Diversity of Saccharomyces cerevisiae Yeast Strains in Granxa D’Outeiro Winery (DOP Ribeiro, NW Spain): Oenological Potential
Abstract
:1. Introduction
2. Materials and Methods
2.1. Grape Origin and Processing
2.2. Fermentations
2.3. Yeast Isolation and Characterisation
2.4. Wine Chemical Analysis
2.5. Technological Properties of S. cerevisiae Strains
2.6. Data Analysis
3. Results
3.1. Yeast Population in Spontaneous Fermentations: Diversity and Occurrence of Each Strain
3.2. Chemical Composition of Wines from Spontaneous Fermentations
3.3. Oenological Potential of S. cerevisiae Strains from Granxa D’Outeiro
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Belda:, I.; Ruiz, J.; Esteban-Fernández, A.; Navascúes, E.; Marquina, D.; Santos, A. Moreno-Arribas, M.V. Microbial contribution to Wine aroma and its intended use for Wine quality improvement. Molecules 2017, 22, 189. [Google Scholar] [CrossRef] [PubMed]
- Swiegers, J.H.; Bartowsky, E.J.; Henschke, P.A.; Pretorius, I.S. Yeast and bacterial modulation of wine aroma and flavour. Aust. J. Grape Wine Res. 2005, 11, 139–173. [Google Scholar] [CrossRef]
- Fleet, G.H.; Heard, G.M. Yeasts—Growth during fermentation. In Wine Microbiology and Biotechnology; Fleet, G.H., Ed.; Harwood Academic Publishers: Chur, Switzerland, 1993; pp. 27–54. [Google Scholar]
- Fleet, G.H. Wine yeasts for the future. FEMS Yeast Res. 2008, 8, 979–995. [Google Scholar] [CrossRef]
- Albergaria, H.; Arneborg, N. Dominance of Saccharomyces cerevisiae in alcoholic fermentation processes: Role of physiological fitness and microbial interactions. Appl. Microbiol. Biotechnol. 2016, 100, 2035–2046. [Google Scholar] [CrossRef] [PubMed]
- Varela, C.; Siebert, T.; Cozzolino, D.; Rose, L.; Mclean, H.; Henschke, P.A. Discovering a chemical basis for differentiating wines made by fermentation with “wild” indigenous and inoculated yeasts: Role of yeast volatile compounds. Aust. J. Grape Wine Res. 2009, 15, 238–248. [Google Scholar] [CrossRef]
- Jolly, N.P.; Varela, C.; Pretorius, I.S. Not your ordinary yeast: Non-Saccharomyces yeasts in wine production uncovered. FEMS Yeast Res. 2014, 14, 215–237. [Google Scholar] [CrossRef]
- Welsh, B.L.; Eisenhofer, R.; Bastian, S.E.P.; Kidd, S.P. Monitoring the viable grapevine microbiome to enhance the quality of wild wines. Microbiol. Aust. 2023, 44, 13–17. [Google Scholar] [CrossRef]
- Bisson, L.F. Stuck and sluggish fermentations. Am. J. Enol. Vitic. 1999, 50, 107–119. [Google Scholar] [CrossRef]
- Mas, A.; Beltran, G.; Torija, M.J. Microbiological control of alcoholic fermentation. Ecocycles 2020, 6, 57–72. [Google Scholar] [CrossRef]
- Barrajón, N.; Arévalo-Villena, M.; Rodríguez-Aragón, L.J.; Briones, A. Ecological study of wine yeast in inoculated vats from La Mancha Region. Food Control 2009, 20, 778–783. [Google Scholar] [CrossRef]
- Gil-Díaz, M.M.; Valero, E.; Cabellos, J.M.; García, M.; Arroyo, T. The impact of active dry yeasts in commercial wineries from the denomination of origen “Vinos de Madrid”, Spain. 3 Biotech 2019, 9, 382–394. [Google Scholar] [CrossRef]
- Callejon, R.M.; Clavijo, A.; Ortigueira, P.; Troncoso, A.M.; Paneque, P.; Morales, M.L. Volatile and sensory profile of organic red wines produced by different selected autochthonous and commercial Saccharomyces cerevisiae strains. Anal. Chim. Acta 2010, 660, 68–75. [Google Scholar] [CrossRef]
- Tristezza, M.; Vetrano, C.; Bleve, G.; Grieco, F.; Tufariello, M.; Quarta, A.; Mita, G.; Spano, G.; Grieco, F. Autochthonous fermentation starters for the industrial production of Negroamaro wines. J. Ind. Microbiol. Biotechnol. 2012, 39, 81–92. [Google Scholar] [CrossRef] [PubMed]
- Bokulich, N.A.; Collins, T.S.; Masarweh, C.; Allen, G.; Heymann, H.; Ebeler, S.E.; Mills, D.A. Associations among wine grape microbiome, metabolome, and fermentation behavior suggest microbial contribution to regional wine characteristics. mBio 2016, 7, e00631-16. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Wang, M.; Huang, W.; You, Y.; Zhan, J. Indigenous Saccharomyces cerevisiae Could Better Adapt to the Physicochemical Conditions and Natural Microbial Ecology of Prince Grape Must Compared with Commercial Saccharomyces cerevisiae FX10. Molecules 2022, 27, 6892. [Google Scholar] [CrossRef] [PubMed]
- Regodón, J.A.; Peréz, F.; Valdés, M.E.; De Miguel, C.; Ramírez, M. A simple and effective procedure for selection of wine yeast strains. Food Microbiol. 1997, 14, 247–254. [Google Scholar] [CrossRef]
- Suárez-Lepe, J.A.; Morata, A. New trends in yeast selection for winemaking. Trends Food Sci. Technol. 2012, 23, 39–50. [Google Scholar] [CrossRef]
- Sidari, R.; Ženišová, K.; Tobolková, B.; Belajová, E.; Cabicarová, T.; Bučková, M.; Puškárová, A.; Planý, M.; Kuchta, T.; Pangallo, D. Wine Yeasts Selection: Laboratory Characterization and Protocol Review. Microorganisms 2021, 9, 2223. [Google Scholar] [CrossRef]
- Romano, P.; Siesto, G.; Capece, A.; Pietrafesa, R.; Lanciotti, R.; Patrignani, F.; Granchi, L.; Galli, V.; Bevilacqua, A.; Campaniello, D.; et al. Validation of a Standard Protocol to Assess the Fermentative and Chemical Properties of Saccharomyces cerevisiae Wine Strains. Front. Microbiol. 2022, 13, 830277. [Google Scholar] [CrossRef]
- Tzamourani, A.P.; Taliadouros, V.; Paraskevopoulos, I.; Dimopoulou, M. Developing a novel selection method for alcoholic fermentation starters by exploring wine yeast microbiota from Greece. Front. Microbiol. 2023, 14, 1301325. [Google Scholar] [CrossRef]
- Morata, A.; Arroyo, T.; Bañuelos, M.A.; Blanco, P.; Briones, A.; Cantoral, J.M.; Castrillo, D.; Cordero-Bueso, G.; del Fresno, J.M.; Escott, C.; et al. Wine yeast selection in the Iberian Peninsula: Saccharomyces and non-Saccharomyces as drivers of innovation in Spanish and Portuguese wine industries. Crit. Rev. Food Sci. Nutr. 2022, 63, 10899–10927. [Google Scholar] [CrossRef] [PubMed]
- Torija, M.J.; Rozes, N.; Poblet, M.; Guillamon, J.M.; Mas, A. Yeast population dynamics in spontaneous fermentations: Comparison between two different wine-producing areas over a period of three years. Antonie Van Leeuwenhoek 2001, 79, 345–352. [Google Scholar] [CrossRef] [PubMed]
- Beltran, G.; Torija, M.J.; Novo, M.; Ferrer, N.; Poblet, M.; Guillamón, J.M.; Rozès, N.; Mas, A. Analysis of yeast populations during alcoholic fermentation: A six year follow-up study. Syst. Appl. Microbiol. 2002, 25, 287–293. [Google Scholar] [CrossRef] [PubMed]
- Börlin, M.; Venet, P.; Claisse, O.; Salin, F.; Legras, J.-L.; Masneuf-Pomarède, I. Cellar associated Saccharomyces cerevisiae population structure revealed high diversity and perennial persistence in Sauternes wine estates. Appl. Environ. Microbiol. 2016, 82, 2909–2918. [Google Scholar] [CrossRef] [PubMed]
- Capece, A.; Pietrafesa, R.; Siesto, G.; Romaniello, R.; Condelli, N.; Romano, P. Selected Indigenous Saccharomyces cerevisiae Strains as Profitable Strategy to Preserve Typical Traits of Primitivo Wine. Fermentation 2019, 5, 87. [Google Scholar] [CrossRef]
- Vaudano, E.; Quinterno, G.; Costantini, A.; Pulcini, L.; Pessione, E.; Garcia-Moruno, E. Yeast distribution in Grignolino grapes growing in a new vineyard in Piedmont and the technological characterization of indigenous Saccharomyces spp. strains. Int. J. Food Microbiol. 2019, 289, 154–161. [Google Scholar] [CrossRef]
- Nikolaou, E.; Soufleros, E.H.; Bouloumpasi, E.; Tzanetakis, N. Selection of indigenous Saccharomyces cerevisiae strains according to their oenological characteristics and vinification results. Food Microbiol. 2006, 23, 205–211. [Google Scholar] [CrossRef]
- Karampatea, A.; Tsakiris, A.; Kourkoutas, Y.; Skavdis, G. Molecular and Phenotypic Diversity of Indigenous Oenological Strains of Saccharomyces cerevisiae Isolated in Greece. Eng. Proc. 2021, 9, 7. [Google Scholar] [CrossRef]
- Cheng, E.; Martiniuk, J.T.; Hamilton, J.; McCarthy, G.; Castellarin, S.D.; Measday, V. Characterization of Sub-Regional Variation in Saccharomyces Populations and Grape Phenolic Composition in Pinot Noir Vineyards of a Canadian Wine Region. Front. Genet. 2020, 11, 908. [Google Scholar] [CrossRef] [PubMed]
- Martiniuk, J.T.; Pacheco, B.; Russell, G.; Tong, S.; Backstrom, I.; Measday, V. Impact of commercial strain use on Saccharomyces cerevisiae population structure and dynamics in pinot noir vineyards and spontaneous fermentations of a Canadian winery. PLoS ONE 2016, 11, e0160259. [Google Scholar] [CrossRef]
- Goddard, M.R.; Anfang, N.; Tang, R.; Gardner, R.C.; Jun, C. A distinct population of Saccharomyces cerevisiae in New Zealand: Evidence for local dispersal by insects and human-aided global dispersal in oak barrels. Environ. Microbiol. 2010, 12, 63–73. [Google Scholar] [CrossRef] [PubMed]
- Gayevskiy, V.; Goddard, M.R. Geographic delineations of yeast communities and populations associated with vines and wines in New Zealand. ISME J. 2012, 6, 1281–1290. [Google Scholar] [CrossRef] [PubMed]
- González, M.L.; Chimeno, S.V.; Sturm, M.E.; Becerra, L.M.; Lerena, M.C.; Rojo, M.C.; Combina, M.; Mercado, L.A. Populations of Saccharomyces cerevisiae in Vineyards: Biodiversity and Persistence Associated with Terroir. Fermentation 2023, 9, 292. [Google Scholar] [CrossRef]
- Schuller, D.; Alves, H.; Dequin, S.; Casal, M. Ecological survey of Saccharomyces cerevisiae strains from vineyards in the Vinho Verde Region of Portugal. FEMS Microbiol. Ecol. 2005, 51, 167–177. [Google Scholar] [CrossRef]
- Drumonde-Neves, J.; Franco-Duarte, R.; Vieira, E.; Mendes, I.; Lima, T.; Schuller, D.; Pais, C. Differentiation of Saccharomyces cerevisiae populations from vineyards of the Azores Archipelago: Geography vs. Ecology. Food Microbiol. 2018, 74, 151–162. [Google Scholar] [CrossRef]
- Hu, L.; Ji, X.; Li, J.; Jia, Y.; Wang, X.; Zhang, X. Selection of Saccharomyces cerevisiae Isolates from Helan Mountain in China for Wine Production. Fermentation 2023, 9, 376. [Google Scholar] [CrossRef]
- Ut, C.; Berbegal, C.; Lizama, V.; Polo, L.; García, M.J.; Andrés, L.; Pardo, I.; Álvarez, I. Isolation and characterisation of autochthonous Saccharomyces cerevisiae from ‘Pago’ Merlot wines of Utiel-Requena (Spain) Origin. Aust. J. Grape Wine Res. 2021, 28, 330–346. [Google Scholar] [CrossRef]
- Agarbati, A.; Canonico, L.; Comitini, F.; Ciani, M. Ecological Distribution and Oenological Characterization of Native Saccharomyces cerevisiae in an Organic Winery. Fermentation 2022, 8, 224. [Google Scholar] [CrossRef]
- Berbegal, C.; Ferrer, S.; Polo, L.; Pardo, I.; García-Esparza, M.J.; Andrés, L.; Álvarez, I.; Lizama, V. Diversity of Indigenous Saccharomyces cerevisiae Yeast Strains in Cabernet Sauvignon Fermentations from Utiel-Requena Region (Spain) as a Resource to Improve Wine Distinctiveness. Fermentation 2023, 9, 654. [Google Scholar] [CrossRef]
- OIVE Interprofesional del Vino de España. La Relevancia Económica Del Sector Vitivinícola En GALICIA 2023. Available online: https://interprofesionaldelvino.es/galicia-la-comunidad-autonoma-con-mayor-numero-de-viticultores-de-espana/ (accessed on 4 July 2024).
- Blanco, P.; Ramilo, A.; Cerdeira, M.; Orriols, I. Genetic diversity of wine Saccharomyces cerevisiae strains in an experimental winery from Galicia (NW Spain). Antonie Van Leeuwenhoek 2006, 89, 351–357. [Google Scholar] [CrossRef]
- Blanco, P.; Mirás-Avalos, J.M.; Suárez, V.; Orriols, I. Inoculation of Treixadura musts with autochthonous Saccharomyces cerevisiae strains: Fermentative performance and influence on the wine characteristics. Food Sci. Technol. Int. 2013, 19, 177–186. [Google Scholar] [CrossRef] [PubMed]
- Blanco, P.; Mirás-Avalos, J.M.; Pereira, E.; Orriols, I. Fermentative aroma compounds and sensory profiles of Godello and Albariño wines as influenced by Saccharomyces cerevisiae yeast strains. J. Sci. Food Agric. 2013, 93, 2849–2857. [Google Scholar] [CrossRef] [PubMed]
- Blanco, P.; Mirás-Avalos, J.M.; Pereira, E.; Fornos, D.; Orriols, I. Modulation of chemical and sensory characteristics of red wine from Mencía by using indigenous Saccharomyces cerevisiae yeast strains. OENO One 2014, 48, 63–74. [Google Scholar] [CrossRef]
- Blanco, P.; Vázquez-Alén, M.; Garde-Cerdán, T.; Vilanova, M. Application of autochthonous yeast Saccharomyces cerevisiae XG3 in Treixadura wines from D.O. Ribeiro (NW Spain): Effect on wine aroma. Fermentation 2021, 7, 31. [Google Scholar] [CrossRef]
- Castrillo, D.; Neira, N.; Blanco, P. Saccharomyces cerevisiae Strain Diversity Associated with Spontaneous Fermentations in Organic Wineries from Galicia (NW Spain). Fermentation 2020, 6, 89. [Google Scholar] [CrossRef]
- Castrillo, D.; Blanco, P. Peculiarities of the Organic Wine in Galicia (NW Spain): Sensory Evaluation and Future Considerations. Beverages 2023, 9, 89. [Google Scholar] [CrossRef]
- Designation of Origin Ribeiro. Available online: https://www.ribeiro.wine/types-of-grapes (accessed on 19 July 2024).
- Pallmann, C.L.; Brown, J.A.; Olineka, T.L.; Cocolin, L.; Mills, D.A.; Bisson, L.F. Use of WL Medium to Profile Native Flora Fermentations. Am. J. Enol. Vitic. 2001, 52, 198–203. [Google Scholar] [CrossRef]
- Querol, A.; Barrio, E.; Huerta, T.; Ramon, D. Molecular monitoring of wine fermentations conducted by active dry yeast strains. Appl. Environ. Microbiol. 1992, 58, 2948–2953. [Google Scholar] [CrossRef] [PubMed]
- OIV. Office International De La Vigne Et Du Vin Compendium of International Methods of Wine and Must Analysis. Volume 1 and 2. Paris, France. 2023. Available online: http://www.oiv.int (accessed on 31 July 2023).
- López, R.; Aznar, M.; Cacho, J.; Ferreira, V. Determination of minor and trace volatile compounds in wine by solid-phase extraction and gas chromatography with mass spectrometric detection. J. Chromatogr. A 2002, 966, 167–177. [Google Scholar] [CrossRef]
- Torrens, J.; Riu-Aumatell, M.; López-Tamames, E.; Buxaderas, S. Volatile compounds of red and white wines by head-space-solid phase microextraction using different fibers. J. Chromatogr. Sci. 2004, 42, 310–316. [Google Scholar] [CrossRef]
- OIV. Guidelines for the Characterization of Wine Yeasts of the Genus Saccharomyces Isolated from Vitivinicultural Environments. Available online: https://www.oiv.int/public/medias/1429/oiv-oeno-370-2012-en.pdf (accessed on 8 July 2024).
- Maqueda, M.; Zamora, E.; Álvarez, M.L.; Ramírez, M. Characterization, ecological distribution, and population dynamics of Saccharomyces sensu stricto killer yeasts in the spontaneous grape must fermentations of Southwestern Spain. Appl. Environ. Microbiol. 2012, 78, 735–743. [Google Scholar] [CrossRef] [PubMed]
- Castrillo, D.; Rabuñal, E.; Neira, N.; Blanco, P. Yeast diversity on grapes from Galicia, NW Spain: Biogeographical patterns and the influence of the farming system. OENO One 2019, 53, 573–587. [Google Scholar] [CrossRef]
- Knight, S.; Klaere, S.; Fedrizzi, B.; Goddard, M.R. Regional microbial signatures positively correlate with differential wine phenotypes: Evidence for a microbial aspect to terroir. Sci. Rep. 2015, 5, 14233. [Google Scholar] [CrossRef]
- Belda, I.; Zarraonaindia, I.; Perisin, M.; Palacios, A.; Acedo, A. From Vineyard Soil to Wine Fermentation: Microbiome Approximations to Explain the “Terroir” Concept. Front. Microbiol. 2017, 8, 821. [Google Scholar] [CrossRef] [PubMed]
- Blanco, P.; Rodríguez, I.; Fernández-Fernández, V.; Ramil, M.; Castrillo, D.; Acín-Albiac, M.; Adamo, I.; Fernández-Trujillo, C.; García-Jiménez, B.; Acedo, A.; et al. Physicochemical Properties and Microbiome of Vineyard Soils from DOP Ribeiro (NW Spain) Are Influenced by Agricultural Management. Microorganisms 2024, 12, 595. [Google Scholar] [CrossRef]
- Santamaría, P.; Garijo, P.; López, R.; Tenorio, C.; Gutiérrez, A.R. Analysis of yeast population during spontaneous alcoholic fermentation: Effect of the age of the cellar and the practice of inoculation. Int. J. Food Microbiol. 2005, 103, 49–56. [Google Scholar] [CrossRef]
- Blanco, P.; Orriols, I.; Losada, A. Survival of commercial yeasts in the winery environment and their prevalence during spontaneous fermentations. J. Ind. Microbiol. Biotechnol. 2011, 38, 235–239. [Google Scholar] [CrossRef]
- Blanco, P.; Vázquez-Alén, M.; Losada, A. Influence of yeast population on characteristics of the wine obtained in spontaneous and inoculated fermentations of must from Vitis vinifera Lado. J. Ind. Microbiol. Biotechnol. 2008, 35, 183–188. [Google Scholar] [CrossRef]
- Tello, J.; Cordero-Bueso, G.; Aporta, I.; Cabellos, J.M.; Arroyo, T. Genetic diversity in commercial wineries: Effects of the farming system and vinification management on wine yeasts. J. Appl. Microbiol. 2011, 112, 302–315. [Google Scholar] [CrossRef]
- de Celis, M.; Ruiz, J.; Martín-Santamaría, M.; Alonso, A.; Marquina, D.; Navascués, E.; Gómez-Flechoso, M.; Belda, I.; Santos, A. Diversity of Saccharomyces cerevisiae yeasts associated to spontaneous and inoculated fermenting grapes from Spanish vineyards. Lett. Appl. Microbiol. 2019, 68, 580–588. [Google Scholar] [CrossRef]
- Granchi, L.; Ganucci, D.; Buscioni, G.; Mangani, S.; Guerrini, S. The Biodiversity of Saccharomyces cerevisiae in Spontaneous Wine Fermentation: The Occurrence and Persistence of Winery-Strains. Fermentation 2019, 5, 86. [Google Scholar] [CrossRef]
- Blanco, P.; Mirás-Avalos, J.M.; Orriols, I. Effect of must characteristics on the diversity of Saccharomyces strains and their prevalence in spontaneous fermentations. J. Appl. Microbiol. 2012, 112, 936–944. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Torrado, R.; Rantsiou, K.; Perrone, B.; Navarro-Tapia, E.; Querol, A.; Cocolin, L. Saccharomyces cerevisiae strains: Insight into the dominance phenomenon. Sci. Rep. 2017, 7, 43603. [Google Scholar] [CrossRef] [PubMed]
- Ganucci, D.; Guerrini, S.; Mangani, S.; Vincenzini, M.; Granchi, L. Quantifying the Effects of Ethanol and Temperature on the Fitness Advantage of Predominant Saccharomyces cerevisiae Strains Occurring in Spontaneous Wine Fermentations. Front. Microbiol. 2018, 9, 1563. [Google Scholar] [CrossRef]
- Agarbati, A.; Comitini, F.; Ciani, M.; Canonico, L. Occurrence and Persistence of Saccharomyces cerevisiae Population in Spontaneous Fermentation and the Relation with “Winery Effect”. Microorganisms 2024, 12, 1494. [Google Scholar] [CrossRef]
- Santamaría, P.; López, R.; Garijo, M.P.; Escribano, R.; González-Arenzana, L.; López-Alfaro, I.; Gutiérrez, A.R. Biodiversity of Saccharomyces cerevisiae yeasts in spontaneous alcoholic fermentations: Typical cellar or zone strains? In Advances in Grape and Wine Biotechnology; Morata, A., Ed.; IntechOpen: London, UK, 2019; Volume 1. [Google Scholar] [CrossRef]
- Vilanova, M.; Oliveira, J.M. El Potencial Aromático de las Variedades de Vid Cultivadas en Galicia; Xunta de Galicia, Consellería do Medio Rural: Santiago de Compostela, Spain, 2017; pp. 66–67. [Google Scholar]
- Díaz-Fernández, Á.; Díaz-Losada, E.; González, J.M.D.; Cortés-Diéguez, S. Part II—Aroma profile of Twenty White Grapevine Varieties: A Chemotaxonomic Marker Approach. Agronomy 2023, 13, 1168. [Google Scholar] [CrossRef]
- Lambrechts, M.G.; Pretorius, I.S. Yeast and its Importance to Wine Aroma—A Review. South Afr. J. Enol. Vitic. 2000, 21, 97–129. [Google Scholar] [CrossRef]
Code | Grapevine Variety | Must Characteristics | ||
---|---|---|---|---|
Total Acidity (g Tartaric Acid/L) | PAC * (% vol) | YAN ** (mg/mL) | ||
G + T | Godello + Treixadura | 5.8 | 12.5 | |
L + T | Loureira + Treixadura | 5.2 | 12.9 | 188 |
CB + T | Caíño blanco + Treixadura | 4.6 | 12.9 | 241 |
ALB | Albariño | 5.9 | 13.4 | 193 |
TRX | Treixadura | 4.5 | 12.4 | 250 |
LD | Lado | 5.5 | 13.5 | 288 |
M + T | Moscatel + Torrontés | 4.6 | 11.5 | 185 |
LOU | Loureiro | 6.6 | 12.8 | |
CB | Caíño blanco | 6.9 | 13.2 | 177 |
Fermentation * | Number of S. cerevisiae Isolates | Number of Strains ** | Number of Strains (Profiles) *** within Percentage Range | ||||
---|---|---|---|---|---|---|---|
H | e | >25% | 5–25% | <5% | |||
G + T | 54 | 9 | 0.95 | 0.29 | 1 (B) | 1 (E) | 7 |
L + T | 52 | 8 | 1.19 | 0.41 | 1 (B) | 2 (E,H) | 5 |
CB + T | 51 | 9 | 1.47 | 0.48 | 1 (B) | 3 (D,E,H) | 5 |
TRX | 54 | 5 | 1.09 | 0.60 | 1 (B) | 3 (C,D,H) | 1 |
ALB | 54 | 6 | 1.33 | 0.63 | 1 (B) | 2 (D,E) | 3 |
LD | 49 | 13 | 2.07 | 0.61 | 1 (B) | 3 (D,E,L) | 9 |
M + T | 53 | 11 | 1.90 | 0.61 | 1 (D) | 4 (B,E,H,P) | 6 |
LOU | 53 | 6 | 1.01 | 0.46 | 1 (B) | 2 (D,E) | 3 |
CB | 53 | 8 | 1.12 | 0.38 | 1 (B) | 2 (C,H) | 5 |
Total | 473 | 24 | 1.71 | 0.23 | 1 (B) | 3 (D,E,H) | 20 |
Parameter | LGT * | L + T | CB + T | ALB | LD | M + T | LOU | CB |
---|---|---|---|---|---|---|---|---|
Total acidity (g tartaric acid/L) | 4.6 | 5.1 | 5.2 | 5.9 | 4.9 | 4.6 | 5.7 | 7.0 |
Volatile acidity (g acetic acid/L) | 0.38 | 0.4 | 0.45 | 0.45 | 0.36 | 0.26 | 0.28 | 0.47 |
Lactic acid (g/L) | 0.2 | 0.3 | 0.3 | 0.2 | 0.2 | 0.3 | <0.1 | <0.1 |
Malic acid (g/L) | 2.2 | 1.9 | 2 | 2.3 | 2.5 | 2 | 1.6 | 2.5 |
Tartaric acid (g/L) | 1.6 | 2.0 | 1.8 | 2.3 | 1.3 | 1.5 | 2.6 | 2.6 |
pH | 3.60 | 3.55 | 3.52 | 3.53 | 3.58 | 3.47 | 3.20 | 3.22 |
Glucose + fructose (g/L) | 0.9 | 4.8 | 7.1 | 6.7 | 0.8 | 0.4 | 4 | 14.5 |
Glycerol (g/L) | 4.3 | 4.4 | 4.5 | 4.7 | 4.4 | 4.7 | 4.4 | 4.9 |
Alcohol content (% v/v) | 13.5 | 13.4 | 13.0 | 13.9 | 14.2 | 12.4 | 12.8 | 12.6 |
Free SO2 (mg/L) | 24 | 22 | 27 | 23 | <10 | <10 | 18 | 11 |
Total SO2 (mg/L) | 115 | 122 | 128 | 126 | 42 | 56 | 63 | 68 |
S. cerevisiae Strain | TA | VA | G + F | AC | Gly | Ft | Fv | Score |
---|---|---|---|---|---|---|---|---|
A | 3 | 3 | 3 | 3 | 2 | 2 | 2 | 18 |
B | 3 | 2 | 1 | 2 | 2 | 2 | 2 | 14 |
C | 2 | 3 | 3 | 1 | 1 | 2 | 1 | 13 |
D | 1 | 5 | 5 | 2 | 1 | 4 | 3 | 21 |
E | 2 | 4 | 4 | 1 | 2 | 5 | 3 | 21 |
F | 4 | 2 | 4 | 1 | 4 | 5 | 4 | 24 |
G | 3 | 1 | 4 | 1 | 3 | 5 | 3 | 20 |
H | 2 | 3 | 5 | 1 | 2 | 5 | 3 | 21 |
I | 2 | 5 | 4 | 4 | 4 | 2 | 3 | 24 |
J | 4 | 1 | 3 | 4 | 4 | 1 | 4 | 21 |
K | 4 | 5 | 5 | 5 | 3 | 2 | 5 | 29 |
L | 5 | 5 | 5 | 5 | 3 | 3 | 5 | 31 |
M | 4 | 4 | 5 | 3 | 3 | 5 | 4 | 28 |
N | 3 | 3 | 4 | 2 | 3 | 4 | 4 | 23 |
Ñ | 4 | 2 | 5 | 4 | 5 | 2 | 4 | 26 |
O | 3 | 1 | 3 | 5 | 4 | 2 | 3 | 21 |
P | 3 | 5 | 5 | 2 | 5 | 4 | 4 | 28 |
Q | 3 | 5 | 3 | 2 | 3 | 2 | 1 | 19 |
R | 2 | 3 | 5 | 1 | 3 | 4 | 2 | 20 |
S | 3 | 2 | 2 | 2 | 1 | 1 | 1 | 12 |
T | 3 | 2 | 2 | 4 | 2 | 1 | 2 | 16 |
U | 3 | 2 | 3 | 4 | 3 | 1 | 2 | 18 |
V | 3 | 1 | 3 | 3 | 4 | 4 | 3 | 21 |
W | 3 | 2 | 4 | 3 | 3 | 2 | 4 | 21 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Blanco, P.; García-Luque, E.; González, R.; Soto, E.; Juste, J.M.M.; Cao, R. Diversity of Saccharomyces cerevisiae Yeast Strains in Granxa D’Outeiro Winery (DOP Ribeiro, NW Spain): Oenological Potential. Fermentation 2024, 10, 475. https://doi.org/10.3390/fermentation10090475
Blanco P, García-Luque E, González R, Soto E, Juste JMM, Cao R. Diversity of Saccharomyces cerevisiae Yeast Strains in Granxa D’Outeiro Winery (DOP Ribeiro, NW Spain): Oenological Potential. Fermentation. 2024; 10(9):475. https://doi.org/10.3390/fermentation10090475
Chicago/Turabian StyleBlanco, Pilar, Estefanía García-Luque, Rebeca González, Elvira Soto, José Manuel M. Juste, and Rafael Cao. 2024. "Diversity of Saccharomyces cerevisiae Yeast Strains in Granxa D’Outeiro Winery (DOP Ribeiro, NW Spain): Oenological Potential" Fermentation 10, no. 9: 475. https://doi.org/10.3390/fermentation10090475
APA StyleBlanco, P., García-Luque, E., González, R., Soto, E., Juste, J. M. M., & Cao, R. (2024). Diversity of Saccharomyces cerevisiae Yeast Strains in Granxa D’Outeiro Winery (DOP Ribeiro, NW Spain): Oenological Potential. Fermentation, 10(9), 475. https://doi.org/10.3390/fermentation10090475