Emerging Role of MicroRNA-200 Family in Dentistry
Abstract
:1. Introduction
2. microRNA-200 (miR-200) family
2.1. Expression Levels of the miR-200 Family
2.2. Biological Functions of the miR-200 Family
2.2.1. miR-200 Family, EMT, and Cancer Stemness
2.2.2. miR-141 and Epidermal Growth Factor Receptor (EGFR)
2.2.3. miR-200 Family and lncRNAs
2.3. Clinical Significance of the miR-200 Family
3. Periodontal Diseases
3.1. Expression Levels of the miR-200 Family
3.2. Biological Functions and Clinical Application of the miR-200 Family
4. Oral Submucous Fibrosis (OSF)
5. Gingival Overgrowth
6. Oral Mucositis
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Beclin, C.; Follert, P.; Stappers, E.; Barral, S.; Coré, N.; De Chevigny, A.; Magnone, V.; Lebrigand, K.; Bissels, U.; Huyle-broeck, D. miR-200 family controls late steps of postnatal forebrain neurogenesis via Zeb2 inhibition. Sci. Rep. 2016, 6, 1–12. [Google Scholar]
- Padgett, R.A.; Grabowski, P.J.; Konarska, M.M.; Seiler, S.; Sharp, P.A. Splicing of Messenger RNA Precursors. Annu. Rev. Biochem. 1986, 55, 1119–1150. [Google Scholar] [CrossRef] [PubMed]
- Smith, C.M.; A Steitz, J. Sno Storm in the Nucleolus: New Roles for Myriad Small RNPs. Cell 1997, 89, 669–672. [Google Scholar] [CrossRef] [Green Version]
- Lee, R.C.; Feinbaum, R.L.; Ambros, V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense comple-mentarity to lin-14. Cell 1993, 75, 843–854. [Google Scholar] [CrossRef]
- Reinhart, B.J.; Slack, F.; Basson, M.; Pasquinelli, A.E.; Bettinger, J.C.; Rougvie, A.E.; Horvitz, H.R.; Ruvkun, G. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nat. Cell Biol. 2000, 403, 901–906. [Google Scholar] [CrossRef] [PubMed]
- Amaral, P.D.P.; Mattick, J.S. Noncoding RNA in development. Mamm. Genome 2008, 19, 454–492. [Google Scholar] [CrossRef] [PubMed]
- Cech, T.R.; Steitz, J.A. The Noncoding RNA Revolution—Trashing Old Rules to Forge New Ones. Cell 2014, 157, 77–94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mattick, J.S. The Functional Genomics of Noncoding RNA. Science 2005, 309, 1527–1528. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hsieh, P.-L.; Liao, Y.-W.; Pichler, M.; Yu, C.-C. MicroRNAs as Theranostics Targets in Oral Carcinoma Stem Cells. Cancers 2020, 12, 340. [Google Scholar] [CrossRef] [Green Version]
- Visone, R.; Croce, C.M. MiRNAs and Cancer. Am. J. Pathol. 2009, 174, 1131–1138. [Google Scholar] [CrossRef] [PubMed]
- Yan, H.; Bu, P. Non-coding RNAs in cancer stem cells. Cancer Lett. 2018, 421, 121–126. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Wu, J.; Chen, S.; Zhao, Y. Cancer stem cells: A new target for cancer therapy. Histol. Histopathol. 2018, 33, 1247–1252. [Google Scholar]
- Kyriazi, A.A.; Papiris, E.; Kalyvianakis, K.K.; Sakellaris, G.; Baritaki, S. Dual Effects of Non-Coding RNAs (ncRNAs) in Cancer Stem Cell Biology. Int. J. Mol. Sci. 2020, 21, 6658. [Google Scholar] [CrossRef] [PubMed]
- Mitra, S.; Mitra, A.P.; Triche, T.J.M. A Central Role for Long Non-Coding RNA in Cancer. Front. Genet. 2012, 3, 17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wightman, B.; Ha, I.; Ruvkun, G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 1993, 75, 855–862. [Google Scholar] [CrossRef]
- Iyer, M.K.; Niknafs, Y.S.; Malik, R.; Singhal, U.; Sahu, A.; Hosono, Y.; Barrette, T.R.; Prensner, J.; Evans, J.R.; Zhao, S.; et al. The landscape of long noncoding RNAs in the human transcriptome. Nat. Genet. 2015, 47, 199–208. [Google Scholar] [CrossRef]
- Cabili, M.N.; Trapnell, C.; Goff, L.; Koziol, M.; Tazon-Vega, B.; Regev, A.; Rinn, J.L. Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev. 2011, 25, 1915–1927. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chi, Y.; Wang, J.; Yu, W.; Yang, J. Long Non-Coding RNA in the Pathogenesis of Cancers. Cells 2019, 8, 1015. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.C.; Chang, H.Y. Molecular Mechanisms of Long Noncoding RNAs. Mol. Cell 2011, 43, 904–914. [Google Scholar] [CrossRef] [Green Version]
- Amaral, P.D.P.; Clark, M.B.; Gascoigne, D.K.; Dinger, M.E.; Mattick, J.S. lncRNAdb: A reference database for long noncoding RNAs. Nucleic Acids Res. 2010, 39, D146–D151. [Google Scholar] [CrossRef] [Green Version]
- Koufariotis, L.T.; Chen, Y.-P.P.; Chamberlain, A.; Jagt, C.V.; Hayes, B.J. A catalogue of novel bovine long noncoding RNA across 18 tissues. PLoS ONE 2015, 10, e0141225. [Google Scholar] [CrossRef] [PubMed]
- Tam, C.; Wong, J.H.; Tsui, S.K.-W.; Zuo, T.; Chan, T.F.; Ng, T.B. LncRNAs with miRNAs in regulation of gastric, liver, and colorectal cancers: Updates in recent years. Appl. Microbiol. Biotechnol. 2019, 103, 4649–4677. [Google Scholar] [CrossRef]
- Hu, G.; Niu, F.; Humburg, B.A.; Liao, K.; Bendi, V.S.; Callen, S.; Fox, H.S.; Buch, S. Molecular mechanisms of long noncoding RNAs and their role in disease pathogenesis. Oncotarget 2018, 9, 18648–18663. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sweat, M.; Sweat, Y.; Yu, W.; Su, D.; Leonard, R.J.; Eliason, S.L.; Amendt, B.A. The miR-200 family is required for ectodermal organ development through the regulation of the epithelial stem cell niche. Stem Cells 2021. [Google Scholar] [CrossRef]
- Cao, H.; Jheon, A.; Li, X.; Sun, Z.; Wang, J.; Florez, S.; Zhang, Z.; McManus, M.T.; Klein, O.; Amendt, B.A. The Pitx2:miR-200c/141:noggin pathway regulates Bmp signaling and ameloblast differentiation. Development 2013, 140, 3348–3359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akkouch, A.; Zhu, M.; Romero-Bustillos, M.; Eliason, S.; Qian, F.; Salem, A.K.; Amendt, B.A.; Hong, L. MicroRNA-200c Attenuates Periodontitis by Modulating Proinflammatory and Osteoclastogenic Mediators. Stem Cells Dev. 2019, 28, 1026–1036. [Google Scholar] [CrossRef] [PubMed]
- Gibbons, D.L.; Lin, W.; Creighton, C.J.; Rizvi, Z.H.; Gregory, P.A.; Goodall, G.J.; Thilaganathan, N.; Du, L.; Zhang, Y.; Pertsemlidis, A.; et al. Contextual extracellular cues promote tumor cell EMT and metastasis by regulating miR-200 family expression. Genes Dev. 2009, 23, 2140–2151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, S.-M.; Gaur, A.B.; Lengyel, E.; Peter, M.E. The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes Dev. 2008, 22, 894–907. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hurteau, G.J.; Spivack, S.D.; Brock, G.J. Potential mRNA Degradation Targets of hsa-miR-200c, identified using informatics and qRT-PCR. Cell Cycle (Georget. Tex.) 2006, 5, 1951–1956. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Christoffersen, N.R.; Silahtaroglu, A.; Ørom, U.A.; Kauppinen, S.; Lund, A.H. miR-200b mediates post-transcriptional repression of ZFHX1B. RNA (New York N.Y.) 2007, 13, 1172–1178. [Google Scholar] [CrossRef] [Green Version]
- Schliekelman, M.J.; Gibbons, D.L.; Faca, V.M.; Creighton, C.J.; Rizvi, Z.H.; Zhang, Q.; Wong, C.-H.; Wang, H.; Ungewiss, C.; Ahn, Y.-H.; et al. Targets of the Tumor Suppressor miR-200 in Regulation of the Epithelial–Mesenchymal Transition in Cancer. Cancer Res. 2011, 71, 7670–7682. [Google Scholar] [CrossRef] [Green Version]
- Kozak, J.; Jonak, K.; Maciejewski, R. The function of miR-200 family in oxidative stress response evoked in cancer chemotherapy and radiotherapy. Biomed. Pharmacother. 2020, 125, 110037. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Gao, D.; Ma, T.; Zhang, L. MicroRNA-141 suppresses growth and metastatic potential of head and neck squamous cell carcinoma. Aging 2019, 11, 921–932. [Google Scholar] [CrossRef] [PubMed]
- Tamagawa, S.; Beder, L.B.; Hotomi, M.; Gunduz, M.; Yata, K.; Grenman, R.; Yamanaka, N. Role of miR-200c/miR-141 in the regulation of epithelial-mesenchymal transition and migration in head and neck squamous cell carcinoma. Int. J. Mol. Med. 2014, 33, 879–886. [Google Scholar] [CrossRef] [Green Version]
- Sztukowska, M.N.; Ojo, A.; Ahmed, S.; Carenbauer, A.L.; Wang, Q.; Shumway, B.; Jenkinson, H.F.; Wang, H.; Darling, D.; Lamont, R.J. Porphyromonas gingivalisinitiates a mesenchymal-like transition through ZEB1 in gingival epithelial cells. Cell. Microbiol. 2016, 18, 844–858. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, L.; Yao, Y.; Liu, B.; Lin, Z.; Lin, L.; Yang, M.; Zhang, W.; Chen, W.; Pan, C.; Liu, Q.; et al. MiR-200b and miR-15b regulate chemotherapy-induced epithelial-mesenchymal transition in human tongue cancer cells by targeting BMI1. Oncogene 2011, 31, 432–445. [Google Scholar] [CrossRef] [Green Version]
- Ren, W.; Gao, L.; Qiang, C.; Li, S.; Zheng, J.; Wang, Q.; Zhi, Y.; Cai, G.; Kong, X.; Zhou, M.; et al. Kindlin-2-mediated upreg-ulation of ZEB2 facilitates migration and invasion of oral squamous cell carcinoma in a miR-200b-dependent manner. Am. J. Transl. Res. 2018, 10, 2529–2541. [Google Scholar]
- Arunkumar, G.; Anand, S.; Raksha, P.; Dhamodharan, S.; Rao, H.P.S.; Subbiah, S.; Murugan, A.K.; Munirajan, A.K. LncRNA OIP5-AS1 is overexpressed in undifferentiated oral tumors and integrated analysis identifies as a downstream effector of stemness-associated transcription factors. Sci. Rep. 2018, 8, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kun-Peng, Z.; Chun-Lin, Z.; Xiao-Long, M.; Lei, Z. Fibronectin-1 modulated by the long noncoding RNA OIP5-AS1/miR-200b-3p axis contributes to doxorubicin resistance of osteosarcoma cells. J. Cell. Physiol. 2019, 234, 6927–6939. [Google Scholar] [CrossRef]
- Chang, S.-M.; Hu, W.-W. Long non-coding RNA MALAT1 promotes oral squamous cell carcinoma development via microRNA-125b/STAT3 axis. J. Cell. Physiol. 2018, 233, 3384–3396. [Google Scholar] [CrossRef] [PubMed]
- Xiao, L.; Wang, W.; Zhao, J.; Xu, H.; Li, S.; Yang, X. lncRNA MALAT1 promotes cell proliferation and invasion by regulating the miR-101/EZH2 axis in oral squamous cell carcinoma. Oncol. Lett. 2020, 20, 1. [Google Scholar] [CrossRef] [PubMed]
- Zhuo, M.; Yuan, C.; Han, T.; Cui, J.; Jiao, F.; Wang, L. A novel feedback loop between high MALAT-1 and low miR-200c-3p promotes cell migration and invasion in pancreatic ductal adenocarcinoma and is predictive of poor prognosis. BMC Cancer 2018, 18, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hudcova, K.; Raudenska, M.; Gumulec, J.; Binkova, H.; Horakova, Z.; Kostrica, R.; Babula, P.; Adam, V.; Masarik, M. Expression profiles of miR-29c, miR-200b and miR-375 in tumour and tumour-adjacent tissues of head and neck cancers. Tumor Biol. 2016, 37, 12627–12633. [Google Scholar] [CrossRef] [PubMed]
- Jamali, Z.; Aminabadi, N.A.; Attaran, R.; Pournagiazar, F.; Oskouei, S.G.; Ahmadpour, F. MicroRNAs as prognostic molecular signatures in human head and neck squamous cell carcinoma: A systematic review and meta-analysis. Oral Oncol. 2015, 51, 321–331. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Zhang, N.; Cao, L.; Xiao, D.; Ye, X.; Luo, E.; Zhang, Z. Down-regulation of miR-200c associates with poor prognosis of oral squamous cell carcinoma. Int. J. Clin. Oncol. 2020, 25, 1072–1078. [Google Scholar] [CrossRef] [PubMed]
- Lo, W.-L.; Yu, C.-C.; Chiou, G.-Y.; Chen, Y.-W.; Huang, P.-I.; Chien, C.-S.; Tseng, L.-M.; Chu, P.-Y.; Lu, K.-H.; Chang, K.-W.; et al. MicroRNA-200c attenuates tumour growth and metastasis of presumptive head and neck squamous cell carcinoma stem cells. J. Pathol. 2011, 223, 482–495. [Google Scholar] [CrossRef]
- Arunkumar, G.; Rao, A.K.D.M.; Manikandan, M.; Rao, H.P.S.; Subbiah, S.; Ilangovan, R.; Murugan, A.K.; Munirajan, A.K. Dysregulation of miR-200 family microRNAs and epithelial-mesenchymal transition markers in oral squamous cell carcinoma. Oncol. Lett. 2017, 15, 649–657. [Google Scholar] [CrossRef] [PubMed]
- Bhat, M.Y.; Advani, J.; Rajagopalan, P.; Patel, K.; Nanjappa, V.; Solanki, H.S.; Patil, A.H.; Bhat, F.A.; Mathur, P.; Nair, B.; et al. Cigarette smoke and chewing tobacco alter expression of different sets of miRNAs in oral keratinocytes. Sci. Rep. 2018, 8, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Jensen, D.H.; Dabelsteen, E.; Specht, L.; Fiehn, A.-M.K.; Therkildsen, M.H.; Jønson, L.; Vikesaa, J.; Nielsen, F.C.; von Buchwald, C. Molecular profiling of tumour budding implicates TGFβ-mediated epithelial-mesenchymal transition as a therapeutic target in oral squamous cell carcinoma. J. Pathol. 2015, 236, 505–516. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.J.; Kim, J.S.; Lee, S.; Lee, H.; Yoon, J.; Hong, J.H.; Chun, S.H.; Sun, D.S.; Won, H.S.; Hong, S.A.; et al. QKI, a miR-200 target gene, suppresses epithelial-to-mesenchymal transition and tumor growth. Int. J. Cancer 2019, 145, 1585–1595. [Google Scholar] [CrossRef]
- Wu, H.-T.; Chen, W.-T.; Li, G.-W.; Shen, J.-X.; Ye, Q.-Q.; Zhang, M.-L.; Liu, J. Analysis of the Differentially Expressed Genes Induced by Cisplatin Resistance in Oral Squamous Cell Carcinomas and Their Interaction. Front. Genet. 2020, 10, 1328. [Google Scholar] [CrossRef]
- Brabletz, S.; Bajdak, K.; Meidhof, S.; Burk, U.; Niedermann, G.; Firat, E.; Wellner, U.; Dimmler, A.; Faller, G.; Schubert, J.; et al. The ZEB1/miR-200 feedback loop controls Notch signalling in cancer cells. EMBO J. 2011, 30, 770–782. [Google Scholar] [CrossRef] [PubMed]
- Stoecklin-Wasmer, C.; Guarnieri, P.; Celenti, R.; Demmer, R.; Kebschull, M.; Papapanou, P. MicroRNAs and Their Target Genes in Gingival Tissues. J. Dent. Res. 2012, 91, 934–940. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krongbaramee, T.; Zhu, M.; Qian, Q.; Zhang, Z.; Eliason, S.; Shu, Y.; Qian, F.; Akkouch, A.; Su, D.; Amendt, B.A.; et al. Plasmid encoding microRNA-200c ameliorates periodontitis and systemic inflammation in obese mice. Mol. Ther.-Nucleic Acids 2021, 23, 1204–1216. [Google Scholar] [CrossRef]
- Kalea, A.; Hoteit, R.; Suvan, J.; Lovering, R.; Palmen, J.; Cooper, J.; Khodiyar, V.; Harrington, Z.; Humphries, S.; D’Aiuto, F. Upregulation of Gingival Tissue miR-200b in Obese Periodontitis Subjects. J. Dent. Res. 2015, 94, 59S–69S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matsui, S.; Zhou, L.; Nakayama, Y.; Mezawa, M.; Kato, A.; Suzuki, N.; Tanabe, N.; Nakayama, T.; Suzuki, Y.; Kamio, N.; et al. MiR-200b attenuates IL-6 production through IKKβ and ZEB1 in human gingival fibroblasts. Inflamm. Res. 2018, 67, 965–973. [Google Scholar] [CrossRef] [Green Version]
- Liao, Y.; Yu, C.; Hsieh, P.; Chang, Y. miR-200b ameliorates myofibroblast transdifferentiation in precancerous oral submucous fibrosis through targeting ZEB 2. J. Cell. Mol. Med. 2018, 22, 4130–4138. [Google Scholar] [CrossRef]
- Chang, Y.; Tsai, C.; Lai, Y.; Yu, C.; Chi, W.; Li, J.J.; Chang, W.-W. Arecoline-induced myofibroblast transdifferentiation from human buccal mucosal fibroblasts is mediated by ZEB 1. J. Cell. Mol. Med. 2014, 18, 698–708. [Google Scholar] [CrossRef] [PubMed]
- Lu, M.-Y.; Yu, C.-C.; Chen, P.-Y.; Hsieh, P.-L.; Peng, C.-Y.; Liao, Y.-W.; Yu, C.-H.; Lin, K.-H. miR-200c inhibits the arecoline-associated myofibroblastic transdifferentiation in buccal mucosal fibroblasts. J. Formos. Med Assoc. 2018, 117, 791–797. [Google Scholar] [CrossRef]
- Yang, F.; Lu, J.; Yu, Y.; Gong, Y. Epithelial to mesenchymal transition in Cyclosporine A-induced rat gingival overgrowth. Arch. Oral Biol. 2017, 81, 48–55. [Google Scholar] [CrossRef]
- Lin, T.; Yu, C.-C.; Liao, Y.-W.; Hsieh, P.-L.; Chu, P.-M.; Liu, C.-M.; Yu, C.-H.; Su, T.-R. miR-200a inhibits proliferation rate in drug-induced gingival overgrowth through targeting ZEB2. J. Formos. Med Assoc. 2020, 119, 1299–1305. [Google Scholar] [CrossRef] [PubMed]
- Fu, M.M.; Chin, Y.-T.; Fu, E.; Chiu, H.-C.; Wang, L.-Y.; Chiang, C.-Y.; Tu, H.-P. Role of Transforming Growth Factor-beta1 in Cyclosporine-Induced Epithelial-to-Mesenchymal Transition in Gingival Epithelium. J. Periodontol. 2015, 86, 120–128. [Google Scholar] [CrossRef]
- Lin, T.; Yu, C.-C.; Hsieh, P.-L.; Liao, Y.-W.; Yu, C.-H.; Chen, C.-J. Down-regulation of miR-200b-targeting Slug axis by cyclosporine A in human gingival fibroblasts. J. Formos. Med Assoc. 2018, 117, 1072–1077. [Google Scholar] [CrossRef] [PubMed]
- Tsai, C.-H.; Yu, C.-C.; Lee, S.-S.; Yu, H.-C.; Huang, F.-M.; Chang, Y.-C. Upregulation of Slug expression by cyclosporine A contributes to the pathogenesis of gingival overgrowth. J. Formos. Med Assoc. 2016, 115, 602–608. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tao, J.; Fan, M.; Zhou, D.; Hong, Y.; Zhang, J.; Liu, H.; Sharma, S.; Wang, G.; Dong, Q. miR-200c Modulates the Pathogenesis of Radiation-Induced Oral Mucositis. Oxidative Med. Cell. Longev. 2019, 2019, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Suo, H.-B.; Zhang, K.-C.; Zhao, J. MiR-200a promotes cell invasion and migration of ovarian carcinoma by targeting PTEN. Eur. Rev. Med Pharmacol. Sci. 2018, 22, 4080–4089. [Google Scholar] [CrossRef] [PubMed]
- Fontana, A.; Barbano, R.; Dama, E.; Pasculli, B.; Rendina, M.; Morritti, M.G.; Melocchi, V.; Castelvetere, M.; Valori, V.M.; Ravaioli, S.; et al. Combined analysis of miR-200 family and its significance for breast cancer. Sci. Rep. 2021, 11, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Cong, N.; Du, P.; Zhang, A.; Shen, F.; Su, J.; Pu, P.; Wang, T.; Zjang, J.; Kang, C.; Zhang, Q. Downregulated microRNA-200a promotes EMT and tumor growth through the Wnt/β-catenin pathway by targeting the E-cadherin repressors ZEB1/ZEB2 in gastric adenocarcinoma. Oncol. Rep. 2013, 29, 1579–1587. [Google Scholar] [CrossRef] [Green Version]
- Mao, Y.; Chen, W.; Wu, H.; Liu, C.; Zhang, J.; Chen, S. Mechanisms and Functions of MiR-200 Family in Hepatocellular Carcinoma. OncoTargets Ther. 2021, 13, 13479–13490. [Google Scholar] [CrossRef] [PubMed]
- Brito, B.D.L.; Lourenço, S.V.; Damascena, A.S.; Kowalski, L.P.; Soares, F.A.; Coutinho-Camillo, C.M. Expression of stem cell-regulating miRNAs in oral cavity and oropharynx squamous cell carcinoma. J. Oral Pathol. Med. 2016, 45, 647–654. [Google Scholar] [CrossRef]
- Chen, W.; Yi, J.K.; Shimane, T.; Mehrazarin, S.; Lin, Y.-L.; Shin, K.-H.; Kim, R.H.; Park, N.-H.; Kang, M.K. Grainyhead-like 2 regulates epithelial plasticity and stemness in oral cancer cells. Carcinogenesis 2016, 37, 500–510. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, G.; Guo, X.; Hong, W.; Liu, Q.; Wei, T.; Lu, C.; Gao, L.; Ye, D.; Zhou, Y.; Chen, J.; et al. Critical regulation of miR-200/ZEB2 pathway in Oct4/Sox2-induced mesenchymal-to-epithelial transition and induced pluripotent stem cell generation. Proc. Natl. Acad. Sci. USA 2013, 110, 2858–2863. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nör, C.; Zhang, Z.; Warner, K.A.; Bernardi, L.; Visioli, F.; Helman, J.I.; Roesler, R.; Nör, J.E. Cisplatin Induces Bmi-1 and Enhances the Stem Cell Fraction in Head and Neck Cancer. Neoplasia (New York N.Y.) 2014, 16, 137-W8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Z.; Wang, Y.; Yuan, C.; Zhu, Y.; Qiu, J.; Zhang, W.; Qi, B.; Wu, H.; Ye, J.; Jiang, H.; et al. Oncogenic roles of Bmi1 and its therapeutic inhibition by histone deacetylase inhibitor in tongue cancer. Lab. Investig. 2014, 94, 1431–1445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tanaka, T.; Atsumi, N.; Nakamura, N.; Yanai, H.; Komai, Y.; Omachi, T.; Tanaka, K.; Ishigaki, K.; Saiga, K.; Ohsugi, H.; et al. Bmi1-positive cells in the lingual epithelium could serve as cancer stem cells in tongue cancer. Sci. Rep. 2016, 6, 39386. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Kansakar, U.; Markovic, V.; Sossey-Alaoui, K. Role of Kindlin-2 in cancer progression and metastasis. Ann. Transl. Med. 2020, 8, 901. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, T.; Hiroki, K.; Yamashita, Y. The Role of Epidermal Growth Factor Receptor in Cancer Metastasis and Microenvironment. BioMed Res. Int. 2013, 2013, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Pa, M.; Naizaer, G.; Seyiti, A.; Kuerbang, G. Long Noncoding RNA MALAT1 Functions as a Sponge of MiR-200c in Ovarian Cancer. Oncol. Res. Featur. Preclin. Clin. Cancer Ther. 2017, 10, 3727. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.C.Y.; Constantinides, C.; Kebschull, M.; Papapanou, P.N. MicroRNAs Regulate Cytokine Responses in Gingival Epithelial Cells. Infect. Immun. 2016, 84, 3282–3289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ogata, Y.; Matsui, S.; Kato, A.; Zhou, L.; Nakayama, Y.; Takai, H. MicroRNA expression in inflamed and noninflamed gingival tissues from Japanese patients. J. Oral Sci. 2014, 56, 253–260. [Google Scholar] [CrossRef] [Green Version]
- Wendlandt, E.B.; Graff, J.W.; Gioannini, T.L.; McCaffrey, A.P.; Wilson, M.E. The role of MicroRNAs miR-200b and miR-200c in TLR4 signaling and NF-κB activation. Innate Immun. 2012, 18, 846–855. [Google Scholar] [CrossRef] [Green Version]
- Hong, L.; Sharp, T.; Khorsand, B.; Fischer, C.; Eliason, S.; Salem, A.; Akkouch, A.; Brogden, K.; Amendt, B.A. MicroRNA-200c Represses IL-6, IL-8, and CCL-5 Expression and Enhances Osteogenic Differentiation. PLoS ONE 2016, 11, e0160915. [Google Scholar] [CrossRef] [PubMed]
- Hinz, B.; Celetta, G.; Tomasek, J.J.; Gabbiani, G.; Chaponnier, C. Alpha-Smooth Muscle Actin Expression Upregulates Fibroblast Contractile Activity. Mol. Biol. Cell 2001, 12, 2730–2741. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dongari-Bagtzoglou, A. Informational Paper:Drug-Associated Gingival Enlargement. J. Periodontol. 2004, 75, 1424–1431. [Google Scholar] [CrossRef] [PubMed]
- Somacarrera, M.; Hernández, G.; Acero, J.; Moskow, B.S. Factors Related to the Incidence and Severity of Cyclosporin-Induced Gingival Overgrowth in Transplant Patients. A Longitudinal Study. J. Periodontol. 1994, 65, 671–675. [Google Scholar] [CrossRef] [PubMed]
- Costa, L.C.; Costa, F.; Cortelli, S.C.; Cortelli, J.R.; Cota, L.O. Gingival Overgrowth in Renal Transplant Subjects: A 44-month follow-up study. Transplantation 2013, 96, 890–896. [Google Scholar] [CrossRef] [PubMed]
Disease | miRNA | Expression | Target (s) and Factor (s) | Note | Reference |
---|---|---|---|---|---|
Oral cancer | miR-141 | Downregulated | EGFR CDK-4 BCL-2 MMP-2 | Reduction of EGFR by overexpression of miR-141 decreases the cell proliferation, apoptosis, migration, and invasion in OSCC cells. | [33] |
miR-141 miR-200c | Downregulated | ZEB1 ZEB2 | Overexpression of miR-141 and -200c reduces EMT in TSCC cells. | [34] | |
miR-200b miR-200c miR-205 | Downregulated | ZEB1 | Downregulation of miR-200b, -200c, and -205 during P.-gingivalis-induced EMT process in gingival epithelial cells. | [35] | |
miR-200b miR-15b | Downregulated | BMI1 | Low levels of miR-200b and -15b in chemotherapy-resistant TSCC cells. Upregulation of BMI1 by suppressing miR-200b and -15b induces EMT and confers chemo-resistance. | [36] | |
miR-200b | Downregulated | ZEB2 Kindlin-2 | Inhibition of ZEB2 and Kindlin-2 by overexpression of miR-200b represses migration and invasion in OSCC cells. | [37] | |
miR-200b | - | lncRNA OIP5-AS1 | lncRNA OIP5-AS1 increases the expression of fibronectin by sponging miR-200b-3p, results in the chemo-resistance. | [38,39] | |
miR-200b | Downregulated | lncRNA MALAT1 | Inhibition of MALAT1 by overexpression of miR-200b-3p may promote OSCC development. | [40,41,42] | |
miR-200c miR-200b | Downregulated | - | Low levels of miR-200 and -200-5p are correlated with advanced TNM stage and poor prognosis. | [43,44,45] | |
miR-200c | Downregulated | BMI1 | Inhibition of BMI1 by overexpression of miR-200c reduces stemness and EMT, and sensitizes HNSCCs to chemotherapy. | [46] | |
miR-200 family | Dysregulated | - | The miR-200 family is dysregulated in chronic chewing tobacco/cigarette smoke oral keratinocytes. | [47,48] | |
miR-200 family | Downregulated | ZEB1 PRPX1 | Downregulation of miR-141 and -200c in OSCC cells with upregulation of ZEB1 and PRRX1. | [49] | |
miR-200 family | Dysregulated | QKI | A negative feedback loop of QKI/miR-200 maintains the EMT-inducing signals and cell growth. | [50] | |
miR-200 family | - | NOTCH1 JUN ETS1 | The miR-139-5p, -429, and -200 families modulate stemness and chemo-resistance in cisplatin-resistant OSCC cells by regulating NOTCH1, JUN, and EST1. | [51] | |
miR-200 family | Downregulated | NOTCH ZEB1 | ZEB1/miR-200 feedback loop maintains stemness in cancer cells by controlling NOTCH signaling. | [52] | |
Periodontal diseases | miR-200c family | Upregulated | - | High levels in periodontitis gingiva tissues from patients. | [53] |
miR-200c | Downregulated | - | Pg-LPS decreases miR-200c in both periodontitis gingival epithelial cells and tissues. | [54] | |
miR-200b | Upregulated | - | High levels of miR-200b in periodontitis gingiva. | [55] | |
miR-200b miR-200c | - | IKKβ ZEB1 | miR-200b attenuates pro-inflammatory molecules production through IKKβ and ZEB1 in HGFs. | [26,56] | |
miR-200c | - | - | Treatment with miR-200c improves alveolar bone resorption and ameliorates periodontal inflammation in animal models. | [26,54] | |
Oral submucous fibrosis | miR-200b | Downregulated | ZEB2 α-SMA vimentin | Overexpression of miR-200b inhibits the activity of myofibroblast in fBMFs by elevating ZEB2, α-SMA, and vimentin. | [57] |
miR-200c | Downregulated | ZEB1 α-SMA | Overexpression of miR-200c inhibits the myofibroblastic transdifferentiation in fBMFs by elevating ZEB1 and α-SMA. | [58,59] | |
Gingival overgrowth | miR-200 family | Downregulated | - | miR-200a, -200b, and -200c are downregulated in gingival tissues with CsA-induced overgrowth. | [60] |
miR-200a | Downregulated | ZEB2 | CsA-inhibited miR-200a in HGFs may induce EMT and gingival enlargement by upregulating ZEB2. | [61] | |
miR-200b | Downregulated | Slug | CsA-inhibited miR-200b in HGFs may induce EMT and overgrowth of HGFs by up-regulating Slug. | [62,63,64] | |
Oral Mucositis | miR-200 family | Upregulated | - | miR-141, -200a, -200b, and -200c are upregulated during the formation of RIOM in an animal model. | [65] |
miR-200c | Upregulated | - | miR-200c is dramatically increased in irradiated-NHK cells. miR-200c involves in cell proliferation, migration, EMT process, DNA repair, ROS production, and inflammation in irradiated NHK cells. | [65] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hsieh, P.-L.; Huang, C.-C.; Yu, C.-C. Emerging Role of MicroRNA-200 Family in Dentistry. Non-Coding RNA 2021, 7, 35. https://doi.org/10.3390/ncrna7020035
Hsieh P-L, Huang C-C, Yu C-C. Emerging Role of MicroRNA-200 Family in Dentistry. Non-Coding RNA. 2021; 7(2):35. https://doi.org/10.3390/ncrna7020035
Chicago/Turabian StyleHsieh, Pei-Ling, Chun-Chung Huang, and Cheng-Chia Yu. 2021. "Emerging Role of MicroRNA-200 Family in Dentistry" Non-Coding RNA 7, no. 2: 35. https://doi.org/10.3390/ncrna7020035
APA StyleHsieh, P. -L., Huang, C. -C., & Yu, C. -C. (2021). Emerging Role of MicroRNA-200 Family in Dentistry. Non-Coding RNA, 7(2), 35. https://doi.org/10.3390/ncrna7020035