Sensory Impact of Polyphenolic Composition on the Oxidative Notes of Chardonnay Wines
Abstract
:1. Introduction
2. Materials and Methods
2.1. Wines
2.2. Sensory Analysis
2.2.1. Panel: Training and Selection
2.2.2. Monadic Sensory Description
2.2.3. Comparative REDOX Odor Assessment between Turbidity Levels with Synthetic Coextruded Stopper
2.3. Chemical Analysis
2.3.1. Reagents
2.3.2. Wine Polyphenols Analyses
2.4. Statistical Analysis
3. Results
3.1. Sensory Characterization by Monadic Profile
3.1.1. REDOX Odor Assessment
3.1.2. General Description
3.2. Comparative Sensory Description of Synthetic Coextruded Stopper Samples
3.3. Phenolic Composition
3.4. Relationships between Sensory Characteristics and Phenolic Composition
- REDOX 2009-global = −3.54 − 0.93 × Flavan-3-ols + 1.56 × GRP
- REDOX 2010-orthonasal = −1.932 − 4.08 × Flavan-3-ols + 1.43 × GRP
- REDOX 2010-global = −3.63 − 2.35 × Flavan-3-ols + 1.82 × GRP
4. Discussion
4.1. Effect of Vintage, Closure and Turbidity on the Wines Polyphenolic Content
4.2. Vintage Effect on REDOX Perception
4.3. Closure Effect on REDOX Perception
4.4. Turbidity Effect on REDOX Perception
4.5. Effect of the Phenolic Composition on REDOX Perception
5. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Roullier-Gall, C.; Witting, M.; Moritz, F.; Gil, R.B.; Goffette, D.; Valade, M.; Schmitt-Kopplin, P.; Gougeon, R.G.D. Natural oxygenation of champagne wine during ageing on lees: A metabolomics picture of hormesis. Food Chem. 2016, 203, 207–215. [Google Scholar] [CrossRef] [PubMed]
- Lopes, P.; Silva, M.A.; Pons, A.; Tominaga, T.; Lavigne, V.; Saucier, C.; Darriet, P.; Teissedre, P.-L.; Dubourdieu, D. Impact of oxygen dissolved at bottling and transmitted through closures on the composition and sensory properties of a sauvignon blanc wine during bottle storage. J. Agric. Food Chem. 2009, 57, 10261–10270. [Google Scholar] [CrossRef] [PubMed]
- Ugliano, M. Oxygen contribution to wine aroma evolution during bottle aging. J. Agric. Food Chem. 2013, 61, 6125–6136. [Google Scholar] [CrossRef] [PubMed]
- Pons, A.; Nikolantonaki, M.; Lavigne, V.; Shinoda, K.; Dubourdieu, D.; Darriet, P. New insights into intrinsic and extrinsic factors triggering premature aging in white wines. In Advances in Wine Research; American Chemical Society: Washington, DC, USA, 2015; Volume 1203, pp. 229–251. [Google Scholar]
- Danilewicz, J.C. Interaction of sulfur dioxide, polyphenols, and oxygen in a wine-model system: Central role of iron and copper. Am. J. Enol. Vitic. 2007, 58, 53. [Google Scholar]
- Bueno, M.; Culleré, L.; Cacho, J.; Ferreira, V. Chemical and sensory characterization of oxidative behavior in different wines. Food Res. Int. 2010, 43, 1423–1428. [Google Scholar] [CrossRef]
- Silva Ferreira, A.C.S.; Guedes de Pinho, P.; Rodrigues, P.; Hogg, T. Kinetics of oxidative degradation of white wines and how they are affected by selected technological parameters. J. Agric. Food Chem. 2002, 50, 5919–5924. [Google Scholar] [CrossRef]
- Culleré, L.; Cacho, J.; Ferreira, V. An assessment of the role played by some oxidation-related aldehydes in wine aroma. J. Agric. Food Chem. 2007, 55, 876–881. [Google Scholar] [CrossRef] [PubMed]
- Pripis-Nicolau, L.; de Revel, G.; Bertrand, A.; Maujean, A. Formation of flavor components by the reaction of amino acid and carbonyl compounds in mild conditions. J. Agric. Food Chem. 2000, 48, 3761–3766. [Google Scholar] [CrossRef] [PubMed]
- Rizzi, G.P. Formation of strecker aldehydes from polyphenol derived quinones and α-amino acids in a nonenzymic model system. J. Agric. Food Chem. 2006, 54, 1893–1897. [Google Scholar] [CrossRef] [PubMed]
- Nikolantonaki, M.; Waterhouse, A.L. A method to quantify quinone reaction rates with wine relevant nucleophiles: A key to the understanding of oxidative loss of varietal thiols. J. Agric. Food Chem. 2012, 60, 8484–8491. [Google Scholar] [CrossRef] [PubMed]
- Nikolantonaki, M.; Darriet, P. Identification of ethyl 2-sulfanylacetate as an important off-odor compound in white wines. J. Agric. Food Chem. 2011, 59, 10191–10199. [Google Scholar] [CrossRef] [PubMed]
- Godden, P.; Francis, L.; Field, J.; Gishen, M.; Coulter, A.; Valente, P.; HØJ, P.; Robinson, E. Wine bottle closures: Physical characteristics and effect on composition and sensory properties of a semillon wine 1. Performance up to 20 months post-bottling. Aust. J. Grape Wine Res. 2001, 7, 64–105. [Google Scholar] [CrossRef]
- Skouroumounis, G.; Kwiatkowski, M.; Francis, I.L.; Oakey, H.; Capone, D.L.; Duncan, B.; Sefton, M.A.; Waters, E.J. The impact of closure type and storage conditions on the composition, colour and flavour properties of a riesling and a wooded chardonnay wine during five years’ storage. Aust. J. Grape Wine Res. 2005, 11, 369–377. [Google Scholar] [CrossRef]
- Skouroumounis, G.K.; Kwiatkowski, M.J.; Francis, I.L.; Oakey, H.; Capone, D.L.; Peng, Z.; Duncan, B.; Sefton, M.A.; Waters, E.J. The influence of ascorbic acid on the composition, colour and flavour properties of a riesling and a wooded chardonnay wine during five years’ storage. Aust. J. Grape Wine Res. 2005, 11, 355–368. [Google Scholar] [CrossRef]
- Silva, M.A. Closure Effect on Sensory Quality of Wine; Université Bordeaux 2: Bordeaux, France, 2011. [Google Scholar]
- Guaita, M.; Petrozziello, M.; Motta, S.; Bonello, F.; Cravero, M.C.; Marulli, C.; Bosso, A. Effect of the closure type on the evolution of the physical-chemical and sensory characteristics of a montepulciano d’abruzzo rosé wine. J. Food Sci. 2013, 78, C160–C169. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, H.; Ballester, J.; Valentin, D. Ageing effect on minerality perception of Chablis wines. In Proceedings of the 10th International Symposium of Enology of Bordeaux, Bordeaux, France, 29 June–1 July 2015; Vigne et vin Publications Internationales: Bordeaux, France; pp. 681–685. [Google Scholar]
- Brajkovich, M.; Tibbits, N.; Peron, G.; Lund, C.M.; Dykes, S.I.; Kilmartin, P.A.; Nicolau, L. Effect of screwcap and cork closures on so2 levels and aromas in a sauvignon blanc wine. J. Agric. Food Chem. 2005, 53, 10006–10011. [Google Scholar] [CrossRef] [PubMed]
- Psarra, E.; Makris, D.P.; Kallithraka, S.; Kefalas, P. Evaluation of the antiradical and reducing properties of selected greek white wines: Correlation with polyphenolic composition. J. Sci. Food Agric. 2002, 82, 1014–1020. [Google Scholar] [CrossRef]
- Villaño, D.; Fernández-Pachón, M.S.; Troncoso, A.M.; García-Parrilla, M.C. Influence of enological practices on the antioxidant activity of wines. Food Chem. 2006, 95, 394–404. [Google Scholar] [CrossRef]
- Lachman, J.; Miloslav, Š.; Katerina, F.; Vladimír, P. Major factors influencing antioxidant contents and antioxidant activity in grapes and wines. Int. J. Wine Res. 2009, 1, 101–121. [Google Scholar] [CrossRef]
- Sioumis, N.; Kallithraka, S.; Makris, D.P.; Kefalas, P. Kinetics of browning onset in white wines: Influence of principal redox-active polyphenols and impact on the reducing capacity. Food Chem. 2006, 94, 98. [Google Scholar] [CrossRef]
- Karbowiak, T.; Gougeon, R.D.; Alinc, J.-B.; Brachais, L.; Debeaufort, F.; Voilley, A.; Chassagne, D. Wine oxidation and the role of cork. Crit. Rev. Food Sci. Nutr. 2009, 50, 20–52. [Google Scholar] [CrossRef]
- Campo, E.; Ballester, J.; Langlois, J.; Dacremont, C.; Valentin, D. Comparison of conventional descriptive analysis and a citation frequency-based descriptive method for odor profiling: An application to burgundy pinot noir wines. Food Qual. Preference 2010, 21, 44–55. [Google Scholar] [CrossRef]
- Roullier-Gall, C.; Lucio, M.; Noret, L.; Schmitt-Kopplin, P.; Gougeon, R.D. How subtle is the “terroir” effect? Chemistry-related signatures of two “climats de bourgogne”. PLoS ONE 2014, 9, e97615. [Google Scholar] [CrossRef] [PubMed]
- Carando, S.; Teissedre, P.L.; Cabanis, J.C. Hplc coupled with fluorescence detection for the determination of procyanidins in white wines. Chromatographia 1999, 50, 253–254. [Google Scholar] [CrossRef]
- Roullier-Gall, C.; Hemmler, D.; Gonsior, M.; Li, Y.; Nikolantonaki, M.; Aron, A.; Coelho, C.; Gougeon, R.D.; Schmitt-Kopplin, P. Sulfites and the wine metabolome. Food Chem. 2017, 237, 106–113. [Google Scholar] [CrossRef] [PubMed]
- Kritzinger, E.C.; Bauer, F.F.; du Toit, W.J. Role of glutathione in winemaking: A review. J. Agric. Food Chem. 2013, 61, 269–277. [Google Scholar] [CrossRef] [PubMed]
- Vallverdú-Queralt, A.; Verbaere, A.; Meudec, E.; Cheynier, V.; Sommerer, N. Straightforward method to quantify gsh, gssg, grp, and hydroxycinnamic acids in wines by uplc-mrm-ms. J. Agric. Food Chem. 2015, 63, 142–149. [Google Scholar] [CrossRef] [PubMed]
- Coetzee, C.; Van Wyngaard, E.; Šuklje, K.; Silva Ferreira, A.C.; du Toit, W.J. Chemical and sensory study on the evolution of aromatic and nonaromatic compounds during the progressive oxidative storage of a sauvignon blanc wine. J. Agric. Food Chem. 2016, 64, 7979–7993. [Google Scholar] [CrossRef] [PubMed]
- Cheynier, V.; Basire, N.; Rigaud, J. Mechanism of trans-caffeoyltartaric acid and catechin oxidation in model solutions containing grape polyphenoloxidase. J. Agric. Food Chem. 1989, 37, 1069. [Google Scholar] [CrossRef]
- Oszmianski, J.; Cheynier, V.; Moutounet, M. Iron-catalyzed oxidation of (+)-catechin in model systems. J. Agric. Food Chem. 1996, 44, 1712–1715. [Google Scholar] [CrossRef]
Sample Code | Closure | Turbidity (NTU) |
---|---|---|
S-L-2009 | synthetic coextruded stopper | LOW |
S-M-2009 | synthetic coextruded stopper | MEDIUM |
S-H-2009 | synthetic coextruded stopper | HIGH |
C-L-2009 | screw cap | LOW |
C-M-2009 | screw cap | MEDIUM |
C-H-2009 | screw cap | HIGH |
S-L-2010 | synthetic coextruded stopper | LOW |
S-M-2010 | synthetic coextruded stopper | MEDIUM |
S-H-2010 | synthetic coextruded stopper | HIGH |
C-L-2010 | screw cap | LOW |
C-M-2010 | screw cap | MEDIUM |
C-H-2010 | screw cap | HIGH |
Session Number | Goals and Protocols | Materials |
---|---|---|
Session 1 | Familiarization with phenylacetaldehyde and methional in flasks and in water. Furaneol (oaky note) was used as a distractor. Assessors’ descriptions were discussed and compared to the descriptors from the literature. | Phenylacetaldehyde 2,2 μg/L Methional 5 mg/L Furfural, one drop on a cotton ball in a flask. |
Session 2 | Familiarization with sotolon, 2-aminoacetophenone and methional in flasks and in water. Trans-2-nonanal (cardboard note) was used as a distractor. Assessors’ descriptions were discussed and compared to the descriptors from the literature. | Sotolon 90 μg/L 2-aminoacetophenone 10 μg/L Methional 5 mg/L Trans-2-nonanal, one drop on a cotton ball in a flask. |
Session 3 | Familiarization with reduction notes: H2S, Ethanthiol, DMS. Recognition of 2-aminoacetophenone and phenylacetaldehyde. Assessors’ descriptions were discussed and compared to the descriptors from the literature. Familiarization with the redox scale on the previous solutions | H2S 40 μg/L Ethanthiol 200 μg/L DMS 55 μg/L 2-aminoacetophenone 10 μg/L Phenylacetaldehyde 14 μg/L |
Session 4 | Discrimination between oxidation and reduction notes in spiked wines and recognition of the different molecules and their descriptors. Familiarization with the redox scale on the previous spiked wines | Base wine (Muscadet, 2014) Base wine + phenylacetaldehyde 14 μg/L Base wine + methional 5 mg/L Base wine + Ethanthiol 200 μg/L Base wine + sotolon 120 μg/L Base wine + 2-aminoacétophenone 10 μg/L |
Session 5 | Test assessors’ discrimination abilities on oxidized samples (spiked wines) by means of a triangle test. Odor characterization of 3 samples using the redox scale and the odor descriptors list. | Base wine (Muscadet, 2014) Used in the triangle test: Base wine + phenylacetaldehyde 2.2 μg/L + sotolon 90 μg/L and Base wine + 2-aminoacétophenone 15 μg/L + sotolon 90 μg/L |
Session 6 | Test assessors’ discrimination abilities between an oxidized sample (spiked wines) and the base wine. Odor characterization of 2 samples using the redox scale and the odor descriptors list. | Base wine (Muscadet, 2014) Base wine + sotolon 90 μg/L |
Session 7 | Quantitative calibration of the anchors of the scale. Redox rating practice with the redox scale on three wines previously checked by two wine experts as representative of three oxidation levels. | Used for calibration: Reduction anchor (very reduced): H2S 40 μg/L Oxidation anchor (very oxidized): St Aubin 1998 in a dark ISO glass Used for practice with the redox scale: Saint Aubin 1998 (very oxidized) Marsannay 2007 (moderately oxidized) Viré Clessé 2014 (neither reduced nor oxidized) |
Session 8 | Redox rating of 4 wines previously checked by two wine experts as representative of three oxidation levels. | Bourgogne Aligoté 2014 (neither reduced nor oxidized) Chardonnay blend with 7% of St Aubin 1998 (slightly oxidized) Petit Chablis 2009 (moderately oxidized) Chablis 1er Cru 2012 (slightly reduced) |
Session 9 | Redox rating of 6 wines previously checked by two wine experts as representative of three oxidation levels. The last three samples are tasted in session 10 as well in order to check candidates’ repeatability. | Chassagne Montrachet, 2002 (moderately oxidized) Chenin Blanc 2013 (slightly reduced) Mâcon Clessé 1994 (very oxidized) Viré Clessé 2014 + Petit Chablis 2009 (moderately oxidized) Chardonnay Pays d’Oc 2014 (clean or just slightly oxidized) Chardonnay Pays d’Oc 2014+ 20% Saint Aubin 1er Cru 1998 (moderately oxidized) Chardonnay California 2010 (moderately oxidized) |
Session 10 | Redox rating of 6 wines previously checked by two wine experts as representative of three oxidation levels. The last three samples are tasted in session 10 as well, in order to check candidates’ repeatability. | Chablis 1er Cru 2012 Aligoté Marsannay 2015 (neither reduced nor oxidized) Viré-Clessé 2014 + 20% Ugni Blanc 1969 (moderately oxidized) Viognier 2013 + 50% Chardonnay 2013 (clean or just slightly oxidized) Chardonnay Pays d’Oc 2014 (clean or just slightly oxidized) Chardonnay Pays d’Oc 2014+ 20% SaintAubin 1er Cru 1998 (moderately oxidized) Chardonnay California 2010 (moderately oxidized) |
Assessment Condition | Sources of Variation | 2009 Vintage | 2010 Vintage | ||
---|---|---|---|---|---|
F | p | F | p | ||
OTHONASAL PERCEPTION | PANELISTS | 3.748 | 0.0003 | 3.633 | 0.0005 |
CLOSURE | 0.697 | 0.171 | 10.108 | 0.010 | |
TURBIDITY | 3.412 | 0.038 | 0.540 | 0.591 | |
PANELISTS ×CLOSURE | 3.122 | 0.002 | 3.289 | 0.001 | |
PANELISTS ×TURBIDITY | 0.620 | 0.887 | 1.016 | 0.453 | |
TURBIDITY ×CLOSURE | 5.880 | 0.004 | 2.081 | 0.131 | |
GLOBAL PERCEPTION | PANELISTS | 3.760 | 0.0003 | 3.812 | 0.0003 |
CLOSURE | 3.205 | 0.104 | 8.109 | 0.0173 | |
TURBIDITY | 7.044 | 0.005 | 1.574 | 0.2318 | |
PANELISTS ×CLOSURE | 1.827 | 0.068 | 2.870 | 0.0039 | |
PANELISTS ×TURBIDITY | 0.683 | 0.832 | 0.994 | 0.4779 | |
TURBIDITY ×CLOSURE | 3.182 | 0.046 | 0.287 | 0.7510 |
Factor | Level | 2009 Orthonasal | 2009 Global | 2010 Orthonasal | 2010 Global |
---|---|---|---|---|---|
CLOSURE | S | 0.97 a | 1.045 a | 1.62 a | 1.35 a |
C | 0.65 a | 0.61 a | 0.38 b | 0.53 b | |
TURBIDITY | M | 1.182 a | 1.14 a | 1.16 a | 1.045 a |
H | 0.75 ab | 0.89 ab | 0.93 a | 1.045 a | |
L | 0.5 b | 0.45 b | 0.91 a | 0.73 a |
Sample Code | 2009 Vintage | 2010 Vintage | ||
---|---|---|---|---|
REDOX Orthonasal | REDOX Global | REDOX Orthonasal | REDOX Global | |
S-H | 1.46 a | 1.01 a | 2.69 a | 2.57 a |
S-M | 1.52 a | 1.02 a | 2.04 ab | 2.17 a |
S-L | 1.93 a | 1.48 a | 1.47 b | 0.93 b |
Source of Variation | Phenolic Acids | Cinnamic Acids | Flavan-3-ols | GRP | Tyrosol | Total Polyphenols | TPI | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
F | Pr > F | F | Pr > F | F | Pr > F | F | Pr > F | F | Pr > F | F | Pr > F | F | Pr > F | |
vintage | 224.9 | <0.0001 | 3711.5 | <0.0001 | 161.89 | <0.0001 | 1334.9 | <0.0001 | 14.05 | 0.002 | 3471.11 | <0.0001 | 796.39 | <0.0001 |
closure | 3.3 | 0.09 | 15.7 | 0.001 | 26.05 | 0.0001 | 1.63 | 0.22 | 1.10 | 0.31 | 20.21 | 0.001 | 0.36 | 0.56 |
turbidity | 32.8 | <0.0001 | 0.16 | 0.85 | 0.36 | 0.70 | 116.6 | <0.0001 | 309.26 | <0.0001 | 35.44 | <0.0001 | 6.68 | 0.009 |
vintage*closure | 6.5 | 0.023 | 0.10 | 0.76 | 3.11 | 0.01 | 17.94 | 0.001 | 14.07 | 0.002 | 0.26 | 0.62 | 0.59 | 0.46 |
vintage*turbidity | 2.0 | 0.17 | 30.0 | <0.0001 | 0.36 | 0.706 | 7.30 | 0.007 | 66.77 | <0.0001 | 7.94 | 0.005 | 6.38 | 0.011 |
closure*turbidity | 1.0 | 0.38 | 0.28 | 0.76 | 0.76 | 0.484 | 3.29 | 0.067 | 0.468 | 0.64 | 0.15 | 0.87 | 1.27 | 0.31 |
Main Effects | Phenolic Acids | Cinnamic Acids | Flavan-3-ols | GRP | Tyrosol | Total Polyphenols | TPI |
---|---|---|---|---|---|---|---|
vintage | Average (mg·L−1) | Average (mg·L−1) | Average (mg·L−1) | Average (mg·L−1) | Average (mg·L−1) | Average (mg·L−1) | Average (mg·L−1) |
2009 | 4.54 a | 57.47 a | 1.30 a | 3.56 a | 23.49 a | 90.37 a | 8.39 a |
2010 | 3.93 b | 43.09 b | 0.29 b | 2.88 b | 23.156 b | 73.36 b | 7.29 b |
closure | Average (mg·L−1) | Average (mg·L−1) | Average (mg·L−1) | Average (mg·L−1) | Average (mg·L−1) | Average (mg·L−1) | Average (mg·L−1) |
C | 4.27 a | 50.75 a | 1.00 a | 3.21 a | 23.28 a | 82.5 a | 7.85 a |
S | 4.20 a | 49.82 b | 0.60 b | 3.24 a | 23.37 a | 81.2 b | 7.83 a |
turbidity | Average (mg·L−1) | Average (mg·L−1) | Average (mg·L−1) | Average (mg·L−1) | Average (mg·L−1) | Average (mg·L−1) | Average (mg·L−1) |
L | 4.13 b | 50.28 a | 0.84 a | 3.35 a | 24.81 a | 83.41 a | 7.93 a |
M | 4.47 a | 50.21 a | 0.77 a | 3.29 b | 23.01 b | 81.75 b | 7.84 ab |
H | 4.11 b | 50.37 a | 0.78 a | 3.03 c | 22.15 c | 80.44 c | 7.75 b |
Variable | REDOX 2009 OrthonasalR2 = 0.26; p = 0.086 | REDOX 2009 GlobalR2 = 0.61; p = 0.014 | REDOX 2010 OrthonasalR2 = 0.94; p < 0.0001 | REDOX 2010 GlobalR2 = 0.92; p < 0.0001 | ||||
---|---|---|---|---|---|---|---|---|
t | Pr > |t| | t | Pr > |t| | t | Pr > |t| | t | Pr > |t| | |
Phenol Acids | ns* | ns | ns | ns | -- | -- | -- | -- |
Cinnamic acids | -- | -- | ns | ns | ns | ns | -- | -- |
Flavan-3-ols | ns | ns | −3.12 | 0.012 | −10.93 | <0.0001 | −8.06 | <0.0001 |
GRP | -- | -- | 2.26 | 0.05 | 4.12 | 0.003 | 6.72 | <0.0001 |
Tyrosol | -- | -- | ns | ns | -- | -- | -- | -- |
Total polyphenols | -- | -- | ns | ns | ns | ns | -- | -- |
TPI | ns | ns | -- | -- | -- | -- | -- | -- |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ballester, J.; Magne, M.; Julien, P.; Noret, L.; Nikolantonaki, M.; Coelho, C.; Gougeon, R.D. Sensory Impact of Polyphenolic Composition on the Oxidative Notes of Chardonnay Wines. Beverages 2018, 4, 19. https://doi.org/10.3390/beverages4010019
Ballester J, Magne M, Julien P, Noret L, Nikolantonaki M, Coelho C, Gougeon RD. Sensory Impact of Polyphenolic Composition on the Oxidative Notes of Chardonnay Wines. Beverages. 2018; 4(1):19. https://doi.org/10.3390/beverages4010019
Chicago/Turabian StyleBallester, Jordi, Mathilde Magne, Perrine Julien, Laurence Noret, Maria Nikolantonaki, Christian Coelho, and Régis D. Gougeon. 2018. "Sensory Impact of Polyphenolic Composition on the Oxidative Notes of Chardonnay Wines" Beverages 4, no. 1: 19. https://doi.org/10.3390/beverages4010019
APA StyleBallester, J., Magne, M., Julien, P., Noret, L., Nikolantonaki, M., Coelho, C., & Gougeon, R. D. (2018). Sensory Impact of Polyphenolic Composition on the Oxidative Notes of Chardonnay Wines. Beverages, 4(1), 19. https://doi.org/10.3390/beverages4010019