Impact of Acid-Base Status on Mortality in Patients with Acute Pesticide Poisoning
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population and Design
2.2. Covariates
2.3. Statistical Analysis and End Point
3. Results
3.1. Study Population
3.2. Effect of Acid Base Markers on Mortality
3.3. PCA Shows a Formative Construct of Physicochemical Acid-Base Status
3.4. Impact of Principal Components on Mortality
3.5. Differences in Principal Components between Pesticides Categories
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, N.; Jiang, Q.; Han, L.; Zhang, H.; Zhu, B.; Liu, X. Epidemiological characteristics of pesticide poisoning in Jiangsu Province, China, from 2007 to 2016. Sci. Rep. 2019, 9, 8604. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mew, E.J.; Padmanathan, P.; Konradsen, F.; Eddleston, M.; Chang, S.S.; Phillips, M.R.; Gunnell, D. The global burden of fatal self-poisoning with pesticides 2006-15: Systematic review. J. Affect. Disord. 2017, 219, 93–104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, S.H.; Park, S.; Lee, J.W.; Hwang, I.W.; Moon, H.J.; Kim, K.H.; Park, S.Y.; Gil, H.W.; Hong, S.Y. The Anion Gap is a Predictive Clinical Marker for Death in Patients with Acute Pesticide Intoxication. J. Korean Med. Sci. 2016, 31, 1150–1159. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Feng, S.Y.; Li, Y. Serum anion gap at admission as a predictor of the survival of patients with paraquat poisoning: A retrospective analysis. Medicine 2020, 99, e21351. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.B.; Kang, C.; Kim, D.H.; Kim, T.; Lee, S.H.; Jeong, J.H.; Kim, S.C.; Rhee, D.Y.; Lim, D. Base deficit is a predictor of mortality in organophosphate insecticide poisoning. Hum. Exp. Toxicol. 2018, 37, 118–124. [Google Scholar] [CrossRef]
- Cheng, B.; Li, D.; Gong, Y.; Ying, B.; Wang, B. Serum Anion Gap Predicts All-Cause Mortality in Critically Ill Patients with Acute Kidney Injury: Analysis of the MIMIC-III Database. Dis. Markers 2020, 2020, 6501272. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.B.; Kim, D.H.; Kim, T.; Lee, S.H.; Jeong, J.H.; Kim, S.C.; Park, Y.J.; Lim, D.; Kang, C. Anion gap and base deficit are predictors of mortality in acute pesticide poisoning. Hum. Exp. Toxicol. 2019, 38, 185–192. [Google Scholar] [CrossRef]
- Lee, J.W.; Hwang, I.W.; Kim, J.W.; Moon, H.J.; Kim, K.H.; Park, S.; Gil, H.W.; Hong, S.Y. Common Pesticides Used in Suicide Attempts Following the 2012 Paraquat Ban in Korea. J. Korean Med. Sci. 2015, 30, 1517–1521. [Google Scholar] [CrossRef] [Green Version]
- Berend, K.; de Vries, A.P.; Gans, R.O. Physiological approach to assessment of acid-base disturbances. N. Engl. J. Med. 2014, 371, 1434–1445. [Google Scholar] [CrossRef] [Green Version]
- Berend, K. Diagnostic Use of Base Excess in Acid-Base Disorders. N. Engl. J. Med. 2018, 378, 1419–1428. [Google Scholar] [CrossRef]
- Adrogue, H.J.; Madias, N.E. Assessing Acid-Base Status: Physiologic Versus Physicochemical Approach. Am. J. Kidney Dis. 2016, 68, 793–802. [Google Scholar] [CrossRef] [PubMed]
- Ho, K.M.; Lan, N.S.; Williams, T.A.; Harahsheh, Y.; Chapman, A.R.; Dobb, G.J.; Magder, S. A comparison of prognostic significance of strong ion gap (SIG) with other acid-base markers in the critically ill: A cohort study. J. Intensive Care 2016, 4, 43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rehm, M.; Conzen, P.F.; Peter, K.; Finsterer, U. The Stewart model. “Modern” approach to the interpretation of the acid-base metabolism. Anaesthesist 2004, 53, 347–357. [Google Scholar] [CrossRef] [PubMed]
- Connor, K.A.; Conn, K.; Kaufman, D.C.; Haas, C.E. Acid-base effects of continuous infusion furosemide in clinically stable surgical ICU patients: An analysis based on the Stewart model. Clin. Exp. Nephrol. 2020, 24, 541–546. [Google Scholar] [CrossRef] [PubMed]
- Kellum, J.A.; Kramer, D.J.; Pinsky, M.R. Strong ion gap: A methodology for exploring unexplained anions. J. Crit. Care 1995, 10, 51–55. [Google Scholar] [CrossRef]
- Rastegar, A. Clinical utility of Stewart’s method in diagnosis and management of acid-base disorders. Clin. J. Am. Soc. Nephrol. 2009, 4, 1267–1274. [Google Scholar] [CrossRef] [Green Version]
- Dubin, A.; Menises, M.M.; Masevicius, F.D.; Moseinco, M.C.; Kutscherauer, D.O.; Ventrice, E.; Laffaire, E.; Estenssoro, E. Comparison of three different methods of evaluation of metabolic acid-base disorders. Crit. Care Med. 2007, 35, 1264–1270. [Google Scholar] [CrossRef]
- Cusack, R.J.; Rhodes, A.; Lochhead, P.; Jordan, B.; Perry, S.; Ball, J.A.; Grounds, R.M.; Bennett, E.D. The strong ion gap does not have prognostic value in critically ill patients in a mixed medical/surgical adult ICU. Intensive Care Med. 2002, 28, 864–869. [Google Scholar] [CrossRef]
- Jolliffe, I.T.; Cadima, J. Principal component analysis: A review and recent developments. Philos. Trans. A Math. Phys. Eng. Sci. 2016, 374, 20150202. [Google Scholar] [CrossRef]
- Richardson, M. Principal Component Analysis. Available online: http://http://www.dsc.ufcg.edu.br/~hmg/disciplinas/posgraduacao/rn-copin-2014.3/material/SignalProcPCA.pdf (accessed on 1 January 2021).
- Cheng, K.; Bassil, R.; Carandang, R.; Hall, W.; Muehlschlegel, S. The Estimated Verbal GCS Subscore in Intubated Traumatic Brain Injury Patients: Is it Really Better? J. Neurotrauma 2017, 34, 1603–1609. [Google Scholar] [CrossRef] [Green Version]
- Knaus, W.A.; Draper, E.A.; Wagner, D.P.; Zimmerman, J.E. APACHE II: A severity of disease classification system. Crit. Care Med. 1985, 13, 818–829. [Google Scholar] [CrossRef] [PubMed]
- Abdi, H.; Williams, L.J. Principal component analysis. Wiley Interdiscip. Rev. Comput. Stat. 2010, 2, 433–459. [Google Scholar] [CrossRef]
- Kellum, J.A. Clinical review: Reunification of acid-base physiology. Crit. Care 2005, 9, 500–507. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matousek, S.; Handy, J.; Rees, S.E. Acid-base chemistry of plasma: Consolidation of the traditional and modern approaches from a mathematical and clinical perspective. J. Clin. Monit. Comput. 2011, 25, 57–70. [Google Scholar] [CrossRef]
- Kitterer, D.; Schwab, M.; Alscher, M.D.; Braun, N.; Latus, J. Drug-induced acid-base disorders. Pediatr. Nephrol. 2015, 30, 1407–1423. [Google Scholar] [CrossRef]
- Antonogiannaki, E.M.; Mitrouska, I.; Amargianitakis, V.; Georgopoulos, D. Evaluation of acid-base status in patients admitted to ED-physicochemical vs traditional approaches. Am. J. Emerg. Med. 2015, 33, 378–382. [Google Scholar] [CrossRef]
- Zaloga, G.P. Hypocalcemia in critically ill patients. Crit. Care Med. 1992, 20, 251–262. [Google Scholar] [CrossRef]
- Kelly, A.; Levine, M.A. Hypocalcemia in the critically ill patient. J. Intensive Care Med. 2013, 28, 166–177. [Google Scholar] [CrossRef]
Variables | Survivors (n = 721) | Non-Survivors (n = 76) | p Value |
---|---|---|---|
Age, year | 61 (50–75) | 74 (63–81) | <0.001 |
Male, n (%) | 448 (62.1) | 54 (71.1) | 0.160 |
Mean arterial pressure, mmHg | 97 (87–107) | 89 (63–100) | <0.001 |
Heart rate, beats/min | 88 (77–98) | 96 (79–111) | 0.001 |
Respiratory rates, count/min | 20 (18–20) | 20 (18–22) | 0.774 |
Body temperature, °C | 36.4 (36.0–36.9) | 36.0 (35.1–36.5) | <0.001 |
Body mass index, kg/m2 | 22.5 (20.3–24.8) | 22.0 (20.2–24.2) | 0.303 |
Current smoking, n (%) | 258 (35.8) | 15 (20.5) | 0.013 |
Alcohol, n (%) | 351 (48.7) | 23 (31.5) | 0.007 |
Hypertension, n (%) | 264 (36.6) | 30 (40.0) | 0.651 |
Diabetes, n (%) | 130 (18.0) | 16 (21.3) | 0.585 |
Respiratory failure, n (%) | 180 (25.0) | 61 (80.3) | <0.001 |
Pesticides, n (%) | 0.010 | ||
Glufosinate | 176 (24.4) | 20 (26.3) | |
Glyphosate | 189 (26.2) | 16 (21.1) | |
Organophosphate or carbamate | 88 (12.2) | 20 (26.3) | |
Pyrethroid | 71 (9.8) | 6 (7.9) | |
† Others | 197 (27.3) | 14 (18.4) | |
Estimated amount ingested, n (%) | 0.001 | ||
≤50 mL | 143 (19.8) | 5 (6.6) | |
51~100 mL | 143 (19.8) | 12 (15.8) | |
101~200 mL | 140 (19.4) | 14 (18.4) | |
201~300 mL | 124 (17.2) | 13 (17.1) | |
>300 mL | 97 (13.5) | 23 (30.3) | |
Unknown | 74 (10.3) | 9 (11.8) | |
APACHE II, score | 8 (5–11) | 21 (12–27) | <0.001 |
Glasgow Coma Scale, score | 15 (13–15) | 9 (3–14) | <0.001 |
Hemoglobin, g/dL | 14.0 ± 1.9 | 13.9 ± 2.2 | 0.640 |
Hematocrit, % | 40.7 ± 5.0 | 41.4 ± 6.0 | 0.380 |
White blood cells, count/mL | 10.2 (7.4–14.2) | 14.8 (9.6–19.9) | <0.001 |
Platelet, count/mL | 240 (201–291) | 235 (200–291) | 0.556 |
Protein, g/dL | 7.0 (6.5–7.4) | 6.8 (5.8–7.2) | 0.002 |
Albumin, g/dL | 4.3 (4.0–4.6) | 3.9 (3.5–4.4) | <0.001 |
Blood urea nitrogen, mg/dL | 14.5 (10.9–18.5) | 18.2 (14.5–22.4) | <0.001 |
Creatinine, mg/dL | 0.8 (0.7–1.0) | 1.1 (0.9–1.5) | <0.001 |
eGFR, mL/min/1.73 m2 | 89.9 (69.0–105.3) | 58.0 (42.0–81.2) | <0.001 |
Total bilirubin, mg/dL | 0.5 (0.3–0.7) | 0.5 (0.3–0.7) | 0.640 |
AST, IU/L | 26 (21–36) | 47 (31–70) | <0.001 |
ALT, IU/L | 18 (13–27) | 21 (13–33) | 0.391 |
ALP, IU/L | 70 (57–87) | 84 (71–100) | <0.001 |
Uric acid, mg/dL | 5.2 (4.1–6.5) | 5.7 (4.3–7.1) | 0.049 |
Sodium, mEq/L | 142 (139–144) | 142 (140–145) | 0.249 |
Potassium, mEq/L | 3.9 (3.7–4.3) | 4.0 (3.5–4.6) | 0.909 |
Chloride, mEq/L | 103 (100–106) | 102 (99–104) | 0.007 |
Calcium, mg/dL | 9.0 (8.5–9.4) | 8.6 (8.0–9.3) | 0.006 |
Phosphate, mg/dL | 3.3 (2.8–4.1) | 4.5 (3.6–5.7) | <0.001 |
Lactate, mmol/L | 2.4 (1.4–4.0) | 5.9 (3.7–9.2) | <0.001 |
C-reactive protein, mg/L | 1.2 (0.5–3.7) | 1.8 (0.8–9.4) | 0.016 |
Acid-Base Marker | Survivors (n = 721) | Non-Survivors (n = 76) | p Value |
---|---|---|---|
pH | 7.38 (7.33–7.42) | 7.25 (7.08–7.35) | <0.001 |
pCO2, mmHg | 38 (33–42) | 35 (30–44) | 0.268 |
pO2, mmHg | 85 (73–98) | 75 (61–97) | 0.001 |
O2 saturation, % | 96 (94–97) | 93 (86–96) | <0.001 |
HCO3−, mEq/L | 22.2 (19.3–24.8) | 16.0 (12.4–19.2) | <0.001 |
tCO2, mEq/L | 23.4 (20.4–26.1) | 17.4 (13.5–20.4) | <0.001 |
BE, mmol/L | −2.3 (−5.5–0.4) | −10.9 (−16.8–−5.2) | <0.001 |
SIDa, mEq/L | 42.5 (40.5–44.5) | 44.0 (40.6–48.6) | 0.001 |
SIDe, mEq/L | 25.5 (22.4–28.1) | 19.7 (16.1–22.9) | <0.001 |
SIG, mEq/L | 16.6 (13.9–20.3) | 23.5 (19.4–32.4) | <0.001 |
ATot, mEq/L | 5.2 (4.8–5.7) | 5.4 (4.8–6.1) | 0.021 |
corAG, mmol/L | 13.8 (11.1–17.5) | 23.0 (17.3–29.9) | <0.001 |
Variables | Univariable | Multivariable | ||
---|---|---|---|---|
Odds Ratio | p-Value | Odds Ratio | p-Value | |
APACHE II | 1.20 (1.16–1.24) | <0.001 | – | – |
BE | 0.83 (0.80–0.86) | <0.001 | 0.79 (0.71–0.88) | <0.001 |
corAG | 1.17 (1.14–1.22) | <0.001 | 1.28 (1.11–1.48) | <0.001 |
SIDa | 1.16 (1.10–1.23) | <0.001 | 0.86 (0.74–0.99) | 0.043 |
SIDe | 0.81 (0.77–0.85) | <0.001 | 1.42 (1.17–1.73) | <0.001 |
SIG | 1.16 (1.13–1.21) | <0.001 | NA | NA |
ATot | 1.45 (1.11–1.88) | 0.005 | 0.83 (0.60–1.15) | 0.277 |
pCO2 | 1.02 (1.00–1.04) | 0.069 | – | – |
Variables | PC1 | PC2 | PC3 | PC4 |
---|---|---|---|---|
Eigenvalue | 5.19 | 1.82 | 1.47 | 1.01 |
Proportion of variance | 0.52 | 0.18 | 0.15 | 0.10 |
Cumulative variance | 0.52 | 0.70 | 0.85 | 0.95 |
Loadings | ||||
SIDe | 1.00 | |||
HCO3− | 0.99 | |||
tCO2 | 0.99 | |||
BE | 0.98 | |||
corAG | −0.80 | 0.45 | ||
pH | 0.71 | −0.66 | ||
SIDa | 0.92 | |||
Cl | −0.87 | |||
pCO2 | 0.34 | 0.94 | ||
ATot | 0.99 |
PCs | Univariable | Multivariable | ||
---|---|---|---|---|
Odds Ratio | p Value | Odds Ratio | p Value | |
PC1 | 0.32 (0.25–0.41) | <0.001 | 0.37 (0.29–0.47) | <0.001 |
PC2 | 1.82 (1.46–2.28) | <0.001 | 1.33 (1.04–1.70) | 0.023 |
PC3 | 1.67 (1.38–2.04) | <0.001 | 1.53 (1.24–1.90) | <0.001 |
PC4 | 1.33 (1.06–1.65) | 0.012 | 0.93 (0.72–1.18) | 0.537 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gil, H.-W.; Hong, M.; Lee, H.; Cho, N.-j.; Lee, E.-Y.; Park, S. Impact of Acid-Base Status on Mortality in Patients with Acute Pesticide Poisoning. Toxics 2021, 9, 22. https://doi.org/10.3390/toxics9020022
Gil H-W, Hong M, Lee H, Cho N-j, Lee E-Y, Park S. Impact of Acid-Base Status on Mortality in Patients with Acute Pesticide Poisoning. Toxics. 2021; 9(2):22. https://doi.org/10.3390/toxics9020022
Chicago/Turabian StyleGil, Hyo-Wook, Min Hong, HwaMin Lee, Nam-jun Cho, Eun-Young Lee, and Samel Park. 2021. "Impact of Acid-Base Status on Mortality in Patients with Acute Pesticide Poisoning" Toxics 9, no. 2: 22. https://doi.org/10.3390/toxics9020022
APA StyleGil, H. -W., Hong, M., Lee, H., Cho, N. -j., Lee, E. -Y., & Park, S. (2021). Impact of Acid-Base Status on Mortality in Patients with Acute Pesticide Poisoning. Toxics, 9(2), 22. https://doi.org/10.3390/toxics9020022