In Vitro Characterization of Human Cell Sources in Collagen Type I Gel Scaffold for Meniscus Tissue Engineering
Abstract
:1. Introduction
2. Results and Discussion
2.1. Cell Isolation and Characterization
2.2. Cells Differentiation Assessment
2.3. Cells-Scaffold Interaction
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. Cell Isolation and Characterization
5.2. Cells Differentiation Assessment
5.3. Cells-Scaffold Interaction
5.4. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gee, S.M.; Posner, M. Meniscus Anatomy and Basic Science. Sports Med. Arthrosc. Rev. 2021, 29, e18–e23. [Google Scholar] [CrossRef] [PubMed]
- Deponti, D.; Di Giancamillo, A.; Scotti, C.; Peretti, G.M.; Martin, I. Animal models for meniscus repair and regeneration. J. Tissue Eng. Regen. Med. 2015, 9, 512–527. [Google Scholar] [CrossRef] [PubMed]
- Lombardo, M.D.M.; Mangiavini, L.; Peretti, G.M. Biomaterials and Meniscal Lesions: Current Concepts and Future Perspective. Pharmaceutics 2021, 13, 1886. [Google Scholar] [CrossRef] [PubMed]
- Canciani, B.; Semeraro, F.; Herrera Millar, V.R.; Gervaso, F.; Polini, A.; Stanzione, A.; Peretti, G.M.; Di Giancamillo, A.; Mangiavini, L. In Vitro and In Vivo Biocompatibility Assessment of a Thermosensitive Injectable Chitosan-Based Hydrogel for Musculoskeletal Tissue Engineering. Int. J. Mol. Sci. 2023, 24, 10446. [Google Scholar] [CrossRef]
- Bian, Y.; Wang, H.; Zhao, X.; Weng, X. Meniscus repair: Up-to-date advances in stem cell-based therapy. Stem Cell Res. Ther. 2022, 13, 207. [Google Scholar] [CrossRef]
- Winkler, P.W.; Rothrauff, B.B.; Buerba, R.A.; Shah, N.; Zaffagnini, S.; Alexander, P.; Musahl, V. Meniscal substitution, a developing and long-awaited demand. J. Exp. Orthop. 2020, 7, 55. [Google Scholar] [CrossRef]
- de Girolamo, L.; Ragni, E.; Cucchiarini, M.; van Bergen, C.J.A.; Hunziker, E.B.; Chubinskaya, S. Cells, soluble factors and matrix harmonically play the concert of allograft integration. Knee Surg. Sports Traumatol. Arthrosc. 2019, 27, 1717–1725. [Google Scholar] [CrossRef]
- Bochyńska, A.I.; Van Tienen, T.G.; Hannink, G.; Buma, P.; Grijpma, D.W. Development of biodegradable hyper-branched tissue adhesives for the repair of meniscus tears. Acta Biomater. 2016, 32, 1–9. [Google Scholar] [CrossRef]
- Rongen, J.J.; van Tienen, T.G.; van Bochove, B.; Grijpma, D.W.; Buma, P. Biomaterials in search of a meniscus substitute. Biomaterials 2014, 35, 3527–3540. [Google Scholar] [CrossRef]
- Vrancken, A.C.; Buma, P.; van Tienen, T.G. Synthetic meniscus replacement: A review. Int. Orthop. 2013, 37, 291–299. [Google Scholar] [CrossRef]
- Hannink, G.; van Tienen, T.G.; Schouten, A.J.; Buma, P. Changes in articular cartilage after meniscectomy and meniscus replacement using a biodegradable porous polymer implant. Knee Surg. Sports Traumatol. Arthrosc. 2011, 19, 441–451. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, S.; Koerber, L.; Elsaesser, A.F.; Goldberg-Bockhorn, E.; Seitz, A.M.; Dürselen, L.; Ignatius, A.; Walther, P.; Breiter, R.; Rotter, N. Decellularized cartilage matrix as a novel biomatrix for cartilage tissue-engineering applications. Tissue Eng. Part A 2012, 18, 2195–2209. [Google Scholar] [CrossRef] [PubMed]
- Suamte, L.; Tirkey, A.; Barman, J.; Jayasekhar Babu, P. Various manufacturing methods and ideal properties of scaffolds for tissue engineering applications. Smart Mater. Manuf. 2023, 1, 100011. [Google Scholar] [CrossRef]
- Irfan, N.I.; Mohd Zubir, A.Z.; Suwandi, A.; Haris, M.S.; Jaswir, I.; Lestari, W. Gelatin-based hemostatic agents for medical and dental application at a glance: A narrative literature review. Saudi Dent. J. 2022, 34, 699–707. [Google Scholar] [CrossRef]
- Twomey-Kozak, J.; Jayasuriya, C.T. Meniscus Repair and Regeneration: A Systematic Review from a Basic and Translational Science Perspective. Clin. Sports Med. 2020, 39, 125–163. [Google Scholar] [CrossRef]
- Korpershoek, J.V.; de Windt, T.S.; Hagmeijer, M.H.; Vonk, L.A.; Saris, D.B. Cell-Based Meniscus Repair and Regeneration: At the Brink of Clinical Translation?: A Systematic Review of Preclinical Studies. Orthop. J. Sports Med. 2017, 5, 2325967117690131. [Google Scholar] [CrossRef]
- Vyhlidal, M.J.; Adesida, A.B. Mechanotransduction in meniscus fibrochondrocytes: What about caveolae? J. Cell Physiol. 2022, 237, 1171–1181. [Google Scholar] [CrossRef]
- Scotti, C.; Hirschmann, M.T.; Antinolfi, P.; Martin, I.; Peretti, G.M. Meniscus repair and regeneration: Review on current methods and research potential. Eur. Cell Mater. 2013, 26, 150–170. [Google Scholar] [CrossRef]
- Puiggalí-Jou, A.; Asadikorayem, M.; Maniura-Weber, K.; Zenobi-Wong, M. Growth factor–loaded sulfated microislands in granular hydrogels promote hMSCs migration and chondrogenic differentiation. Acta Biomater. 2023, 166, 69–84. [Google Scholar] [CrossRef]
- Ding, G.; Du, J.; Hu, X.; Ao, Y. Mesenchymal Stem Cells From Different Sources in Meniscus Repair and Regeneration. Front. Bioeng. Biotechnol. 2022, 10, 796367. [Google Scholar] [CrossRef]
- Elkhenany, H.A.; Szojka, A.R.A.; Mulet-Sierra, A.; Liang, Y.; Kunze, M.; Lan, X.; Sommerfeldt, M.; Jomha, N.M.; Adesida, A.B. Bone Marrow Mesenchymal Stem Cell-Derived Tissues are Mechanically Superior to Meniscus Cells. Tissue Eng. Part A 2021, 27, 914–928. [Google Scholar] [CrossRef] [PubMed]
- Ulivi, M.; Meroni, V.; Viganò, M.; Colombini, A.; Lombardo, M.D.M.; Rossi, N.; Orlandini, L.; Messina, C.; Sconfienza, L.M.; Peretti, G.M.; et al. Micro-fragmented adipose tissue (mFAT) associated with arthroscopic debridement provides functional improvement in knee osteoarthritis: A randomized controlled trial. Knee Surg. Sports Traumatol. Arthrosc. 2022, 31, 3079–3090. [Google Scholar] [CrossRef] [PubMed]
- Rossi, N.; Hadad, H.; Bejar-Chapa, M.; Peretti, G.M.; Randolph, M.A.; Redmond, R.W.; Guastaldi, F.P.S. Bone Marrow Stem Cells with Tissue-Engineered Scaffolds for Large Bone Segmental Defects. A Systematic Review. Tissue Eng. Part B Rev. 2023, 29, 457–472. [Google Scholar] [CrossRef]
- Boffa, A.; Perucca Orfei, C.; Sourugeon, Y.; Laver, L.; Magalon, J.; Sánchez, M.; Tischer, T.; de Girolamo, L.; Filardo, G. Cell-based therapies have disease-modifying effects on osteoarthritis in animal models. A systematic review by the ESSKA Orthobiologic Initiative. Part 2: Bone marrow-derived cell-based injectable therapies. Knee Surg. Sports Traumatol. Arthrosc. 2023, 31, 3230–3242. [Google Scholar] [CrossRef]
- Moradi, A.; Ataollahi, F.; Sayar, K.; Pramanik, S.; Chong, P.P.; Khalil, A.A.; Kamarul, T.; Pingguan-Murphy, B. Chondrogenic potential of physically treated bovine cartilage matrix derived porous scaffolds on human dermal fibroblast cells. J. Biomed. Mater. Res. Part A 2016, 104, 245–256. [Google Scholar] [CrossRef] [PubMed]
- Lan, X.; Boluk, Y.; Adesida, A.B. 3D Bioprinting of Hyaline Cartilage Using Nasal Chondrocytes. Ann. Biomed. Eng. 2024, 52, 1816–1834. [Google Scholar] [CrossRef] [PubMed]
- Brophy, R.H.; Fillingham, Y.A. AAOS Clinical Practice Guideline Summary: Management of Osteoarthritis of the Knee (Nonarthroplasty), Third Edition. J. Am. Acad. Orthop. Surg. 2022, 30, e721–e729. [Google Scholar] [CrossRef]
- Kremer, A.; Ribitsch, I.; Reboredo, J.; Dürr, J.; Egerbacher, M.; Jenner, F.; Walles, H. Three-Dimensional Coculture of Meniscal Cells and Mesenchymal Stem Cells in Collagen Type I Hydrogel on a Small Intestinal Matrix-A Pilot Study Toward Equine Meniscus Tissue Engineering. Tissue Eng. Part A 2017, 23, 390–402. [Google Scholar] [CrossRef]
- Zhou, S.K.; Zhang, K.L.; Wang, Y.; Fu, Q. Application of cell sheet technology in tissue engineering. Chin. J. Tissue Eng. Res. 2016, 20, 1631–1636. [Google Scholar] [CrossRef]
- Caplan, A.I. Adult mesenchymal stem cells for tissue engineering versus regenerative medicine. J. Cell Physiol. 2007, 213, 341–347. [Google Scholar] [CrossRef]
- Caplan, A.I.; Correa, D. The MSC: An injury drugstore. Cell Stem Cell 2011, 9, 11–15. [Google Scholar] [CrossRef] [PubMed]
- Tan, S.H.S.; Kwan, Y.T.; Neo, W.J.; Chong, J.Y.; Kuek, T.Y.J.; See, J.Z.F.; Wong, K.L.; Toh, W.S.; Hui, J.H.P. Intra-articular Injections of Mesenchymal Stem Cells Without Adjuvant Therapies for Knee Osteoarthritis: A Systematic Review and Meta-analysis. Am. J. Sports Med. 2021, 49, 3113–3124. [Google Scholar] [CrossRef] [PubMed]
- Andriolo, L.; Reale, D.; Di Martino, A.; Boffa, A.; Zaffagnini, S.; Filardo, G. Cell-Free Scaffolds in Cartilage Knee Surgery: A Systematic Review and Meta-Analysis of Clinical Evidence. Cartilage 2021, 12, 277–292. [Google Scholar] [CrossRef]
- Vayas, R.; Reyes, R.; Arnau, M.R.; Évora, C.; Delgado, A. Injectable Scaffold for Bone Marrow Stem Cells and Bone Morphogenetic Protein-2 to Repair Cartilage. Cartilage 2021, 12, 293–306. [Google Scholar] [CrossRef]
- Wuttisiriboon, K.; Tippayawat, P.; Daduang, J.; Limpaiboon, T. Three-dimensional silk fibroin-gelatin/chondroitin sulfate/hyaluronic acid–aloe vera scaffold supports in vitro chondrogenesis of bone marrow mesenchymal stem cells and reduces inflammatory effect. J. Biomed. Mater. Res. Part B Appl. Biomater. 2023, 111, 1557–1570. [Google Scholar] [CrossRef]
- Toratani, T.; Nakase, J.; Numata, H.; Oshima, T.; Takata, Y.; Nakayama, K.; Tsuchiya, H. Scaffold-Free Tissue-Engineered Allogenic Adipose-Derived Stem Cells Promote Meniscus Healing. Arthroscopy 2017, 33, 346–354. [Google Scholar] [CrossRef]
- Takata, Y.; Nakase, J.; Shimozaki, K.; Asai, K.; Tsuchiya, H. Autologous Adipose-Derived Stem Cell Sheet Has Meniscus Regeneration-Promoting Effects in a Rabbit Model. Arthroscopy 2020, 36, 2698–2707. [Google Scholar] [CrossRef]
- French, M.M.; Rose, S.; Canseco, J.; Athanasiou, K.A. Chondrogenic differentiation of adult dermal fibroblasts. Ann. Biomed. Eng. 2004, 32, 50–56. [Google Scholar] [CrossRef] [PubMed]
- Mizuno, S.; Glowacki, J. Low oxygen tension enhances chondroinduction by demineralized bone matrix in human dermal fibroblasts in vitro. Cells Tissues Organs 2005, 180, 151–158. [Google Scholar] [CrossRef]
- Lu, L.; Shang, X.; Liu, B.; Chen, W.; Zhang, Y.; Liu, S.; Sui, X.; Wang, A.; Guo, Q. Repair of articular cartilage defect using adipose-derived stem cell-loaded scaffold derived from native cartilage extracellular matrix. J. Cell. Physiol. 2021, 236, 4244–4257. [Google Scholar] [CrossRef]
- Wang, Z.; Li, X.; Yang, J.; Gong, Y.; Zhang, H.; Qiu, X.; Liu, Y.; Zhou, C.; Chen, Y.; Greenbaum, J.; et al. Single-cell RNA sequencing deconvolutes the in vivo heterogeneity of human bone marrow-derived mesenchymal stem cells. Int. J. Biol. Sci. 2021, 17, 4192–4206. [Google Scholar] [CrossRef] [PubMed]
- Chu, D.T.; Phuong, T.N.T.; Tien, N.L.B.; Tran, D.K.; Thanh, V.V.; Quang, T.L.; Truong, D.T.; Pham, V.H.; Ngoc, V.T.N.; Chu-Dinh, T.; et al. An Update on the Progress of Isolation, Culture, Storage, and Clinical Application of Human Bone Marrow Mesenchymal Stem/Stromal Cells. Int. J. Mol. Sci. 2020, 21, 708. [Google Scholar] [CrossRef] [PubMed]
- Danišovič, L.; Varga, I.; Polák, S. Growth factors and chondrogenic differentiation of mesenchymal stem cells. Tissue Cell 2012, 44, 69–73. [Google Scholar] [CrossRef]
- Carballo, C.B.; Coelho, T.R.P.; de Holanda Afonso, R.C.; Faria, J.C.O.; Alves, T.; Monte, S.M.; Ventura Matioszek, G.M.; Moura-Neto, V.; Brito, J.M. Osteoarthritic Synovial Fluid and TGF-β1 Induce Interleukin-18 in Articular Chondrocytes. Cartilage 2020, 11, 385–394. [Google Scholar] [CrossRef]
- Danisovic, L.; Varga, I.; Polák, S.; Ulicná, M.; Hlavacková, L.; Böhmer, D.; Vojtassák, J. Comparison of in vitro chondrogenic potential of human mesenchymal stem cells derived from bone marrow and adipose tissue. Gen. Physiol. Biophys. 2009, 28, 56–62. [Google Scholar] [CrossRef]
- Stevens, M.M.; Marini, R.P.; Martin, I.; Langer, R.; Prasad Shastri, V. FGF-2 enhances TGF-beta1-induced periosteal chondrogenesis. J. Orthop. Res. 2004, 22, 1114–1119. [Google Scholar] [CrossRef]
- Thorpe, S.D.; Buckley, C.T.; Vinardell, T.; O’Brien, F.J.; Campbell, V.A.; Kelly, D.J. The response of bone marrow-derived mesenchymal stem cells to dynamic compression following TGF-beta3 induced chondrogenic differentiation. Ann. Biomed. Eng. 2010, 38, 2896–2909. [Google Scholar] [CrossRef]
- Rui, Y.F.; Du, L.; Wang, Y.; Wang, Y.; Lui, P.P.; Tang, T.T.; Chan, K.M.; Dai, K.R. Bone morphogenetic protein 2 promotes transforming growth factor β3-induced chondrogenesis of human osteoarthritic synovium-derived stem cells. Chin. Med. J. Engl. 2010, 123, 3040–3048. [Google Scholar] [PubMed]
- An, C.; Cheng, Y.; Yuan, Q.; Li, J. IGF-1 and BMP-2 induces differentiation of adipose-derived mesenchymal stem cells into chondrocytes-like cells. Ann. Biomed. Eng. 2010, 38, 1647–1654. [Google Scholar] [CrossRef]
- Rodkey, W.G.; DeHaven, K.E.; Montgomery, W.H., 3rd; Baker, C.L., Jr.; Beck, C.L., Jr.; Hormel, S.E.; Steadman, J.R.; Cole, B.J.; Briggs, K.K. Comparison of the collagen meniscus implant with partial meniscectomy. A prospective randomized trial. J. Bone Jt. Surg. Am. 2008, 90, 1413–1426. [Google Scholar] [CrossRef]
- Sosio, C.; Di Giancamillo, A.; Deponti, D.; Gervaso, F.; Scalera, F.; Melato, M.; Campagnol, M.; Boschetti, F.; Nonis, A.; Domeneghini, C.; et al. Osteochondral repair by a novel interconnecting collagen-hydroxyapatite substitute: A large-animal study. Tissue Eng. Part A 2015, 21, 704–715. [Google Scholar] [CrossRef] [PubMed]
- Fensky, F.; Reichert, J.C.; Traube, A.; Rackwitz, L.; Siebenlist, S.; Nöth, U. Chondrogenic predifferentiation of human mesenchymal stem cells in collagen type I hydrogels. Biomed. Eng. 2014, 59, 375–383. [Google Scholar] [CrossRef] [PubMed]
- Navarro, F.A.; Mizuno, S.; Huertas, J.C.; Glowacki, J.; Orgill, D.P. Perfusion of medium improves growth of human oral neomucosal tissue constructs. Wound Repair. Regen. 2001, 9, 507–512. [Google Scholar] [CrossRef] [PubMed]
- Titmarsh, D.M.; Tan, C.L.; Glass, N.R.; Nurcombe, V.; Cooper-White, J.J.; Cool, S.M. Microfluidic Screening Reveals Heparan Sulfate Enhances Human Mesenchymal Stem Cell Growth by Modulating Fibroblast Growth Factor-2 Transport. Stem Cells Transl. Med. 2017, 6, 1178–1190. [Google Scholar] [CrossRef] [PubMed]
- Gandhi, J.K.; Kao, S.W.; Roux, B.M.; Rodriguez, R.A.; Tang, S.J.; Fisher, J.P.; Cheng, M.H.; Brey, E.M. Perfusion Bioreactor Culture of Bone Marrow Stromal Cells Enhances Cranial Defect Regeneration. Plast. Reconstr. Surg. 2019, 143, 993e–1002e. [Google Scholar] [CrossRef]
- Whitehouse, M.R.; Howells, N.R.; Parry, M.C.; Austin, E.; Kafienah, W.; Brady, K.; Goodship, A.E.; Eldridge, J.D.; Blom, A.W.; Hollander, A.P. Repair of torn avascular meniscal cartilage using undifferentiated autologous mesenchymal stem cells: From in vitro optimization to a first-in-human study. Stem Cells Transl. Med. 2017, 6, 1237–1248. [Google Scholar] [CrossRef]
- Iaquinta, M.R.; Mazzoni, E.; Manfrini, M.; D’Agostino, A.; Trevisiol, L.; Nocini, R.; Trombelli, L.; Barbanti-Brodano, G.; Martini, F.; Tognon, M. Innovative Biomaterials for Bone Regrowth. Int. J. Mol. Sci. 2019, 20, 618. [Google Scholar] [CrossRef]
- Holvoet, P. Aging and Metabolic Reprogramming of Adipose-Derived Stem Cells Affect Molecular Mechanisms Related to Cardiovascular Diseases. Cells 2023, 12, 2785. [Google Scholar] [CrossRef]
- Foti, R.; Storti, G.; Palmesano, M.; Scioli, M.G.; Fiorelli, E.; Terriaca, S.; Cervelli, G.; Kim, B.S.; Orlandi, A.; Cervelli, V. Senescence in Adipose-Derived Stem Cells: Biological Mechanisms and Therapeutic Challenges. Int. J. Mol. Sci. 2024, 25, 8390. [Google Scholar] [CrossRef]
- de Girolamo, L.; Lopa, S.; Arrigoni, E.; Sartori, M.F.; Baruffaldi Preis, F.W.; Brini, A.T. Human adipose-derived stem cells isolated from young and elderly women: Their differentiation potential and scaffold interaction during in vitro osteoblastic differentiation. Cytotherapy 2009, 11, 793–803. [Google Scholar] [CrossRef]
- Torreggiani, E.; Lisignoli, G.; Manferdini, C.; Lambertini, E.; Penolazzi, L.; Vecchiatini, R.; Gabusi, E.; Chieco, P.; Facchini, A.; Gambari, R.; et al. Role of Slug transcription factor in human mesenchymal stem cells. J. Cell Mol. Med. 2012, 16, 740–751. [Google Scholar] [CrossRef] [PubMed]
- Sacerdote, P.; Niada, S.; Franchi, S.; Arrigoni, E.; Rossi, A.; Yenagi, V.; de Girolamo, L.; Panerai, A.E.; Brini, A.T. Systemic administration of human adipose-derived stem cells reverts nociceptive hypersensitivity in an experimental model of neuropathy. Stem Cells Dev. 2013, 22, 1252–1263. [Google Scholar] [CrossRef] [PubMed]
- Stone, R.N.; Frahs, S.M.; Hardy, M.J.; Fujimoto, A.; Pu, X.; Keller-peck, C.; Oxford, J.T. Decellularized porcine cartilage scaffold; validation of decellularization and evaluation of biomarkers of chondrogenesis. Int. J. Mol. Sci. 2021, 22, 6241. [Google Scholar] [CrossRef] [PubMed]
- De Bari, C.; Dell’Accio, F.; Luyten, F.P. Human periosteum-derived cells maintain phenotypic stability and chondrogenic potential throughout expansion regardless of donor age. Arthritis Rheum. 2001, 44, 85–95. [Google Scholar] [CrossRef] [PubMed]
- Scotti, C.; Osmokrovic, A.; Wolf, F.; Miot, S.; Peretti, G.M.; Barbero, A.; Martin, I. Response of human engineered cartilage based on articular or nasal chondrocytes to interleukin-1β and low oxygen. Tissue Eng. Part A 2012, 18, 362–372. [Google Scholar] [CrossRef]
- Zhou, L.; Ding, R.; Xu, B.; Fan, X.; Li, B.; Wang, G.; Han, H.; Wang, H.; Wang, F.; Wu, W. Application of microfibrillar collagen hemostat sponge for cartilage engineering. Int. J. Clin. Exp. Med. 2016, 9, 6127–6132. [Google Scholar]
Population | Micromasses Size (µm) |
---|---|
ASCs SFM | 933.35 ± 28.83 × 878.18 ± 59.05 |
ASCs M1 | 963.25 ± 28.15 × 998.88 ± 50.13 |
ASCs M2 | 723.34 ± 27.46 × 780.43 ± 41.21 |
BMSCs SFM | 625.49 ± 63.92 × 539.54 ± 162.93 |
BMSCs M1 | 1265.87 ± 90.45 × 1258.26 ± 120.52 *** |
BMSCs M2 | 675.03 ± 37.39 × 621.66 ± 205.33 |
DFs SFM | 678.87 ± 38.38 × 605.54 ± 15.83 |
DFs M1 | 571.20 ± 21.88 × 586.74 ± 40.09 |
DFs M2 | 670.98 ± 26.54 × 610.03 ± 26.62 |
Medium | Composition | Growth Factors |
---|---|---|
Expansion Medium (α-MEM) | α-MEM * 10% FBS * 100 U/mL Penicillin * 100 µg/mL Streptomycin * 2 mM L-Glutamine * 100 mM HEPES buffer * 1 mM Sodium Pyruvate * | 5 ng/mL FGF-2 § |
Control Medium (CTRL) | DMEM * 10% FBS 100 U/mL Penicillin 100 µg/mL Streptomycin 2 mM L-Glutamine 100 mM HEPES buffer 1 mM Sodium Pyruvate | |
Adipogenic Medium (ADIPO) | CTRL medium | 1 µMDexamethasone £ 200 µM Indometacin £ 500 µM IBMX £ 10 µg/mL Insulin £ |
Osteogenic Medium (OSTEO) | CTRL medium | 0.01 µMDexamethasone 0.15 mM Ascorbic acid 2-phosphate £ 10 nM Cholecalciferol £ 10 mM β-glycero-phosphate £ |
Serum Free Medium (SFM) | DMEM 100 U/mL Penicillin 100 µg/mL Streptomycin 2 mM L-Glutamine 100 mM HEPES buffer 1 mM Sodium Pyruvate 1× ITS (10 µg/mL insulin, 5.5 µg/mL transferrin, 5 ng/mL selenium) * 1.25 mg/mL Human Serum Albumine (HSA) ° | |
Fibro-Chondrogenic Medium (M1) | SFM medium | 0.1 µM Dexamethasone 0.1 M mM Ascorbic acid 2-phosphate 10 ng/mL TGF-β3 § 10 ng/mL BMP-2 § |
Fibro-Chondrogenic Medium (M2) | SFM medium | 0.1 µM Dexamethasone 0.1 M mM Ascorbic acid 2-phosphate 10 ng/mL TGF-β1 § 10 ng/mL BMP-7 § 200 ng/mL IGF-1 £ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Canciani, B.; Rossi, N.; Arrigoni, E.; Giorgino, R.; Sergio, M.; Aidos, L.; Di Giancamillo, M.; Herrera Millar, V.R.; Peretti, G.M.; Di Giancamillo, A.; et al. In Vitro Characterization of Human Cell Sources in Collagen Type I Gel Scaffold for Meniscus Tissue Engineering. Gels 2024, 10, 767. https://doi.org/10.3390/gels10120767
Canciani B, Rossi N, Arrigoni E, Giorgino R, Sergio M, Aidos L, Di Giancamillo M, Herrera Millar VR, Peretti GM, Di Giancamillo A, et al. In Vitro Characterization of Human Cell Sources in Collagen Type I Gel Scaffold for Meniscus Tissue Engineering. Gels. 2024; 10(12):767. https://doi.org/10.3390/gels10120767
Chicago/Turabian StyleCanciani, Barbara, Nicolò Rossi, Elena Arrigoni, Riccardo Giorgino, Mirko Sergio, Lucia Aidos, Mauro Di Giancamillo, Valentina Rafaela Herrera Millar, Giuseppe M. Peretti, Alessia Di Giancamillo, and et al. 2024. "In Vitro Characterization of Human Cell Sources in Collagen Type I Gel Scaffold for Meniscus Tissue Engineering" Gels 10, no. 12: 767. https://doi.org/10.3390/gels10120767
APA StyleCanciani, B., Rossi, N., Arrigoni, E., Giorgino, R., Sergio, M., Aidos, L., Di Giancamillo, M., Herrera Millar, V. R., Peretti, G. M., Di Giancamillo, A., & Mangiavini, L. (2024). In Vitro Characterization of Human Cell Sources in Collagen Type I Gel Scaffold for Meniscus Tissue Engineering. Gels, 10(12), 767. https://doi.org/10.3390/gels10120767