Structural and Functional Insight into the Mechanism of Bacillus subtilis 6S-1 RNA Release from RNA Polymerase
Abstract
:1. Introduction
2. Materials and Methods
2.1. Purification of B. subtilis RNA Polymerase
2.2. Cloning of 6S-1 RNA Constructs
2.3. In Vitro Transcription of B. subtilis 6S-1 RNA Variants and Synthetic pRNA/pLNA Oligonucleotides
2.4. 6S RNA Refolding
2.5. Gel Shift Assay to Assess 6S RNA:σA-RNAP Complex Formation
2.6. Native Gel Assay to Assess NTP Dependence of the pRNA-Induced Rearrangement of 6S-1 RNA and Its Release from RNAP
2.7. Native Gel Assay to Analyze 6S-1 RNA Rearrangement Kinetics at a Specific NTP Concentration
2.8. pRNA Transcription Assay Using Native σA-RNAP
2.9. pRNA Transcription Assay Using His-Tagged σA-RNAP
2.10. Annealing of pLNA/pRNA Oligonucleotides to 6S-1 RNA
2.11. Atomic Force Microscopy (AFM)
2.12. RNAfold and RNAcomposer Predictions
3. Results
3.1. Analysis of 6S-1 RNA Derivatives with Large Truncations
3.2. Role of the Central Bubble Collapse Helix (CBCH) in the Rearrangement and 6S-1 RNA Release from RNAP
3.3. 6S-1 RNA Refolding and Disruption of the Complex with RNAP Can Be Induced by a Stably Bound Oligonucleotide Hexamer
3.4. Atomic Force Microscopy Analysis of Free 6S-1 and 6S-1:pLNA Complexes
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barrick, J.E.; Sudarsan, N.; Weinberg, Z.; Ruzzo, W.L.; Breaker, R.R. 6S RNA is a widespread regulator of eubacterial RNA polymerase that resembles an open promoter. RNA 2005, 11, 774–784. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wassarman, K.M.; Storz, G. 6S RNA regulates E. coli RNA polymerase activity. Cell 2000, 101, 613–623. [Google Scholar] [CrossRef] [Green Version]
- Neusser, T.; Polen, T.; Geissen, R.; Wagner, R. Depletion of the non-coding regulatory 6S RNA in E. coli causes a surprising reduction in the expression of the translation machinery. BMC Genom. 2010, 11, 165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cavanagh, A.T.; Klocko, A.D.; Liu, X.; Wassarman, K.M. Promoter specificity for 6S RNA regulation of transcription is determined by core promoter sequences and competition for region 4.2 of sigma70. Mol. Microbiol. 2008, 67, 1242–1256. [Google Scholar] [CrossRef]
- Cavanagh, A.T.; Wassarman, K.M. 6S RNA, a global regulator of transcription in Escherichia coli, Bacillus subtilis, and beyond. Annu. Rev. Microbiol. 2014, 68, 45–60. [Google Scholar] [CrossRef]
- Steuten, B.; Hoch, P.G.; Damm, K.; Schneider, S.; Köhler, K.; Wagner, R.; Hartmann, R.K. Regulation of transcription by 6S RNAs: Insights from the Escherichia coli and Bacillus subtilis model systems. RNA Biol. 2014, 11, 508–521. [Google Scholar] [CrossRef] [Green Version]
- Wassarman, K.M. 6S RNA, a Global Regulator of Transcription. Microbiol. Spectr. 2018, 6, RWR-0019-2018. [Google Scholar] [CrossRef]
- Wehner, S.; Damm, K.; Hartmann, R.K.; Marz, M. Dissemination of 6S RNA among bacteria. RNA Biol. 2014, 11, 1467–1478. [Google Scholar] [CrossRef] [Green Version]
- Willkomm, D.K.; Minnerup, J.; Hüttenhofer, A.; Hartmann, R.K. Experimental RNomics in Aquifex aeolicus: Identification of small non-coding RNAs and the putative 6S RNA homolog. Nucleic Acids Res. 2005, 33, 1949–1960. [Google Scholar] [CrossRef] [Green Version]
- Nickel, A.I.; Wäber, N.B.; Gößringer, M.; Lechner, M.; Linne, U.; Toth, U.; Rossmanith, W.; Hartmann, R.K. Minimal and RNA-free RNase P in Aquifex aeolicus. Proc. Natl. Acad. Sci. USA 2017, 114, 11121–11126. [Google Scholar] [CrossRef] [Green Version]
- Burenina, O.Y.; Elkina, D.A.; Migur, A.Y.; Oretskaya, T.S.; Evguenieva-Hackenberg, E.; Hartmann, R.K.; Kubareva, E.A. Similarities and differences between 6S RNAs from Bradyrhizobium japonicum and Sinorhizobium meliloti. J. Microbiol. 2020, 58, 945–956. [Google Scholar] [CrossRef] [PubMed]
- Beckmann, B.M.; Hoch, P.G.; Marz, M.; Willkomm, D.K.; Salas, M.; Hartmann, R.K. A pRNA-induced structural rearrangement triggers 6S-1 RNA release from RNA polymerase in Bacillus subtilis. EMBO J. 2012, 31, 1727–1738. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burenina, O.Y.; Hoch, P.G.; Damm, K.; Salas, M.; Zatsepin, T.S.; Lechner, M.; Oretskaya, T.S.; Kubareva, E.A.; Hartmann, R.K. Mechanistic comparison of Bacillus subtilis 6S-1 and 6S-2 RNAs—Commonalities and differences. RNA 2014, 20, 348–359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, J.; Wassarman, K.M.; Feng, S.; Leon, K.; Feklistov, A.; Winkelman, J.T.; Li, Z.; Walz, T.; Campbell, E.A.; Darst, S.A. 6S RNA Mimics B-Form DNA to Regulate Escherichia coli RNA Polymerase. Mol. Cell 2017, 68, 388–397.e6. [Google Scholar] [CrossRef] [Green Version]
- Shephard, L.; Dobson, N.; Unrau, P.J. Binding and release of the 6S transcriptional control RNA. RNA 2010, 16, 885–892. [Google Scholar] [CrossRef] [Green Version]
- Panchapakesan, S.S.; Unrau, P.J. E. coli 6S RNA release from RNA polymerase requires sigma70 ejection by scrunching and is orchestrated by a conserved RNA hairpin. RNA 2012, 18, 2251–2259. [Google Scholar] [CrossRef] [Green Version]
- Wassarman, K.M.; Saecker, R.M. Synthesis-mediated release of a small RNA inhibitor of RNA polymerase. Science 2006, 314, 1601–1603. [Google Scholar] [CrossRef] [Green Version]
- Beckmann, B.M.; Burenina, O.Y.; Hoch, P.G.; Kubareva, E.A.; Sharma, C.M.; Hartmann, R.K. In vivo and in vitro analysis of 6S RNA-templated short transcripts in Bacillus subtilis. RNA Biol. 2011, 8, 839–849. [Google Scholar] [CrossRef] [Green Version]
- Murray, H.D.; Schneider, D.A.; Gourse, R.L. Control of rRNA expression by small molecules is dynamic and nonredundant. Mol. Cell 2003, 12, 125–134. [Google Scholar] [CrossRef]
- Cabrera-Ostertag, I.J.; Cavanagh, A.T.; Wassarman, K.M. Initiating nucleotide identity determines efficiency of RNA synthesis from 6S RNA templates in Bacillus subtilis but not Escherichia coli. Nucleic Acids Res. 2013, 41, 7501–7511. [Google Scholar] [CrossRef] [Green Version]
- Wurm, R.; Neußer, T.; Wagner, R. 6S RNA-dependent inhibition of RNA polymerase is released by RNA-dependent synthesis of small de novo products. Biol. Chem. 2010, 391, 187–196. [Google Scholar] [CrossRef]
- Köhler, K.; Duchardt-Ferner, E.; Lechner, M.; Damm, K.; Hoch, P.G.; Salas, M.; Hartmann, R.K. Structural and mechanistic characterization of 6S RNA from the hyperthermophilic bacterium Aquifex aeolicus. Biochimie 2015, 117, 72–86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sogo, J.M.; Inciarte, M.R.; Corral, J.; Viñuela, E.; Salas, M. RNA polymerase binding sites and transcription map of the DNA of Bacillus subtilis phage phi29. J. Mol. Biol. 1979, 127, 411–436. [Google Scholar] [PubMed]
- Ganapathy, S.; Wiegard, J.C.; Hartmann, R.K. Rapid preparation of 6S RNA-free B. subtilis σA-RNA polymerase and σA. J. Microbiol. Methods 2021, 190, 106324. [Google Scholar] [CrossRef] [PubMed]
- Muñoz-Espín, D.; Daniel, R.; Kawai, Y.; Carballido-López, R.; Castilla-Llorente, V.; Errington, J.; Meijer, W.J.; Salas, M. The actin-like MreB cytoskeleton organizes viral DNA replication in bacteria. Proc. Natl. Acad. Sci. USA 2009, 106, 13347–13352. [Google Scholar] [CrossRef] [Green Version]
- Bussiek, M.; Schöne, A.; Nellen, W. Atomic Force Microscopy Imaging and Force Spectroscopy of RNA. In Handbook of RNA Biochemistry; Hartmann, R.K., Bindereif, A., Schön, A., Westhof, E., Eds.; WILEY-VCH: Weinheim, Germany, 2014; pp. 527–546. [Google Scholar]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef]
- Lorenz, R.; Bernhart, S.H.; Hoener zu Siederdissen, C.; Tafer, H.; Flamm, C.; Stadler, P.F.; Hofacker, I.L. ViennaRNA Package 2.0. Algorithms Mol. Biol. 2011, 6, 26. [Google Scholar] [CrossRef]
- Popenda, M.; Szachniuk, M.; Antczak, M.; Purzycka, K.J.; Lukasiak, P.; Bartol, N.; Blazewicz, J.; Adamiak, R.W. Automated 3D structure composition for large RNAs. Nucleic Acids Res. 2012, 40, e112. [Google Scholar] [CrossRef]
- Oviedo Ovando, M.; Shephard, L.; Unrau, P.J. In vitro characterization of 6S RNA release-defective mutants uncovers features of pRNA-dependent release from RNA polymerase in E. coli. RNA 2014, 20, 670–680. [Google Scholar] [CrossRef] [Green Version]
- Hoch, P.G.; Schlereth, J.; Lechner, M.; Hartmann, R.K. Bacillus subtilis 6S-2 RNA serves as a template for short transcripts in vivo. RNA 2016, 22, 614–622. [Google Scholar] [CrossRef] [Green Version]
- Revyakin, A.; Liu, C.; Ebright, R.H.; Strick, T.R. Abortive initiation and productive initiation by RNA polymerase involve DNA scrunching. Science 2006, 314, 1139–1143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.; Borukhov, S. Bacterial RNA Polymerase-DNA Interaction-The Driving Force of Gene Expression and the Target for Drug Action. Front. Mol. Biosci. 2016, 3, 73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Riesner, D.; Steger, G. Temperature-gradient gel electrophoresis of RNA. In Handbook of RNA Biochemistry, 2nd ed.; Hartmann, R.K., Bindereif, A., Schön, A., Westhof, E., Eds.; WILEY-VCH: Weinheim, Germany, 2014; pp. 427–444. [Google Scholar]
Strain or Plasmid | Genotype | Reference or Source |
---|---|---|
Strains | ||
B. subtilis His-rpoC, ΔbsrAB (SG7) | PY79ΔbsrA:spc (Spr), ΔbsrB::kan (Kmr) rpoCΩ pYQ52 (Cmr) | [24] |
B. subtilis 110 NA | trpC2 spo0A3 su- | [25] |
Plasmids | ||
pBB1 | pUC18::T7-bsrA-190-wt, (Ampr) | [12] |
pGH2 | pUC18::T7-bsrA-190-U50, (Ampr) | This work |
pGH3 | pUC18::T7-bsrA-190-C50, (Ampr) | This work |
pGH5 | pUC18::T7-bsrA-78-6S78, (Ampr) | This work |
pGH6 | pUC18::T7-bsrA-82-6S82cp, (Ampr) | This work |
pGH12 | pUC18::T7-bsrA-190-UUUUswap (Ampr) | This work |
pGH15 | pUC18::T7-bsrA-190-A47, (Ampr) | This work |
pGH16 | pUC18::T7-bsrA-190-C44/45, (Ampr) | This work |
pGH17 | pUC18::T7-bsrA-190-A53, (Ampr) | This work |
pAH_P2swap | pUC18::T7-bsrA-190-P2swap (Ampr) | This work |
pSG1 | pUC18::T7-bsrA-190-G50, (Ampr) | This work |
pSG2 | pUC18::T7-bsrA-190-wt 8M, (Ampr) | This work |
pSG3 | pUC18::T7-bsrA-190-C44/45 8M, (Ampr) | This work |
pSG4 | pUC18::T7-bsrA-190-wt 6M, (Ampr) | This work |
pSG5 | pUC18::T7-bsrA-190-C44/45 6M (Ampr) | This work |
pSG6 | pUC18::T7-bsrA-190-wt 5M (Ampr) | This work |
pSG7 | pUC18::T7-bsrA-190-C44/45 5M (Ampr) | This work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ganapathy, S.; Hoch, P.G.; Lechner, M.; Bussiek, M.; Hartmann, R.K. Structural and Functional Insight into the Mechanism of Bacillus subtilis 6S-1 RNA Release from RNA Polymerase. Non-Coding RNA 2022, 8, 20. https://doi.org/10.3390/ncrna8010020
Ganapathy S, Hoch PG, Lechner M, Bussiek M, Hartmann RK. Structural and Functional Insight into the Mechanism of Bacillus subtilis 6S-1 RNA Release from RNA Polymerase. Non-Coding RNA. 2022; 8(1):20. https://doi.org/10.3390/ncrna8010020
Chicago/Turabian StyleGanapathy, Sweetha, Philipp G. Hoch, Marcus Lechner, Malte Bussiek, and Roland K. Hartmann. 2022. "Structural and Functional Insight into the Mechanism of Bacillus subtilis 6S-1 RNA Release from RNA Polymerase" Non-Coding RNA 8, no. 1: 20. https://doi.org/10.3390/ncrna8010020
APA StyleGanapathy, S., Hoch, P. G., Lechner, M., Bussiek, M., & Hartmann, R. K. (2022). Structural and Functional Insight into the Mechanism of Bacillus subtilis 6S-1 RNA Release from RNA Polymerase. Non-Coding RNA, 8(1), 20. https://doi.org/10.3390/ncrna8010020