fang, X.; Li, S.; Li, Y.; Chen, C.; Xu, S. Trihalomethanes in global drinking water: Distributions, risk assessments, and attributable disease burden of bladder cancer. J. Hazard. Mater. 2024, 469, 133760. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhu, G.; Engel, B. Variation and relationship of THMs between tap water and finished water in Yancheng City, China. Environ. Monit. Assess. 2018, 190, 517. [Google Scholar] [CrossRef] [PubMed]
- Singer, P.C. Disinfection by-products in US drinking waters: Past, present and future. Water Sci. Technol. Water Supply 2004, 4, 151–157. [Google Scholar] [CrossRef]
- Li, Z.; Jennings, A. Global variations in pesticide regulations and health risk assessment of maximum concentration levels in drinking water. J. Environ. Manag. 2018, 212, 384–394. [Google Scholar] [CrossRef]
- Dietrich, A.M.; Burlingame, G.A. Critical review and rethinking of USEPA secondary standards for maintaining organoleptic quality of drinking water. Environ. Sci. Technol. 2015, 49, 708–720. [Google Scholar] [CrossRef]
- Gängler, S.; Charisiadis, P.; Seth, R.; Chatterjee, S.; Makris, K.C. Time of the day dictates the variability of biomarkers of exposure to disinfection byproducts. Environ. Int. 2018, 112, 33–40. [Google Scholar] [CrossRef]
- Haines, D.A.; Saravanabhavan, G.; Werry, K.; Khoury, C. An overview of human biomonitoring of environmental chemicals in the Canadian Health Measures Survey: 2007–2019. Int. J. Hyg. Environ. Health 2017, 220, 13–28. [Google Scholar] [CrossRef]
- Steckling, N.; Gotti, A.; Bose-O’Reilly, S.; Chapizanis, D.; Costopoulou, D.; De Vocht, F.; Garí, M.; Grimalt, J.O.; Heath, E.; Hiscock, R.; et al. Biomarkers of exposure in environment-wide association studies-Opportunities to decode the exposome using human biomonitoring data. Environ. Res. 2018, 164, 597–624. [Google Scholar] [CrossRef]
- Kalankesh, L.R.; Rodríguez-Couto, S.; Zazouli, M.A.; Moosazadeh, M.; Mousavinasab, S. Do disinfection byproducts in drinking water have an effect on human cancer risk worldwide? A meta-analysis. Environ. Qual. Manag. 2019, 29, 105–119. [Google Scholar] [CrossRef]
- Rahman, M.B.; Driscoll, T.; Cowie, C.; Armstrong, B.K. Disinfection by-products in drinking water and colorectal cancer: A meta-analysis. Int. J. Epidemiol. 2010, 39, 733–745. [Google Scholar] [CrossRef]
- Zhang, H.; Chang, S.; Wang, L.; Wang, W. Estimating and comparing the cancer risks from THMs and low-level arsenic in drinking water based on disability-adjusted life years. Water Res. 2018, 145, 83–93. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Moher, D. Updating guidance for reporting systematic reviews: Development of the PRISMA 2020 statement. J. Clin. Epidemiol. 2021, 134, 103–112. [Google Scholar] [CrossRef] [PubMed]
- Van Eck, N.J.; Waltman, L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 2010, 84, 523–538. [Google Scholar] [CrossRef]
- Van Eck, N.J.; Waltman, L. Citation-based clustering of publications using CitNetExplorer and VOSviewer. Scientometrics 2017, 111, 1053–1070. [Google Scholar] [CrossRef]
- Sun, Y.; Chen, C.; Mustieles, V.; Wang, L.; Zhang, Y.; Wang, Y.X.; Messerlian, C. Association of blood trihalomethane concentrations with risk of all-cause and cause-specific mortality in US adults: A prospective cohort study. Environ. Sci. Technol. 2021, 55, 9043–9051. [Google Scholar] [CrossRef]
- Salas, L.A.; Bustamante, M.; Gonzalez, J.R.; Gracia-Lavedan, E.; Moreno, V.; Kogevinas, M.; Villanueva, C.M. DNA methylation levels and long-term trihalomethane exposure in drinking water: An epigenome-wide association study. Epigenetics 2015, 10, 650–661. [Google Scholar] [CrossRef]
- Min, J.Y.; Min, K.B. Blood trihalomethane levels and the risk of total cancer mortality in US adults. Environ. Pollut. 2016, 212, 90–96. [Google Scholar] [CrossRef]
- Ashley, D.L.; Smith, M.M.; Silva, L.K.; Yoo, Y.M.; De Jesús, V.R.; Blount, B.C. Factors associated with exposure to trihalomethanes, NHANES 2001–2012. Environ. Sci. Technol. 2019, 54, 1066–1074. [Google Scholar] [CrossRef]
- Gao, M.; Guo, H.; Han, J.; Liu, J.; Hou, Y.; Wang, Z.; Yang, Z.; Wang, Q. Bromoform exposure is associated with non-melanoma skin cancer: Evidence from NHANES 2011–2020. Front. Public Health 2023, 11, 1191881. [Google Scholar] [CrossRef]
- Salas, L.A.; Villanueva, C.M.; Tajuddin, S.M.; Amaral, A.F.S.; Fernandez, A.F.; Moore, L.E.; Carrato, A.; Tardón, A.; Serra, C.; García-Closas, R.; et al. LINE-1 methylation in granulocyte DNA and trihalomethane exposure is associated with bladder cancer risk. Epigenetics 2014, 9, 1532–1539. [Google Scholar] [CrossRef]
- Alcolea, J.A.; Donat-Vargas, C.; Chatziioannou, A.C.; Keski-Rahkonen, P.; Robinot, N.; Molina, A.J.; Amiano, P.; Gómez-Acebo, I.; Castaño-Vinyals, G.; Maitre, L.; et al. Metabolomic Signatures of Exposure to Nitrate and Trihalomethanes in Drinking Water and Colorectal Cancer Risk in a Spanish Multicentric Study (MCC-Spain). Environ. Sci. Technol. 2023, 57, 19316–19329. [Google Scholar] [CrossRef] [PubMed]
- Stang, A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur. J. Epidemiol. 2010, 25, 603–605. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Xia, P.F.; Korevaar, T.I.M.; Mustieles, V.; Zhang, Y.; Pan, X.F.; Wang, Y.X.; Messerlian, C. Relationship between blood trihalomethane concentrations and serum thyroid function measures in US adults. Environ. Sci. Technol. 2021, 55, 14087–14094. [Google Scholar] [CrossRef] [PubMed]
- Burch, J.B.; Everson, T.M.; Seth, R.K.; Wirth, M.D.; Chatterjee, S. Trihalomethane exposure and biomonitoring for the liver injury indicator, alanine aminotransferase, in the United States population (NHANES 1999–2006). Sci. Total Environ. 2015, 521–522, 226–234. [Google Scholar] [CrossRef]
- Bonin, M.A.; Silva, L.K.; Smith, M.M.; Ashley, D.L.; Blount, B.C. Measurement of trihalomethanes and methyl tert-butyl ether in whole blood using gas chromatography with high-resolution mass spectrometry. J. Anal. Toxicol. 2005, 29, 81–89. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, Y.X.; Liu, C.; Chen, Y.J.; Lu, W.Q.; Messerlian, C. Trimester-specific blood trihalomethane and urinary haloacetic acid concentrations and adverse birth outcomes: Identifying windows of vulnerability during pregnancy. Environ. Health Perspect. 2020, 128, 107001. [Google Scholar] [CrossRef]
- Geng, Y.; Zhang, S.; Cao, Z.; Tang, J.; Cui, H.; Dong, Z.; Liu, Y.; Liu, W. The Efficacy and Safety of Roxadustat for Anemia in Hemodialysis Patients with Chronic Kidney Disease: A Meta-Analysis of Randomized Controlled Trials. Toxics 2024, 12, 846. [Google Scholar] [CrossRef]
- Villanueva, C.M.; Espinosa, A.; Gracia-Lavedan, E.; Vlaanderen, J.; Vermeulen, R.; Molina, A.J.; Amiano, P.; Gómez-Acebo, I.; Castaño-Vinyals, G.; Vineis, P.; et al. Exposure to widespread drinking water chemicals, blood inflammation markers, and colorectal cancer. Environ. Int. 2021, 157, 106873. [Google Scholar] [CrossRef]
- Bove, G.E., Jr.; Rogerson, P.A.; Vena, J.E. Case-control study of the effects of trihalomethanes on urinary bladder cancer risk. Arch. Environ. Occup. Health 2007, 62, 39–47. [Google Scholar] [CrossRef]
- Bove, G.E., Jr.; Rogerson, P.A.; Vena, J.E. Case-control study of the geographic variability of exposure to disinfectant byproducts and risk for rectal cancer. Int. J. Health Geogr. 2007, 6, 18. [Google Scholar] [CrossRef]
- Du, Y.; Wang, W.L.; He, T.; Sun, Y.X.; Lv, X.T.; Wu, Q.Y.; Hu, H.Y. Chlorinated effluent organic matter causes higher toxicity than chlorinated natural organic matter by inducing more intracellular reactive oxygen species. Sci. Total Environ. 2020, 701, 134881. [Google Scholar] [CrossRef] [PubMed]
- Nájera-Martínez, M.; Lara-Vega, I.; Avilez-Alvarado, J.; Pagadala, N.S.; Dzul-Caamal, R.; Domínguez-López, M.L.; Tuszynski, J.; Vega-López, A. The Generation of ROS by Exposure to Trihalomethanes Promotes the IκBα/NF-κB/p65 Complex Dissociation in Human Lung Fibroblast. Biomedicines 2024, 12, 2399. [Google Scholar] [CrossRef] [PubMed]
- Li, X.F.; Mitch, W.A. Drinking water disinfection byproducts (DBPs) and human health effects: Multidisciplinary challenges and opportunities. Environ. Sci. Technol. 2018, 52, 1681–1689. [Google Scholar] [CrossRef]
- De Castro Medeiros, L.; De Alencar, F.L.S.; Navoni, J.A.; De Araujo, A.L.C.; Do Amaral, V.S. Toxicological aspects of trihalomethanes: A systematic review. Environ. Sci. Pollut. Res. 2019, 26, 5316–5332. [Google Scholar] [CrossRef]
- Medgyesi, D.N.; Trabert, B.; Sampson, J.; Weyer, P.J.; Prizment, A.; Fisher, J.A.; Freeman, L.E.B.; Ward, M.H.; Jones, R.R. Drinking water disinfection byproducts, ingested nitrate, and risk of endometrial cancer in postmenopausal women. Environ. Health Perspect. 2022, 130, 057012. [Google Scholar] [CrossRef]
- Evlampidou, I.; Font-Ribera, L.; Rojas-Rueda, D.; Gracia-Lavedan, E.; Costet, N.; Pearce, N.; Vineis, P.; Jaakkola, J.J.K.; Delloye, F.; Makris, K.C.; et al. Trihalomethanes in drinking water and bladder cancer burden in the European Union. Environ. Health Perspect. 2020, 128, 017001. [Google Scholar] [CrossRef]
- Komaki, Y.; Mariñas, B.J.; Plewa, M.J. Toxicity of drinking water disinfection byproducts: Cell cycle alterations induced by the monohaloacetonitriles. Environ. Sci. Technol. 2014, 48, 11662–11669. [Google Scholar] [CrossRef]
First Author | Year | Region | Study Population | Average Age of Case Group | Conclusion | Cancer Type | |
---|---|---|---|---|---|---|---|
Total Number | Number of Cases | ||||||
Cohort Studies | |||||||
Sun, Yang [36] | 2021 | USA | 6720 | 815 | 65.2 | There was a positive dose–response relationship between blood levels of DBCM and TBM and the risk of cancer mortality. | All cancers |
Lucas A. Salas [37] | 2015 | Spain | 138 | 70 | 70.1 | Long-term exposure to THMs affects DNA methylation of tumor-related genes. | Colorectal cancer |
Cross-sectional Studies | |||||||
Jin-Young Min [38] | 2016 | USA | 933 | 19 | Unknown | THMs, especially brominated THMs, may be associated with increased cancer mortality. | All cancers |
David L. Ashley [39] | 2020 | USA | 12,171 | 942 | Unknown | Bladder cancer is associated with long-term exposure to THMs. | Bladder cancer |
Mingnan Gao [40] | 2023 | China | 5715 | 98 | 68.09 | Elevated levels of TBM in the blood were positively correlated with NMSC risk in adults aged 65 and above. | Non-melanoma skin cancer (NMSC) |
Case–Control studies | |||||||
Lucas A. Salas [41] | 2014 | Spain | 1107 | 559 | 63.3 | There was a positive correlation between LINE-1 %5mC levels and THM concentrations in the control group. | Bladder cancer |
Jose A. Alcaide [42] | 2023 | Spain | 585 | 292 | 68.5 | THMs and chloroform were significantly higher in cancer cases than in controls. | Colorectal cancer |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, M.; Xue, P.; Du, Z.; Chen, J.; Liang, X.; Li, J. Blood Trihalomethanes and Human Cancer: A Systematic Review and Meta-Analysis. Toxics 2025, 13, 60. https://doi.org/10.3390/toxics13010060
Fu M, Xue P, Du Z, Chen J, Liang X, Li J. Blood Trihalomethanes and Human Cancer: A Systematic Review and Meta-Analysis. Toxics. 2025; 13(1):60. https://doi.org/10.3390/toxics13010060
Chicago/Turabian StyleFu, Miaomiao, Pengyu Xue, Zhuorong Du, Jingsi Chen, Xiaojun Liang, and Jiafu Li. 2025. "Blood Trihalomethanes and Human Cancer: A Systematic Review and Meta-Analysis" Toxics 13, no. 1: 60. https://doi.org/10.3390/toxics13010060
APA StyleFu, M., Xue, P., Du, Z., Chen, J., Liang, X., & Li, J. (2025). Blood Trihalomethanes and Human Cancer: A Systematic Review and Meta-Analysis. Toxics, 13(1), 60. https://doi.org/10.3390/toxics13010060