Morpho-Phylogenetic Evidence Reveals New Species of Fuscosporellaceae and Savoryellaceae from Freshwater Habitats in Guizhou Province, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collection and Examination of Specimens
2.2. DNA Extraction, PCR Amplification and Sequencing
2.3. Phylogenetic Analyses
Taxon | Source | GenBank Accession Number | References | ||||
LSU | SSU | ITS | RPB2 | TEF1α | |||
Ascotaiwania latericolla | ICMP 22739 T | MN699407 | – | MN699390 | MN704312 | – | [16] |
Ascotaiwania lignicola | NIL 00006 | HQ446365 | HQ446285 | HQ446342 | – | HQ446308 | [12] |
Bactrodesmiastrum obovatum | FMR 6482 T | FR870266 | – | FR870264 | – | – | [41] |
Bactrodesmiastrum pyriforme | FMR 10747 T | FR870265 | – | FR870263 | – | – | [41] |
Bactrodesmiastrum pyriforme | FMR 11931 | HE646637 | – | HE646636 | – | – | [41] |
Bactrodesmiastrum monilioides | FMR 10756 | KF771879 | – | KF771878 | – | – | [10] |
Bactrodesmium leptopus | CBS 144542 | MN699423 | MN699374 | MN699388 | MN704297 | MN704321 | [16] |
Bactrodesmium obovatum | CBS 144407 | MN699426 | MN699377 | MN699397 | MN704299 | MN704324 | [16] |
Canalisporium elegans | SS 00895 | GQ390271 | GQ390256 | – | HQ446425 | HQ446311 | [12] |
Canalisporium caribense | SS 03683 | GQ390269 | GQ390254 | – | – | – | [12] |
Canalisporium grenadoidia | BCC 20507 T | GQ390267 | GQ390252 | GQ390282 | HQ446420 | HQ446309 | [12] |
Conioscypha hoehnelii | FMR 11592 T | KY853497 | HF937348 | KY853437 | – | – | [14] |
Conioscypha japonica | CBS 387.84 T | AY484514 | JQ437438 | – | JQ429259 | – | [42,43] |
Conioscypha lignicola | CBS 335.93 T | AY484513 | JQ437439 | – | JQ429260 | – | [42,43] |
Conioscypha varia | CBS 113653 | AY484512 | AY484511 | – | JQ429261 | – | [42,43] |
Dematiosporium aquaticum | MFLU 18-1641 | MK835855 | – | – | MN194029 | MN200286 | [15] |
Fuscosporella aquatica | MFLUCC 16-0859 | MG388209 | – | MG388212 | – | – | [44] |
Fuscosporella guizhouensis | CGMCC 3.20884T | OP376725 | OP376721 | OP376715 | OP367755 | OP367761 | This study |
Fuscosporella guizhouensis | UESTCC 22.0017 | OP376729 | OP376720 | OP376727 | OP367756 | OP367762 | This study |
Fuscosporella pyriformis | MFLUCC 16-0570 T | KX550896 | KX550900 | MG388217 | KX576872 | – | [7] |
Mucispora aquatica | CGMCC 3.20882T | OP376717 | OP376726 | OP376713 | OP367752 | OP367757 | This study |
Mucispora aquatica | UESTCC 22.0018 | OP376716 | OP376718 | OP376712 | – | OP367758 | This study |
Mucispora infundibulata | MFLUCC 16-0866 T | MH457139 | MH457171 | MH457174 | – | – | [11] |
Mucispora obscuriseptata | MFLUCC 15-0618 T | KX550892 | KX550897 | MG388218 | KX576870 | – | [7] |
Mucispora phangngaensis | MFLUCC 16-0865 | MG388210 | – | MG388213 | – | – | [44] |
Neoascotaiwania fusiformis | MFLUCC 15-0621 T | KX550893 | – | MG388215 | KX576871 | – | [7] |
Neoascotaiwania fusiformis | MFLUCC 15-0625 | KX550894 | KX550898 | MG388216 | – | – | [7] |
Neoascotaiwania guizhouensis | CGMCC 3.20883T | OP376731 | OP376719 | OP376728 | OP367753 | OP367759 | This study |
Neoascotaiwania guizhouensis | UESTCC 22.0019 | OP718560 | – | OP376730 | OP367754 | OP367760 | This study |
Neoascotaiwania limnetica | CBS 126576 | KY853513 | KT278689 | KY853452 | MN704308 | MN704331 | [8,14,16] |
Neoascotaiwania limnetica | CBS 126792 | KY853514 | KT278690 | KY853453 | MN704309 | MN704332 | [8,14,16] |
Neoascotaiwania terrestris | CBS 144402 | MN699434 | MN699386 | MN699405 | MN704310 | MN704333 | [16] |
Neoascotaiwania terrestris | CBS 142291 T | KY853515 | KY853547 | KY853454 | – | – | [14,16] |
Parafuscosporellamoniliformis | MFLUCC 15-0626 T | KX550895 | KX550899 | MG388219 | – | – | [7] |
Parafuscosporella mucosa | MFLUCC 16-0571 T | MG388211 | – | MG388214 | – | – | [7] |
Parafuscosporella pyriformis | KUMCC 19-0008 | MN512340 | – | MN513031 | – | – | [45] |
Parafuscosporella garethii | FF00725.01 T | KX958430 | KX958429 | – | KX958432 | – | [46] |
Parafuscosporella aquatica | KUMCC 19-0211 T | MN512343 | – | MN513034 | – | – | [45] |
Phaeoisaria aquatica | MFLUCC 16-1298 T | MF399254 | – | MF399237 | MF401406 | – | [47] |
Phaeoisaria fasciculata | CBS 127885 T | KT278705 | KT278693 | KT278719 | KT278741 | – | [8] |
Plagiascoma frondosum | CBS 139031 T | KT278713 | KT278701 | – | KT278749 | – | [8] |
Pleurotheciella erumpens | CBS 142447 T | MN699435 | MN699387 | MN699406 | MN704311 | MN704334 | [8] |
Pleurotheciella guttulata | KUMCC 15-0296 T | MF399257 | MF399223 | MF399240 | MF401409 | – | [47] |
Pleurothecium aquaticum | MFLUCC 17-1331 T | MF399263 | – | MF399245 | – | – | [47] |
Pleurothecium floriforme | MFLUCC 15-1163 T | KY697277 | KY697279 | KY697281 | – | – | [48] |
Pseudoascotaiwania persoonii | A57 14C T | AY094190 | – | – | – | – | [49] |
Savoryella lignicola | NF 00204 | HQ446378 | HQ446300 | HQ446357 | – | HQ446334 | [12] |
Savoryella nypae | MFLUCC 18-1570 | MK543210 | MK543237 | MK543219 | – | MK542516 | [50] |
Tolypocladium capitatum | OSC 71233 | AY489721 | AY489689 | – | DQ522421 | AY489615 | [51,52] |
Tolypocladium japonicum | OSC 110991 | DQ518761 | DQ522547 | – | DQ522428 | DQ522330 | [52] |
3. Phylogenetic Results
4. Taxonomy
5. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Thomas, K. Australian freshwater fungi. In Fungi of Australia; Introductory Volume to the Fungi (Part 2); Grgurinovic, C.A., Ed.; Australian Biological Resources Study: Canberra, ACT, Australia, 1996; Volume 1B, pp. 1–27. [Google Scholar]
- Wong, M.K.M.; Goh, T.-K.; Hodgkiss, I.J.; Hyde, K.D.; Ranghoo, V.M.; Tsui, C.K.M.; Ho, W.-H.; Wong, W.S.W.; Yuen, T.-K. Role of fungi in freshwater ecosystems. Biodivers. Conserv. 1998, 7, 1187–1206. [Google Scholar] [CrossRef]
- Benstead, J.P.; Rosemond, A.D.; Cross, W.F.; Wallace, J.B.; Eggert, S.L.; Suberkropp, K.; Gulis, V.; Greenwood, J.L.; Tant, C.J. Nutrient enrichment alters storage and fluxes of detritus in a headwater stream ecosystem. Ecology 2009, 90, 2556–2566. [Google Scholar] [CrossRef] [PubMed]
- Gareth Jones, E.B.; Eaton, R.A. Savoryella lignicola gen. et sp.nov. from water-cooling towers. Trans. Br. Mycol. Soc. 1969, 52, 161-IN114. [Google Scholar] [CrossRef]
- Udaiyan, K. Some interesting fungi from the industrial water cooling towers of Madras. II. J. Econ. Taxon. Bot. 1991, 15, 649–665. [Google Scholar]
- Calabon, M.S.; Hyde, K.D.; Jones, E.B.G.; Luo, Z.-L.; Dong, W.; Hurdeal, V.G.; Gentekaki, E.; Rossi, W.; Leonardi, M.; Thiyagaraja, V.; et al. Freshwater fungal numbers. Fungal Divers. 2022, 114, 3–235. [Google Scholar] [CrossRef]
- Yang, J.; Maharachchikumbura, S.S.N.; Bhat, D.J.; Hyde, K.D.; McKenzie, E.H.C.; Jones, E.B.G.; Al-Sadi, A.M.; Lumyong, S. Fuscosporellales, a new order of aquatic and terrestrial hypocreomycetidae (sordariomycetes). Cryptogam. Mycol. 2016, 37, 449–475. [Google Scholar] [CrossRef]
- Réblová, M.; Seifert, K.A.; Fournier, J.; Štěpánek, V. Newly recognized lineages of perithecial ascomycetes: The new orders conioscyphales and pleurotheciales. Persoonia 2016, 37, 57–81. [Google Scholar] [CrossRef] [Green Version]
- Věra, H.-J. Bactrodesmiastrum, a new genus of lignicolous hyphomycetes. Folia Geobot. Phytotaxon. 1984, 19, 103–106. [Google Scholar]
- Hernández-Restrepo, M.; Castañeda-Ruiz, R.F.; Guarro, J.; Gené, J.; Mena-Portales, J. Emendation of the genus Bactrodesmiastrum (Sordariomycetes) and description of Bactrodesmiastrum monilioides sp novfrom plant debris in Spain. Mycol Prog. 2015, 14, 48–54. [Google Scholar] [CrossRef]
- Hyde, K.D.; Norphanphoun, C.; Maharachchikumbura, S.S.N.; Bhat, D.J.; Jones, E.B.G.; Bundhun, D.; Chen, Y.J.; Bao, D.F.; Boonmee, S.; Calabon, M.S.; et al. Refined families of Sordariomycetes. Mycosphere 2020, 11, 305–1059. [Google Scholar] [CrossRef]
- Boonyuen, N.; Chuaseeharonnachai, C.; Suetrong, S.; Sri-Indrasutdhi, V.; Sivichai, S.; Jones, E.B.; Pang, K.L. Savoryellales (Hypocreomycetidae, Sordariomycetes): A novel lineage of aquatic ascomycetes inferred from multiple-gene phylogenies of the genera Ascotaiwania, Ascothailandia, and Savoryella. Mycologia 2011, 103, 1351–1371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jaklitsch, W.M.; Réblová, M. Savoryellaceae Jaklitsch & Réblová. Index Fungorum 2015, 209, 1. [Google Scholar]
- Hernández-Restrepo, M.; Gené, J.; Castañeda-Ruiz, R.F.; Mena-Portales, J.; Crous, P.W.; Guarro, J. Phylogeny of saprobic microfungi from Southern Europe. Stud. Mycol. 2017, 86, 53–97. [Google Scholar] [CrossRef] [PubMed]
- Luo, Z.-L.; Hyde, K.D.; Liu, J.-K.; Maharachchikumbura, S.S.N.; Jeewon, R.; Bao, D.-F.; Bhat, D.J.; Lin, C.-G.; Li, W.-L.; Yang, J.; et al. Freshwater sordariomycetes. Fungal Divers. 2019, 99, 451–660. [Google Scholar] [CrossRef] [Green Version]
- Réblová, M.; Hernández-Restrepo, M.; Fournier, J.; Nekvindová, J. New insights into the systematics of Bactrodesmium and its allies and introducing new genera, species and morphological patterns in the Pleurotheciales and Savoryellales (Sordariomycetes). Stud. Mycol. 2020, 95, 415–466. [Google Scholar] [CrossRef]
- Jones, E.B.G.; Hyde, K.D. Taxonomic studies on savoryella jones et eaton (Ascomycotina). Bot. Mar. 1992, 35, 83–91. [Google Scholar] [CrossRef]
- Jones, E.B.G.; Sakayaroj, J.; Suetrong, S.; Somrithipol, S.; Pang, K.L. Classification of marine ascomycota, anamorphic taxa and basidiomycota. Fungal Divers. 2009, 35, 187. [Google Scholar]
- Sri-indrasutdhi, V.; Boonyuen, N.; Suetrong, S.; Chuaseeharonnachai, C.; Sivichai, S.; Jones, E.B.G. Wood-inhabiting freshwater fungi from Thailand: Ascothailandia grenadoidia gen. et sp. nov., Canalisporium grenadoidia sp. nov. with a key to Canalisporium species (Sordariomycetes, Ascomycota). Mycoscience 2010, 51, 411–420. [Google Scholar] [CrossRef]
- Hongsanan, S.; Maharachchikumbura, S.S.N.; Hyde, K.D.; Samarakoon, M.C.; Jeewon, R.; Zhao, Q.; Al-Sadi, A.M.; Bahkali, A.H. An updated phylogeny of Sordariomycetes based on phylogenetic and molecular clock evidence. Fungal Divers. 2017, 84, 25–41. [Google Scholar] [CrossRef]
- Liu, J.K.; Chomnunti, P.; Cai, L.; Phookamsak, R.; Chukeatirote, R.; Jones, E.B.G.; Moslem, M.; Hyde, K.D. Phylogeny and morphology of Neodeightonia palmicola sp. nov. from palms. Sydowia 2010, 62, 261–276. [Google Scholar]
- Senanayake, I.; Calabon, M.S. Morphological approaches in studying fungi: Collection, examination, isolation, sporulation and preservation. Mycosphere 2020, 11, 2678–2754. [Google Scholar] [CrossRef]
- Vilgalys, R.; Hester, M. Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. J. Bacteriol. 1990, 172, 4238–4246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- White, T.J.; Bruns, T.; Lee, S.; Taylor, J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: A Guide to Methods and Applications; Innis, M.A., Gelfand, D.H., Shinsky, J.J., White, T.J., Eds.; Academic Press, Inc.: New York, NY, USA, 1990; pp. 315–322. [Google Scholar] [CrossRef]
- Liu, Y.J.; Whelen, S.; Hall, B.D. Phylogenetic relationships among ascomycetes evidence from an RNA polymerse II subunit. Mol. Biol. Evol. 1999, 16, 1799–1808. [Google Scholar] [CrossRef] [Green Version]
- Rehner, S.A.; Buckley, E. A beauveria phylogeny inferred from nuclear ITS and EF1-a sequences evidence for cryptic diversification and links to Cordyceps teleomorphs. Mycologia 2005, 97, 84–98. [Google Scholar] [CrossRef]
- Katoh, K.; Standley, D.M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Larsson, A. AliView: A fast and lightweight alignment viewer and editor for large datasets. Bioinformatics 2014, 30, 3276–3278. [Google Scholar] [CrossRef] [Green Version]
- Capella-Gutierrez, S.; Silla-Martinez, J.M.; Gabaldon, T. trimAl: A tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 2009, 25, 1972–1973. [Google Scholar] [CrossRef] [Green Version]
- Vaidya, G.; Lohman, D.J.; Meier, R. SequenceMatrix concatenation software for the fast assembly of multi gene datasets with character set and codon information. Cladistics 2011, 27, 171–180. [Google Scholar] [CrossRef]
- Dissanayake, A.J.; Bhunjun, C.S.; Maharachchikumbura, S.S.N.; Liu, J.K. Applied aspects of methods to infer phylogenetic relationships amongst fungi. Mycosphere 2020, 11, 2652–2676. [Google Scholar] [CrossRef]
- Stamatakis, A. RAxML-VI-HPC: Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 2006, 22, 2688–2690. [Google Scholar] [CrossRef] [Green Version]
- Stamatakis, A.; Hoover, P.; Rougemont, J. A rapid bootstrap algorithm for the RAxML web servers. Syst. Biol. 2008, 57, 758–771. [Google Scholar] [CrossRef] [PubMed]
- Miller, M.A.; Pfeiffer, W.; Schwartz, T. Creating the CIPRES science gateway for inference of large phylogenetic trees. In Proceedings of the Gateway Computing Environments Workshop (GCE), New Orleans, LA, USA, 14 November 2010; Volume 14, pp. 1–8. [Google Scholar] [CrossRef] [Green Version]
- Ronquist, F.; Teslenko, M.; van der Mark, P.; Ayres, D.L.; Darling, A.; Hohna, S.; Larget, B.; Liu, L.; Suchard, M.A.; Huelsenbeck, J.P. MrBayes 3.2: Efficient bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 2012, 61, 539–542. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nylander, J. MrModeltest2 v. 2.3 (Program for Selecting DNA Substitution Models Using PAUP*); Evolutionary Biology Centre: Uppsala, Sweden, 2008. [Google Scholar]
- Rannala, B.; Yang, Z. Probability distribution of molecular evolutionary trees a new method of phylogenetic inference. J. Mol. Evol. 1996, 43, 304–311. [Google Scholar] [CrossRef] [PubMed]
- Larget, B.; Simon, D.L. Markov chain monte carlo algorithms for the bayesian analysis of phylogenetic trees. Mol. Biol. Evol. 1999, 16, 750–759. [Google Scholar] [CrossRef] [Green Version]
- Swofford, D.L. PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods), 4th ed.; Sinauer Associates: Sunderland, MA, USA, 2003. [Google Scholar]
- Hillis, D.M.; Bull, J.J. An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis. Syst. Biol. 1993, 42, 182–192. [Google Scholar] [CrossRef]
- Hernández-Restrepo, M.; Mena-Portales, J.; Gené, J.; Cano, J.; Guaarro, J. New bactrodesmiastrum and bactrodesmium from decaying wood in Spain. Mycologia 2013, 105, 172–180. [Google Scholar] [CrossRef] [PubMed]
- Réblová, M.; Seifert, K.A. Conioscyphascus, a new ascomycetous genus for holomorphs with conioscypha anamorphs. Stud. Mycol. 2004, 50, 95–108. [Google Scholar]
- Réblová, M.; Seifert, K.A.; Fournier, J.; Stepánek, V. Phylogenetic classification of pleurothecium and pleurotheciella gen. nov. and its dactylaria-like anamorph (Sordariomycetes) based on nuclear ribosomal and protein-coding genes. Mycologia 2012, 104, 1299–1314. [Google Scholar] [CrossRef]
- Yang, J.; Liu, J.K.; Hyde, K.D.; Jones, E.B.G.; Liu, Z.Y. Two new species in Fuscosporellaceae from freshwater habitats in Thailand. Mycosphere 2017, 8, 1893–1903. [Google Scholar] [CrossRef]
- Yang, H.; Dong, W.; Yu, X.D.; Bhat, D.J.; Boonmee, S.; Zhang, H. Four freshwater dematiaceous hyphomycetes in sordariomycetes with two new species of parafuscosporella. Phytotaxa 2020, 441, 19–34. [Google Scholar] [CrossRef]
- Boonyuen, N.; Chuaseeharonnachai, C.; Suetrong, S.; Sujinda, S.; Somrithipol, S. Parafuscosporella garethii sp. nov. (Fuscosporellales) from a rivulet in a community-based northern forest, in Thailand. Mycosphere 2016, 7, 1265–1272. [Google Scholar] [CrossRef]
- Luo, Z.-L.; Hyde, K.D.; Bhat, D.J.; Jeewon, R.; Maharachchikumbura, S.S.N.; Bao, D.-F.; Li, W.-L.; Su, X.-J.; Yang, X.-Y.; Su, H.-Y. Morphological and molecular taxonomy of novel species pleurotheciaceae from freshwater habitats in Yunnan, China. Mycol. Prog. 2018, 17, 511–530. [Google Scholar] [CrossRef]
- Hyde, K.D.; Norphanphoun, C.; Abreu, V.P.; Bazzicalupo, A.; Thilini Chethana, K.W.; Clericuzio, M.; Dayarathne, M.C.; Dissanayake, A.J.; Ekanayaka, A.H.; He, M.-Q.; et al. Fungal diversity notes 603–708: Taxonomic and phylogenetic notes on genera and species. Fungal Divers. 2017, 87, 1–235. [Google Scholar] [CrossRef]
- Campbell, J.; Shearer, C.A. Annulusmagnus and ascitendus, two new genera in the annulatascaceae. Mycologia 2004, 96, 822–833. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.-N.; Abdel-Wahab, M.A.; Jones, E.B.G.; Hyde, K.D.; Liu, J.-K. Additions to the genus savoryella (savoryellaceae), with the asexual morphs savoryella nypae comb. nov. and S. sarushimana sp. nov. Phytotaxa 2019, 408, 195–207. [Google Scholar] [CrossRef]
- Castlebury, L.A.; Rossman, A.Y.; Sung, G.-H.; Hyten, A.S.; Spatafora, J.W. Multigene phylogeny reveals new lineage for Stachybotrys chartarum, the indoor air fungus. Mycol. Res. 2004, 108, 864–872. [Google Scholar] [CrossRef] [Green Version]
- Spatafora, J.W.; Sung, G.H.; Sung, J.M.; Hywel-Jones, N.L.; White, J.F., Jr. Phylogenetic evidence for an animal pathogen origin of ergot and the grass endophytes. Mol. Ecol. 2007, 16, 1701–1711. [Google Scholar] [CrossRef]
- Boonyuen, N.; Chuaseeharonnachai, C.; Nuankaew, S.; Kwantong, P.; Pornputtapong, N.; Suwannarach, N.; Jones, E.B.G.; Somrithipol, S. Novelties in fuscosporellaceae (fuscosporellales): Two new parafuscosporella from thailand revealed by morphology and phylogenetic analyses. Diversity 2021, 13, 517. [Google Scholar] [CrossRef]
- Wijayawardene, N.N.; Dissanayake, L.S.; Dai, D.-Q.; Li, Q.-R.; Xiao, Y.; Wen, T.-C.; Karunarathna, S.C.; Wu, H.-X.; Zhang, H.; Tibpromma, S.; et al. Yunnan–Guizhou Plateau: A mycological hotspot. Phytotaxa 2021, 523, 1–31. [Google Scholar] [CrossRef]
- Chang, H.S.; Hsieh, S.Y.; Jones, E.B.G.; Read, S.J.; Moss, S.T. New freshwater species of ascotaiwania and savoryella from Taiwan. Mycol. Res. 1998, 102, 709–718. [Google Scholar] [CrossRef]
- Chang, H.-s. Trichocladium anamorph of ascotaiwania hsilio and monodictys-like anamorphic states of ascotaiwania lignicola. Fung. Sci. 2001, 16, 35–38. [Google Scholar]
- Ranghoo, V.M.; Hyde, K.D. Ascomycetes from freshwater habitats: Ascolacicola aquatica gen. et sp. nov. and a new species of ascotaiwania from wood submerged in a reservoir in Hong Kong. Mycologia 1998, 90, 1055–1062. [Google Scholar] [CrossRef] [Green Version]
- Sivichai, S.; HyweI-Jones, N.; Jones, E.B.G. Lignicolous freshwater Ascomycota from Thailand: 1. Ascotaiwania sawada and its anamorph state monotosporella. Mycoscience 1998, 39, 307–311. [Google Scholar] [CrossRef]
- Dayarathne, M.C.; Maharachchikumbura, S.S.N.; Jones, E.B.G.; Dong, W.; Devadatha, B.; Yang, J.; Ekanayaka, A.H.; De Silva, W.; Sarma, V.V.; Al-Sadi, A.M.; et al. Phylogenetic revision of savoryellaceae and evidence for its ranking as a subclass. Front. Microbiol. 2019, 10, 840. [Google Scholar] [CrossRef] [Green Version]
- Dong, W.; Jeewon, R.; Hyde, K.D.; Yang, E.-F.; Zhang, H.; Yu, X.; Wang, G.; Suwannarach, N.; Doilom, M.; Dong, Z. Five novel taxa from freshwater habitats and new taxonomic insights of pleurotheciales and savoryellomycetidae. J. Fungi 2021, 7, 711. [Google Scholar] [CrossRef]
- Torres-Garcia, D.; García, D.; Cano-Lira, J.F.; Gené, J. Two novel genera, neostemphylium and scleromyces (pleosporaceae) from freshwater sediments and their global biogeography. J. Fungi 2022, 8, 868. [Google Scholar] [CrossRef]
- Tang, A.M.; Jeewon, R.; Hyde, K.D. Phylogenetic utility of protein (RPB2, beta-tubulin) and ribosomal (LSU, SSU) gene sequences in the systematics of sordariomycetes (Ascomycota, Fungi). Antonie Van Leeuwenhoek 2007, 91, 327–349. [Google Scholar] [CrossRef]
- Hsieh, H.-M.; Ju, Y.-M.; Rogers, J.D. Molecular phylogeny of hypoxylon and closely related genera. Mycologia 2005, 97, 844–865. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, H.-Z.; Yang, J.; Liu, N.-G.; Cheewangkoon, R.; Liu, J.-K. Morpho-Phylogenetic Evidence Reveals New Species of Fuscosporellaceae and Savoryellaceae from Freshwater Habitats in Guizhou Province, China. J. Fungi 2022, 8, 1138. https://doi.org/10.3390/jof8111138
Du H-Z, Yang J, Liu N-G, Cheewangkoon R, Liu J-K. Morpho-Phylogenetic Evidence Reveals New Species of Fuscosporellaceae and Savoryellaceae from Freshwater Habitats in Guizhou Province, China. Journal of Fungi. 2022; 8(11):1138. https://doi.org/10.3390/jof8111138
Chicago/Turabian StyleDu, Hong-Zhi, Jing Yang, Ning-Guo Liu, Ratchadawan Cheewangkoon, and Jian-Kui Liu. 2022. "Morpho-Phylogenetic Evidence Reveals New Species of Fuscosporellaceae and Savoryellaceae from Freshwater Habitats in Guizhou Province, China" Journal of Fungi 8, no. 11: 1138. https://doi.org/10.3390/jof8111138
APA StyleDu, H. -Z., Yang, J., Liu, N. -G., Cheewangkoon, R., & Liu, J. -K. (2022). Morpho-Phylogenetic Evidence Reveals New Species of Fuscosporellaceae and Savoryellaceae from Freshwater Habitats in Guizhou Province, China. Journal of Fungi, 8(11), 1138. https://doi.org/10.3390/jof8111138