Food-Induced Adverse Reactions: A Review of Physiological Food Quality Control, Mucosal Defense Mechanisms, and Gastrointestinal Physiology
Abstract
:1. Introduction
2. Food Components, Quality Control, and Sensory Evaluation Mechanisms
2.1. Nutritional Demands and Adaptive Strategies of Animals
2.2. Food Nutritional Components and Quality Regulation
2.3. Food Component Perception and Sensory Evaluation System
3. Overview of Defense Mechanisms
3.1. Defensive Mechanisms in Feeding Behavior
3.2. Defensive Mechanisms After Ingestion
3.3. Defensive Strategies Following Food Ingestion
3.4. Microbiota Modulation Mechanisms After Ingestion
3.5. Ecological Perspective on Defense Mechanisms
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Black, C.J.; Ford, A.C. Global burden of irritable bowel syndrome: Trends, predictions and risk factors. Nat. Rev. Gastroenterol. Hepatol. 2020, 17, 473–486. [Google Scholar] [CrossRef] [PubMed]
- O’Shea, K.M.; Aceves, S.S.; Dellon, E.S.; Gupta, S.K.; Spergel, J.M.; Furuta, G.T.; Rothenberg, M.E. Pathophysiology of eosinophilic esophagitis. Gastroenterology 2018, 154, 333–345. [Google Scholar] [CrossRef] [PubMed]
- Lebwohl, B.; Rubio-Tapia, A. Epidemiology, presentation, and diagnosis of celiac disease. Gastroenterology 2021, 160, 63–75. [Google Scholar] [CrossRef] [PubMed]
- Lomer, M.C. The aetiology, diagnosis, mechanisms and clinical evidence for food intolerance. Aliment. Pharmacol. Ther. 2015, 41, 262–275. [Google Scholar] [CrossRef]
- Park, S.J.; Son, W.S.; Lee, B.J. Structural overview of toxin-antitoxin systems in infectious bacteria: A target for developing antimicrobial agents. Biochim. Biophys. Acta (BBA)-Proteins Proteom. 2013, 1834, 1155–1167. [Google Scholar] [CrossRef]
- Petersen, C.; Round, J.L. Defining dysbiosis and its influence on host immunity and disease. Cell. Microbiol. 2014, 16, 1024–1033. [Google Scholar] [CrossRef]
- Capobianco, I.; Di Vincenzo, F.; Puca, P.; Becherucci, G.; Mentella, M.C.; Petito, V.; Scaldaferri, F. Adverse Food Reactions in Inflammatory Bowel Disease. State of the Art and Future Perspectives. Nutrients 2024, 16, 351. [Google Scholar] [CrossRef]
- Strilbytska, O.; Strutynska, T.; Semaniuk, U.; Burdyliyk, N.; Bubalo, V.; Lushchak, O. Dietary sucrose determines stress resistance, oxidative damages, and antioxidant defense system in Drosophila. Scientifica 2022, 2022, 7262342. [Google Scholar] [CrossRef]
- Yegorov, B.; Yegorova, A.; Yeryganov, K. Microbiomes of human, livestock animal gastrointestinal tracts and of food products and compound feeds: Connections and impacts. Part 1. Food Sci. Technol. 2023, 17, 15–26. [Google Scholar] [CrossRef]
- Sánchez, B.; Delgado, S.; Blanco-Míguez, A.; Lourenço, A.; Gueimonde, M.; Margolles, A. Probiotics, gut microbiota, and their influence on host health and disease. Mol. Nutr. Food Res. 2017, 61, 1600240. [Google Scholar] [CrossRef]
- Bruijnzeel-Koomen, C.A.; Ortolani, C.; Aas, K.; Bindslev-Jensen, C.; Björkstein, B.; Moneret-Vautrin, D.; Wüthrich, B. Adverse reactions to food. Allergy 1995, 50, 623–635. [Google Scholar] [CrossRef] [PubMed]
- Barbehenn, R. Physiological, Ecology: How Animals Process Energy, Nutrients, and Toxins. Q. Rev. Biol. 2008, 83, 120. [Google Scholar]
- Simpson, S.J.; Raubenheimer, D. The nature of nutrition: A unifying framework. Aust. J. Zool. 2012, 59, 350–368. [Google Scholar] [CrossRef]
- Shipley, L.A.; Forbey, J.S.; Moore, B.D. Revisiting the dietary niche: When is a mammalian herbivore a specialist? Integr. Comp. Biol. 2009, 49, 274–290. [Google Scholar] [CrossRef]
- Simpson, S.J.; Raubenheimer, D. The Nature of Nutrition: A Unifying Framework from Animal Adaptation to Human Obesity; Princeton University Press: Princeton, NJ, USA, 2012. [Google Scholar]
- Barabási, A.L.; Menichetti, G.; Loscalzo, J. The unmapped chemical complexity of our diet. Nat. Foods 2020, 1, 33–37. [Google Scholar] [CrossRef]
- Florsheim, E.B.; Sullivan, Z.A.; Khoury-Hanold, W.; Medzhitov, R. Food allergy as a biological food quality control system. Cell 2021, 184, 1440–1454. [Google Scholar] [CrossRef]
- Raubenheimer, D.; Lee, K.P.; Simpson, S.J. Does Bertrand’s rule apply to macronutrients? Proc. R. Soc. B Biol. Sci. 2005, 272, 2429–2434. [Google Scholar]
- Capuano, E. The behavior of dietary fiber in the gastrointestinal tract determines its physiological effect. Crit. Rev. Food Sci. Nutr. 2017, 57, 3543–3564. [Google Scholar]
- Gareau, M.G.; Sherman, P.M.; Walker, W.A. Probiotics and the gut microbiota in intestinal health and disease. Nat. Rev. Gastroenterol. Hepatol. 2010, 7, 503–514. [Google Scholar]
- Orloff, N.C.; Hormes, J.M. Pickles and ice cream! Food cravings in pregnancy: Hypotheses, preliminary evidence, and directions for future research. Front. Psychol. 2014, 5, 111321. [Google Scholar] [CrossRef]
- Villalba, J.J.; Provenza, F.D.; Bryant, J.P. Consequences of the interaction between nutrients and plant secondary metabolites on herbivore selectivity: Benefits or detriments for plants? Oikos 2002, 97, 282–292. [Google Scholar] [CrossRef]
- Friedman, L.L.; Shibko, S.I. Nonnutrient components of the diet-ScienceDirect. Fish Nutr. 1972, 4, 181–254. [Google Scholar]
- Alamgir, A.N.; Alamgir, A.N. Phytoconstituents-active and inert constituents, metabolic pathways, chemistry and application of phytoconstituents, primary metabolic products, and bioactive compounds of primary metabolic origin. In Therapeutic Use of Medicinal Plants and Their Extracts: Volume 2: Phytochem Bio Compounds; Springer: Cham, Switzerland, 2018; pp. 25–164. [Google Scholar]
- Lean, M.E. Principles of human nutrition. Medicine 2019, 47, 140–144. [Google Scholar] [CrossRef]
- Korn, L.L.; Kutyavin, V.I.; Bachtel, N.D.; Medzhitov, R. Adverse Food Reactions: Physiological and Ecological Perspectives. Annu. Rev. Nutr. 2024, 9, 44. [Google Scholar] [CrossRef] [PubMed]
- Schilter, B.; Constable, A.; Perrin, I. Naturally occurring toxicants of plant origin. In Food Safety Management; Academic Press: Cambridge, MA, USA, 2014; pp. 45–57. [Google Scholar]
- Malik, D.; Narayanasamy, N.; Pratyusha, V.; Thakur, J.; Sinha, N. Understanding Nutrition. In Textbook of Nutritional Biochemistry; Springer: Singapore, 2023; pp. 43–64. [Google Scholar]
- Butcher, S.; Hitchens, K.; Vijayan, D.; St John, J.; Ashman, R.; Wells, C. Innate Immune Recognition of Candida Albicans by the c-Type Lectin, Mincle; Griffith University: Brisbane, Australia, 2008. [Google Scholar]
- Behrens, M.; Meyerhof, W. Bitter taste receptor research comes of age: From characterization to modulation of TAS2Rs. Semin. Cell Dev. Biol. 2013, 24, 215–221. [Google Scholar] [CrossRef] [PubMed]
- Diepeveen, J.; Moerdijk-Poortvliet, T.C.; van der Leij, F.R. Molecular insights into human taste perception and umami tastants: A review. J. Food Sci. 2022, 87, 1449–1465. [Google Scholar] [CrossRef]
- Iwasaki, A.; Medzhitov, R. Control of adaptive immunity by the innate immune system. Nat. Immunol. 2015, 16, 343–353. [Google Scholar] [CrossRef]
- Palm, N.W.; Rosenstein, R.K.; Medzhitov, R. Allergic host defences. Nature 2012, 484, 465–472. [Google Scholar]
- Breslin, P.A. An evolutionary perspective on food and human taste. Curr. Biol. 2013, 23, R409–R418. [Google Scholar]
- Bertheloot, D.; Latz, E. HMGB1, IL-1α, IL-33 and S100 proteins: Dual-function alarmins. Cell. Mol. Immunol. 2017, 14, 43–64. [Google Scholar] [CrossRef]
- Mithöfer, A.; Boland, W. Plant defense against herbivores: Chemical aspects. Annu. Rev. Plant Biol. 2012, 63, 431–450. [Google Scholar] [CrossRef] [PubMed]
- Bell, E.A. Nonprotein amino acids of plants: Significance in medicine, nutrition, and agriculture. J. Agric. Food Chem. 2003, 51, 2854–2865. [Google Scholar] [CrossRef] [PubMed]
- Lawless, H.T.; Heymann, H. Sensory Evaluation of Food: Principles and Practices; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2010; p. 27. [Google Scholar]
- Dzung, N.H.; Dzuan, L.; Tu, H.D. The role of sensory evaluation in food quality control, food research and development: A case of coffee study. In Proceedings of the 8th Asean Food Conference, Hanoi, Vietnam, 8–11 October 2003; pp. 862–866. [Google Scholar]
- Walker, J.A.; McKenzie, A.N. TH2 cell development and function. Nat. Rev. Immunol. 2018, 18, 121–133. [Google Scholar] [CrossRef] [PubMed]
- Berin, M.C.; Shreffler, W.G. Mechanisms underlying induction of tolerance to foods. Immunol. Allergy Clin. 2016, 36, 87–102. [Google Scholar]
- Torgerson, T.R.; Linane, A.; Moes, N.; Anover, S.; Mateo, V.; Rieux-Laucat, F.; Hermine, O.; Vijay, S.; Gambineri, E.; Cerf-Bensussan, N.; et al. Severe food allergy as a variant of IPEX syndrome caused by a deletion in a noncoding region of the FOXP3 gene. Gastroenterology 2007, 132, 1705–1717. [Google Scholar] [CrossRef]
- Knoop, K.A.; Newberry, R.D. Goblet cells: Multifaceted players in immunity at mucosal surfaces. Mucosal Immunol. 2018, 11, 1551–1557. [Google Scholar] [CrossRef]
- Medzhitov, R.; Schneider, D.S.; Soares, M.P. Disease tolerance as a defense strategy. Science 2012, 335, 936–941. [Google Scholar] [CrossRef]
- Nish, S.; Medzhitov, R. Host defense pathways: Role of redundancy and compensation in infectious disease phenotypes. Immunity 2011, 34, 629–636. [Google Scholar] [CrossRef]
- Shilovsky, G.A. Lability of the Nrf2/Keap/ARE cell defense system in different models of cell aging and age-related pathologies. Biochemistry 2022, 87, 70–85. [Google Scholar] [CrossRef]
- Reilly, S. (Ed.) Food Neophobia: Behavioral and Biological Influences; Woodhead Publishing: Sawston, UK, 2018; pp. 193–217. [Google Scholar]
- Dewan, A.; Pacifico, R.; Zhan, R.; Rinberg, D.; Bozza, T. Non-redundant coding of aversive odours in the main olfactory pathway. Nature 2013, 497, 486–489. [Google Scholar] [CrossRef]
- Hussain, A.; Saraiva, L.R.; Ferrero, D.M.; Ahuja, G.; Krishna, V.S.; Liberles, S.D.; Korsching, S.I. High-affinity olfactory receptor for the death-associated odor cadaverine. Proc. Natl. Acad. Sci. USA 2013, 110, 19579–19584. [Google Scholar] [CrossRef] [PubMed]
- Chandrashekar, J.; Hoon, M.A.; Ryba, N.J.; Zuker, C.S. The receptors and cells for mammalian taste. Nature 2006, 444, 288–294. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Hoon, M.A.; Chandrashekar, J.; Mueller, K.L.; Cook, B.; Wu, D.; Zuker, C.S.; Ryba, N.J. Coding of sweet, bitter, and umami tastes: Different receptor cells sharing similar signaling pathways. Cell 2003, 112, 293–301. [Google Scholar] [CrossRef]
- Chandrashekar, J.; Kuhn, C.; Oka, Y.; Yarmolinsky, D.A.; Hummler, E.; Ryba, N.J.; Zuker, C.S. The cells and peripheral representation of sodium taste in mice. Nature 2010, 464, 297–301. [Google Scholar] [CrossRef]
- Zhao, G.Q.; Zhang, Y.; Hoon, M.A.; Chandrashekar, J.; Erlenbach, I.; Ryba, N.J.; Zuker, C.S. The receptors for mammalian sweet and umami taste. Cell 2003, 115, 255–266. [Google Scholar] [CrossRef]
- Mueller, K.L.; Hoon, M.A.; Erlenbach, I.; Chandrashekar, J.; Zuker, C.S.; Ryba, N.J. The receptors and coding logic for bitter taste. Nature 2005, 434, 225–229. [Google Scholar] [CrossRef]
- Chandrashekar, J.; Mueller, K.L.; Hoon, M.A.; Adler, E.; Feng, L.; Guo, W.; Zuker, C.S.; Ryba, N.J. T2Rs function as bitter taste receptors. Cell 2000, 100, 703–711. [Google Scholar] [CrossRef]
- Behrens, M.; Brockhoff, A.; Kuhn, C.; Bufe, B.; Winnig, M.; Meyerhof, W. The human taste receptor hTAS2R14 responds to a variety of different bitter compounds. Biochem. Biophys. Res. Commun. 2004, 319, 479–485. [Google Scholar] [CrossRef]
- Bellono, N.W.; Bayrer, J.R.; Leitch, D.B.; Castro, J.; Zhang, C.; O’Donnell, T.A.; Brierley, S.M.; Ingraham, H.A.; Julius, D. Enterochromaffin cells are gut chemosensors that couple to sensory neural pathways. Cell 2017, 170, 185–198. [Google Scholar] [CrossRef]
- Chen, Z.; Luo, J.; Li, J.; Kim, G.; Stewart, A.; Urban, J.F.; Huang, Y.; Chen, S.; Wu, L.G.; Chesler, A.; et al. Interleukin-33 promotes serotonin release from enterochromaffin cells for intestinal homeostasis. Immunity 2021, 54, 151–163. [Google Scholar] [CrossRef]
- Florsheim, E.B.; Bachtel, N.D.; Cullen, J.L.; Lima, B.G.; Godazgar, M.; Carvalho, F.; Chatain, C.P.; Zimmer, M.R.; Zhang, C.; Gautier, G.; et al. Immune sensing of food allergens promotes avoidance behaviour. Nature 2023, 620, 643–650. [Google Scholar] [CrossRef] [PubMed]
- Fenu, S.; Bassareo, V.; Di Chiara, G. A role for dopamine D1 receptors of the nucleus accumbens shell in conditioned taste aversion learning. J. Neurosci. 2001, 21, 6897–6904. [Google Scholar] [CrossRef] [PubMed]
- Gaston, K.E. Brain mechanisms of conditioned taste aversion learning: A review of the literature. Physiol. Psychol. 1978, 6, 340–353. [Google Scholar] [CrossRef]
- Power, M.L.; Schulkin, J. Anticipatory Physiological Regulation in Feeding Biology. In Handbook of Behavior, Food and Nutrition; Springer: New York, NY, USA, 2011; Volume 31, pp. 829–844. [Google Scholar]
- Tennant, S.M.; Hartland, E.L.; Phumoonna, T.; Lyras, D.; Rood, J.I.; Robins-Browne, R.M.; van Driel, I.R. Influence of gastric acid on susceptibility to infection with ingested bacterial pathogens. Infect. Immun. 2008, 76, 639–645. [Google Scholar] [CrossRef]
- Zhang, T.; Perkins, M.H.; Chang, H.; Han, W.; de Araujo, I.E. An inter-organ neural circuit for appetite suppression. Cell 2022, 185, 2478–2494. [Google Scholar] [CrossRef]
- Shen, L.; Weber, C.R.; Raleigh, D.R.; Yu, D.; Turner, J.R. Tight junction pore and leak pathways: A dynamic duo. Annu. Rev. Physiol. 2011, 73, 283–309. [Google Scholar] [CrossRef]
- Von Moltke, J.; Ji, M.; Liang, H.E.; Locksley, R.M. Tuft-cell-derived IL-25 regulates an intestinal ILC2–epithelial response circuit. Nature 2016, 529, 221–225. [Google Scholar] [CrossRef]
- Biton, M.; Haber, A.L.; Beyaz, S.; Rogel, N.; Smillie, C.; Shekhar, K.; Schnell, A.; Chen, Z.; Wu, C.; Ordovas-Montanes, J.; et al. T helper cells modulate intestinal stem cell renewal and differentiation. bioRxiv 2017, 14, 217133. [Google Scholar] [CrossRef]
- Amasheh, M.; Andres, S.; Amasheh, S.; Fromm, M.; Schulzke, J.D. Barrier effects of nutritional factors. Ann. N. Y. Acad. Sci. 2009, 1165, 267–273. [Google Scholar] [CrossRef]
- Smith, J.L. The role of gastric acid in preventing foodborne disease and how bacteria overcome acid conditions. J. Food Prot. 2003, 66, 1292–1303. [Google Scholar] [CrossRef]
- Timsit, Y.E.; Negishi, M. CAR and PXR: The xenobiotic-sensing receptors. Steroids 2007, 72, 231–246. [Google Scholar] [CrossRef]
- Xu, J.; Wang, W.; Yang, X.; Xiong, A.; Yang, L.; Wang, Z. Pyrrolizidine alkaloids: An update on their metabolism and hepatotoxicity mechanism. Liver Res. 2019, 3, 176–184. [Google Scholar] [CrossRef]
- Kroll, T.; Prescher, M.; Smits, S.H.; Schmitt, L. Structure and function of hepatobiliary ATP binding cassette transporters. Chem. Rev. 2020, 121, 5240–5288. [Google Scholar] [CrossRef] [PubMed]
- Hucklebridge, F. Behavioral conditioning of the immune system. Int. Rev. Neurobiol. 2002, 52, 325–351. [Google Scholar]
- Gartrell, B.D.; Roe, W.D. The Effects of Chocolate and Chocolate by-product Consumption on Wild and Domestic Animals. In Chocolate in Health and Nutrition; Humana Press: Totowa, NJ, USA, 2013; pp. 135–141. [Google Scholar]
- Eberhart, D.C.; Gemzik, B.; Halvorson, M.R.; Parkinson, A. Species differences in the toxicity and cytochrome P450 IIIA-dependent metabolism of digitoxin. Mol. Pharmacol. 1991, 40, 859–867. [Google Scholar] [PubMed]
- Wöll, S.; Kim, S.H.; Greten, H.J.; Efferth, T. Animal plant warfare and secondary metabolite evolution. Nat. Prod. Bioprospect. 2013, 3, 1–7. [Google Scholar] [CrossRef]
- Jutel, M.; Akdis, M.; Akdis, C.A. Histamine, histamine receptors and their role in immune pathology. Clin. Exp. Allergy 2009, 39, 1786–1800. [Google Scholar] [CrossRef]
- Heutinck, K.M.; ten Berge, I.J.; Hack, C.E.; Hamann, J.; Rowshani, A.T. Serine proteases of the human immune system in health and disease. Mol. Immunol. 2010, 47, 1943–1955. [Google Scholar] [CrossRef]
- Sekirov, I.; Russell, S.L.; Antunes, L.C.; Finlay, B.B. Gut microbiota in health and disease. Physiol. Rev. 2010, 90, 859–904. [Google Scholar] [CrossRef]
- Slavin, J.J. Fiber and Prebiotics: Mechanisms and Health Benefits. Nutrients 2013, 5, 1417–1435. [Google Scholar] [CrossRef]
- Li, H.; He, J.; Jia, W. The influence of gut microbiota on drug metabolism and toxicity. Expert Opin. Drug Metab. Toxicol. 2016, 12, 31–40. [Google Scholar] [CrossRef] [PubMed]
- Martin-Gallausiaux, C.; Marinelli, L.; Blottière, H.M.; Larraufie, P.; Lapaque, N. SCFA: Mechanisms and functional importance in the gut. Proc. Nutr. Soc. 2021, 80, 37–49. [Google Scholar] [CrossRef] [PubMed]
- Hubbard, T.D.; Murray, I.A.; Indole, G.P. Endogenous and Dietary Routes to Ah Receptor Activation. Drug Metab. Dispos. 2015, 43, 1522–1535. [Google Scholar] [CrossRef] [PubMed]
- Misheva, M.; Ilott, N.E.; McCullagh, J.S. Recent advances and future directions in microbiome metabolomics. Curr. Opin. Endocr. Metab. Res. 2021, 20, 100283. [Google Scholar] [CrossRef]
- Marschner, C.; Krockenberger, M.B.; Higgins, D.P.; Mitchell, C.; Moore, B.D. Ingestion and absorption of eucalypt monoterpenes in the specialist feeder, the koala (Phascolarctos cinereus). J. Chem. Ecol. 2019, 45, 798–807. [Google Scholar] [CrossRef]
- Skypala, I. Adverse food reactions-an emerging issue for adults. J. Am. Diet. Assoc. 2011, 111, 1877–1891. [Google Scholar] [CrossRef]
- Pontzer, H.; Wood, B.M. Effects of evolution, ecology, and economy on human diet: Insights from hunter-gatherers and other small-scale societies. Annu. Rev. Nutr. 2021, 41, 363–385. [Google Scholar] [CrossRef]
- Barker, G. The Agricultural Revolution in Prehistory: Why Did Foragers Become Farmers? Oxford University Press: Oxford, UK, 2006. [Google Scholar]
- Eaton, S.B.; Eaton III, S.B.; Konner, M.J.; Shostak, M. An evolutionary perspective enhances understanding of human nutritional requirements. J. Nutr. 1996, 126, 1732–1740. [Google Scholar] [CrossRef]
- Zamaratskaia, G.; Gerhardt, K.; Wendin, K. Biochemical characteristics and potential applications of ancient cereals-An underexploited opportunity for sustainable production and consumption. Trends Food Sci. Technol. 2021, 107, 114–123. [Google Scholar] [CrossRef]
- Carocho, M.; Barreiro, M.F.; Morales, P.; Ferreira, I.C. Adding molecules to food, pros and cons: A review on synthetic and natural food additives. Compr. Rev. Food Sci. Food Saf. 2014, 13, 377–399. [Google Scholar] [CrossRef]
Foods | Samples | Mechanisms of Action | References |
---|---|---|---|
The disadvantages of non-nutrient secondary metabolites (blocking the absorption of nutrients) | [22,23,24,25,26,27,28] | ||
Wheat, maize, rice, tomatoes, oats, barley | α-Amylase inhibitors, trypsin inhibitors, pancreatic lipase inhibitors, α-glucosidase inhibitors, cellulase inhibitors | Affects nutrient absorption during digestion mainly by interfering with the catalytic activity of enzymes. | |
Beans, seeds, nuts, whole grains, leafy greens, vegetables | Tannins, phytic acid, cyanogenic glycosides, oxalates | Can bind with nutrients to form insoluble complexes, leading to the precipitation of nutrients. | |
Legumes (e.g., pisum sativum, glycine max, etc.), pseudo-legumes (e.g., chickpeas, millet, etc.) | Lectins (e.g., ConA, PHA), toxins, non-starch polysaccharides | Disrupt epithelial function, especially in gut health. | |
The advantages of nutritional components (enhance the body’s functions) | |||
Wheat, maize, rice, tomatoes, oats, barley, beans, seeds, nuts, whole grains, leafy greens, vegetables, legumes, pseudo-legumes | Dietary fiber: Improves gut health and prevents constipation. Protein: Provides essential amino acids, aiding muscle repair and immune function. Essential fatty acids: Support brain and heart health; Starch: Provides sustained energy. Vitamins (A, C, E, K, B group): Enhance immunity, act as antioxidants, and support bone health and energy metabolism. Minerals (calcium, iron, magnesium, potassium, zinc): Strengthen bones, promote blood cell production, and regulate nerve and heart function. Isoflavones: Balance hormones; Phytates: Antioxidant properties may reduce cancer risk. Phenolic compounds: Anti-inflammatory and antioxidant effects. Insoluble fiber: Promotes bowel movement. | ||
The disadvantages of non-nutrient secondary metabolites (impaired cell function or dysregulation of physiological processes) | |||
Legumes (e.g., soybeans, peas, lentils, fava beans) | Saponins | Disruption of cell membranes, leading to gut cell damage, increased intestinal permeability, and potential digestive issues and immune responses. | |
Alliums (e.g., garlic, onion, leeks) | Sulfur compounds (e.g., allicin) | Disruption of cell membranes and interference with enzyme activity, potentially irritating the gastrointestinal tract and affecting digestive system function. | |
Cruciferous Vegetables (e.g., broccoli, cabbage, cauliflower, mustard greens) | Glucosinolates (e.g., sinigrin, glucoraphanin) | Damage to biomolecules such as proteins and DNA, possibly causing gastrointestinal discomfort and, with long-term high intake, affecting thyroid function. | |
Spices and herbs | Monoterpenes (e.g., limonene, menthol) | Unknown mechanism; may irritate the digestive tract, potentially disrupting gut health and metabolism. | |
Bitter almonds (e.g., bitter almonds, certain nuts like almonds, walnuts) | Cyanogenic glucosides (e.g., amygdalin, prunasin) | Release of cyanide, inhibiting mitochondrial respiration, leading to energy metabolism disruption, potentially causing poisoning symptoms such as nausea, headaches, and difficulty breathing. | |
Sorghum, cassava, lima beans | Cyanogenic glucosides (e.g., linamarin) | Release of cyanide, inhibiting mitochondrial respiration, leading to mitochondrial dysfunction, poisoning, and respiratory and neurological symptoms. | |
Cacao, coffee, tea | Alkaloids (e.g., caffeine, theobromine, theophylline) | Interference with signaling pathways in the central nervous system, leading to stimulation, insomnia, increased heart rate, and anxiety. | |
Legumes (e.g., soybeans, peas, fava beans, chickpeas) | Nonprotein amino acids (e.g., canavanine) | Interference with protein synthesis, leading to immune system dysfunction and potentially autoimmune responses or cellular damage. | |
Maize, wheat, rye | Benzoxazinoids (e.g., dimboa, hdmbboa) | Unknown mechanism; may negatively impact gut microbiota, leading to digestive discomfort or increased intestinal permeability. | |
Certain fruits (e.g., plums, cherries, grapes) | Cyanogenic glucosides (e.g., amygdalin, cherry pits) | Release of cyanide, leading to mitochondrial respiration inhibition, respiratory distress, and neurological symptoms. | |
Pumpkin seeds, tomato seeds | Alkaloids (e.g., solanine) | Disruption of cell membrane integrity, leading to gastrointestinal irritation and potentially causing nausea, vomiting, or diarrhea. | |
Nightshade plants (e.g., potatoes, eggplants, peppers) | Alkaloids (e.g., solanine, tropane alkaloids) | Interference with the nervous system, causing symptoms such as headaches, nausea, vomiting, and, in severe cases, neurological effects. | |
The advantages of nutrients (improvement of body immunity and function) | |||
Legumes, alliums, cruciferous vegetables, spices and herbs, bitter almonds, sorghum, cassava, lima beans, cacao, coffee, tea, legumes, maize, wheat, rye, certain fruits, pumpkin seeds, tomato seeds, nightshade plants | Plant protein: Legumes and maize support muscle growth and repair. Sulfur compounds: Allium plants have anti-inflammatory and antibacterial effects. Carotenoids: Lycopene in tomatoes protects eyes with antioxidant properties. Flavonoids: Coffee and tea flavonoids promote antioxidant and cardiovascular health. Alkaloids: Cocoa alkaloids improve mood and cognition. Tannins: Coffee and tea tannins aid antioxidant activity and digestion. Dietary Fiber: Maize, almonds, and cassava support gut health. Polyphenols: Tea and coffee polyphenols reduce aging and oxidative stress. Magnesium: Cassava and legumes support nerve and muscle function. Folic Acid: Legumes and leafy greens support cell repair. Amino Acids: Legumes and nuts aid tissue repair and immune function. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, D.; Liu, C.; Zhu, H.; Cheng, Y.; Huo, X.; Guo, Y.; Qian, H. Food-Induced Adverse Reactions: A Review of Physiological Food Quality Control, Mucosal Defense Mechanisms, and Gastrointestinal Physiology. Toxics 2025, 13, 61. https://doi.org/10.3390/toxics13010061
Guo D, Liu C, Zhu H, Cheng Y, Huo X, Guo Y, Qian H. Food-Induced Adverse Reactions: A Review of Physiological Food Quality Control, Mucosal Defense Mechanisms, and Gastrointestinal Physiology. Toxics. 2025; 13(1):61. https://doi.org/10.3390/toxics13010061
Chicago/Turabian StyleGuo, Dongdong, Chang Liu, Hongkang Zhu, Yuliang Cheng, Xiang Huo, Yahui Guo, and He Qian. 2025. "Food-Induced Adverse Reactions: A Review of Physiological Food Quality Control, Mucosal Defense Mechanisms, and Gastrointestinal Physiology" Toxics 13, no. 1: 61. https://doi.org/10.3390/toxics13010061
APA StyleGuo, D., Liu, C., Zhu, H., Cheng, Y., Huo, X., Guo, Y., & Qian, H. (2025). Food-Induced Adverse Reactions: A Review of Physiological Food Quality Control, Mucosal Defense Mechanisms, and Gastrointestinal Physiology. Toxics, 13(1), 61. https://doi.org/10.3390/toxics13010061