Purification, Characterization, and Application of Alkaline Protease Enzyme from a Locally Isolated Bacillus cereus Strain
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microorganisms and Production of Enzymes
2.2. Purification of Protease Enzyme
2.2.1. Ammonium Sulphate (NH4)2SO4 Precipitations
2.2.2. Preparation of Gel and Gel Filtration Chromatography
2.2.3. Sodium Dodecyl Sulphate Polyacrylamide Gel Electrophoresis (SDS-PAGE)
2.3. Characterization of Alkaline Protease
2.3.1. Impact of pH on Activity of Protease
2.3.2. Impact of Temperature on Protease Activity
2.3.3. Impact of Induction Period on Protease Activity
2.4. Stability Exploration of Alkaline Protease
2.4.1. pH Stability
2.4.2. Thermo-Stability
2.4.3. Effect of Metal Ions and Inhibitors
2.5. Commercial Application of Alkaline Proteases
Dehairing Effects
2.6. Analytical Methods
2.7. Statistical Analysis
3. Results
3.1. Precipitation by Ammonium Sulphate
3.2. Gel Filtration Chromatography
3.3. SDS-PAGE
3.4. Characterization of Alkaline Protease
3.4.1. Impact of pH on Protease Activity
3.4.2. Impact of Temperature on Protease Activity
3.4.3. Impact of Induction Period on Protease Activity
3.5. Stability Studies
3.5.1. pH Stability
3.5.2. Thermo-Stability
3.5.3. Effect of Metal Ions and Inhibitors
3.6. Commercial Application in Leather Industry
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Pham, V.H.T.; Kim, J.; Shim, J.; Chang, S.; Chung, W. Purification and Characterization of Strong Simultaneous Enzyme Production of Protease and α-Amylase from an Extremophile-Bacillus sp. FW2 and Its Possibility in Food Waste Degradation. Fermentation 2022, 8, 12. [Google Scholar] [CrossRef]
- Zhao, H.L.; Chen, X.L.; Xie, B.B.; Zhou, M.Y.; Gao, X.; Zhang, X.Y.; Zhou, B.C.; Weiss, A.S.; Zhang, Y.Z. Elastolytic mechanism of a novel M23 metalloprotease pseudoalterin from deep-sea Pseudoalteromonas sp. CF6-2: Cleaving not only glycyl bonds in the hydrophobic regions but also peptide bonds in the hydrophilic regions involved in cross-linking. J. Biol. Chem. 2012, 287, 39710–39720. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Masi, C.; Gemechu, G.; Tafesse, M. Isolation, screening, characterization, and identification of alkaline protease-producing bacteria from leather industry effluent. Ann. Microbiol. 2021, 71, 24. [Google Scholar] [CrossRef]
- Ferreira, J.F.; Santana, J.C.C.; Tambourgi, E.B. Protease (bromelain): The effect of pH on Bromelian Partition from Ananas comosus by PEG4000/Phosphate ATPS. Braz. Arch. Biol. Technol. 2011, 54, 125–132. [Google Scholar] [CrossRef] [Green Version]
- Silveira, E.; Souza-Jr, M.E.; Santana, J.C.C.; Chaves, A.C.; Porto, L.F.; Tambourgi, E.B. Expanded bed adsorption of bromelain (E.C.3.4.22.33) from Ananas comosus crude extract. Braz. J. Chem. Eng. 2009, 26, 149–157. [Google Scholar] [CrossRef] [Green Version]
- Raval, V.H.; Pillai, S.; Rawal, C.M.; Signgh, S.P. Biochemical and structural characterization of a detergent-stable serine alkaline protease from seawater haloalkaliphilic bacteria. Process Biochem. 2014, 49, 955–962. [Google Scholar] [CrossRef]
- Ibrahim, A.S.S.; Al-Salamah, A.A.; El-Badawi, Y.B.; El-Tayeb, M.A. Detergent-, solvent- and salt-compatible thermoactive alkaline serine protease from halotolerant alkaliphilic Bacillus sp. NPST-AK15: Purification and characterization. Extremophiles 2015, 19, 961–971. [Google Scholar] [CrossRef]
- Tan, S.J. Isolation and Characterization of Enzyme Protease from Pumpkin and Its Affinity to Different Protein Substrates. Final. Year Proj. UTAR 2016. Available online: http://eprints.utar.edu.my/2340/1/CE-2016-1300713-1.pdf (accessed on 6 November 2022).
- Naveed, M.; Nadeem, F.; Mehmood, T.; Bilal, M.; Zahid, A.; Fazeha, A. Protease—A Versatile and Ecofriendly Biocatalyst with Multi-Industrial Applications: An Updated Review. Catal. Lett. 2021, 151, 307–323. [Google Scholar] [CrossRef]
- Furhan, J.; Sharma, S. Microbial alkaline proteases: Findings and applications. Int. J. Inv. Pharm. Sci. 2014, 2, 823–834. [Google Scholar]
- Godswill, A.C.; Somtochukwu, I.V. Industrial waste management: Brief survey and advice to cottage, small and medium scale industries in Uganda. Int. J. Adv. Acad. Res. 2017, 3, 26–43. [Google Scholar]
- Hadush, M.; Andualem, B.; Kebede, A.; Gopalakrishnan, V.K.; Chaithanya, K.K. Isolation of Protease Producing Bacteria (Bacillus spp.) From Soil and Water Samples of Gondar Town. Ethiopia. Res. J. Pharm. Biol. Chem. Sci. 2017, 8, 211–222. [Google Scholar]
- Jegannathan, K.R.; Nielsen, P.H. Environmental assessment of enzyme uses in industrial production—A literature reviews. J. Clean. Prod. 2013, 42, 228–240. [Google Scholar] [CrossRef] [Green Version]
- Wahab, W.A.A.; Ahmed, S.A. Response surface methodology for production, characterization and application of solvent, salt, and alkali-tolerant alkaline protease from isolated fungal strain Aspergillus niger WA. Int. J. Biol. Macromol. 2017, 115, 447–458. [Google Scholar] [CrossRef] [PubMed]
- Fazilat, A. Production, isolation, purification, and partial characterization of an extracellular acid protease from Aspergillus niger. Int. J. Adv. Res. Biol. Sci. 2016, 3, 32–38. [Google Scholar]
- Raveendran, S.; Parameswaran, B.; Beevi Ummalyma, S.; Abraham, A.; Kuruvilla Mathew, A.; Madhavan, A.; Pandey, A. Applications of microbial enzymes in food industry. Food Technol. Biotechnol. 2018, 56, 16–30. [Google Scholar] [CrossRef] [PubMed]
- Walsh, G. Proteins Biochemistry and Biotechnology, 2nd ed.; John Wiley Sons: Hoboken, NJ, USA, 2014; pp. 91–140. [Google Scholar]
- Nassar, F.R.; Abdelhafez, A.A.; El-Tayeb, T.S.; Abu-Hussein, S.H. Purification, Characterization and Applications of Proteases Produced by Bacillus amyloliquefaciens 35s Isolated from Soil of the Nile Delta of Egypt. Microbiol. Res. J. Int. 2015, 6, 286–302. [Google Scholar] [CrossRef]
- Oda, K. New families of carboxyl peptidases: Serine carboxyl peptidases and glutamic peptidases. J. Bio. Chem. 2012, 151, 13–25. [Google Scholar] [CrossRef] [Green Version]
- Giménez, M.I.; Studdert, C.A.; Sánchez, J.J.; de Castro, R.E. Extracellular protease of Natrialba magadii: Purification and biochemical characterization, Extremophiles. Microbe 2000, 4, 181–188. [Google Scholar] [CrossRef]
- Studdert, C.A.; Seitz, M.K.H.; Gil, M.I.P.; Sanchez, J.J.; de Castro, R.E. Puri-fication and biochemical characterization of the haloalkaliphilic archaeon Natronococcus occultus extracellular serine protease. J. Basic Microbiol. 2001, 41, 375–383. [Google Scholar] [CrossRef]
- Kumar, C.G.; Takagi, H. Microbial alkaline proteases: From a bio industrial viewpoint. Biotechnol. Adv. 1999, 17, 561–594. [Google Scholar] [CrossRef]
- Kumar, M.P.; Tiwari; Jany, K.D. Novel alkaline serine proteases from alkalophilic Bacillus spp. purification and some properties. Process Biochem. 1999, 34, 441–449. [Google Scholar] [CrossRef]
- Shankar, S.; Rao, M.; Laxman, R.S. Purification and characterization of an alkaline protease by a new strain of Beauveria sp. Process Biochem. 2011, 46, 579–585. [Google Scholar] [CrossRef]
- Laemmli, U.K. Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4. Nature 1970, 227, 680–685. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.Y.; Liu, D.M.; Liu, Y.; Cheng, C.F.; Ma, Q.Y.; Huang, Q.; Zhang, Y.Z. Screening and mutagenesis of a novel Bacillus pumilus strain producing alkaline protease for dehairing. Lett. Appl. Microbiol. 2007, 44, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.S.; Huang, C.I. Proteases production by amylolytic fungi in solid state fermentation. J. Chin. Agri. Chem. Soc. 1994, 32, 589–601. [Google Scholar]
- Lowry, O.; Rosebrough, N.; Farr, A.; Randall, R. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 1951, 193, 265–275. [Google Scholar] [CrossRef]
- Umayaparvathi, S.; Meenakshi, S.; Arumugam, M.; Balasubramanian, T. Purification and characterization of protease from Bacillus cereus SU12 isolated from oyster Saccostrea cucullate. Afr. J. Biotechnol. 2013, 12, 5897–5908. [Google Scholar]
- Nascimento, W.; Martins, M. Production and properties of an extracellular protease from thermophilic Bacillus sp. Braz. J. Microbiol. 2004, 35, 91–96. [Google Scholar] [CrossRef]
- Hashmi, S.; Iqbal, S.; Ahmed, I.; Janjua, H.A. Production, Optimization, and Partial Purification of Alkali-Thermotolerant Proteases from Newly Isolated Bacillus subtilis S1 and Bacillus amyloliquefaciens KSM12. Processes 2022, 10, 1050. [Google Scholar] [CrossRef]
- Rao, M.B.; Tanksale, A.M.; Ghatge, M.S.; Deshpande, V.V. Molecular and biotechnological aspects of microbial proteases. Microbiol. Mol. Biol. Rev. 1998, 62, 597–635. [Google Scholar] [CrossRef] [Green Version]
- Chandran, M.C.; Chandramohan, M.; Ahmed, F. Immobilization of the Magnetic Nanoparticles with Alkaline Protease Enzyme Produced by Enterococcus Hirae and Pseudomonas Aeruginosa Isolated from Dairy Effluents. Braz. Arch. Biol. Technol. 2018, 60, 1–18. [Google Scholar]
- Saranraj, P.; Jayaprakash, A.; Bhavani, L. Commercial production and application of bacterial alkaline protease—A Review. Asia Pac. J. Multidiscip. Res. 2017, 3, 1228–1250. [Google Scholar]
- Manavalan, T.; Manavalan, A.; Ramachandran, S.; Heese, K. Identification of a Novel Thermostable Alkaline Protease from Bacillus megaterium-TK1 for the Detergent and Leather Industry. Biology 2020, 9, 472. [Google Scholar] [CrossRef] [PubMed]
- Wajeeha, A.W.; Asad, M.J.; Mahmood, R.T.; Zainab, T.; Nazir, S.; Khan, J.; Rizwan, M. Production, Purification, and Characterization of Alkaline Protease from Aspergillus flavus and its Compatibility with Commercial Detergents. BioResources 2021, 16, 291–301. [Google Scholar] [CrossRef]
- Mary, S.R.; Arumugam, P.; Palavesam, A.; Christudhas, W.B. Isolation and Determination of Protease Enzyme Synthesized by Pseudomonas Sp. from the Gut of Estuarine Fish Etroplus suratensis. JOJ Mater. Sci. 2017, 2, 555–586. [Google Scholar]
- Chimbekujwo, K.I.; Ja’afaru, M.I.; Adeyemo, O.M. Purification, characterization, and optimization conditions of protease produced by Aspergillus brasiliensis strain BCW2. Sci. Afr. 2020, 8, e00398. [Google Scholar] [CrossRef]
- Karray, A.; Alonazi, M.; Horchani, H.; Bacha, A.A.B. Novel Thermostable and Alkaline Protease Produced from Bacillus stearothermophilus Isolated from Olive Oil Mill Sols Suitable to Industrial Biotechnology. Molecules 2021, 26, 1139. [Google Scholar] [CrossRef]
- Rejisha, R.P.; Murugan, M. Alkaline protease production by halophilic Bacillus sp. strain SP II-4 and characterization with special reference to contact lens cleansing. Mater. Today Proc. 2021, 45, 1757–1760. [Google Scholar] [CrossRef]
- Horikoshi, K.; Akiba, T. Alkalophilic Microorganisms: A New Microbial World; Japan Scientific Societies Press: Tokyo, Japan, 1982; pp. 93–101. [Google Scholar]
- Seifzadeh, S.; Sajedi, R.H.; Sariri, R. Isolation and characterization of thermophilic alkaline proteases resistant to sodium dodecyl sulfate and ethylene diamine tetraacetic acid from Bacillus sp. GUS1. Iran. J. Biotechnol. 2008, 6, 214–221. [Google Scholar]
- Al-Askar, A.A.; Rashad, Y.M.; Hafez, E.E.; Abdulkhair, W.M.; Baka, Z.A.; Ghoneem, K.M. Characterization of alkaline protease produced by Streptomyces griseorubens E44G and its possibility for controlling Rhizoctonia root rot disease of corn. Biotechnol. Biotechnol. Equip. 2015, 29, 457–462. [Google Scholar] [CrossRef]
- Devi, M.K.; Banu, A.R.; Gnanaprabhal, G.R.; Pradeep, B.V.; Palaniswamy, M. Purification, characterization of alkaline protease enzyme from native isolate Aspergillus niger and its compatibility with commercial detergents. Indian J. Sci. Technol. 2008, 1, 1–6. [Google Scholar] [CrossRef]
- Briki, D.; Hamdi, O.; Landoulsi, A. Enzymatic dehairing of goat skins using alkaline protease from Bacillus sp. SB12. Protein Expr. Purif. 2016, 121, 9–16. [Google Scholar] [CrossRef]
- Hakim, A.; Bhuiyan, F.R.; Iqbal, A.; Emon, T.H.; Ahmed, J.; Azad, A.K. Production and partial characterization of dehairing alkaline protease from Bacillus subtilis AKAL7 and Exiguobacterium indicum AKAL11 by using organic municipal solid wastes. Heliyon 2018, 4, e00646. [Google Scholar] [CrossRef] [PubMed]
- Mamun, M.A.A.; Hosain, M.A.; Ahmed, S.; Zohra, F.T.; Sultana, R.; Khan, M.M.; Akhter, M.Z.; Khan, S.N.; Hoq, M.M. Development of an Alternative Enzyme-assisted Dehairing Method of Animal Skins using Proteases from Bacillus licheniformis MZK05M9. Bangladesh J. Microbiol. 2016, 32, 33–37. [Google Scholar] [CrossRef]
Steps of Purification | Total Volume (mL) | Total Activity (U) | Total Proteins (mg) | Specific Activity (U/mg) | Purification Fold | Yield (%) |
---|---|---|---|---|---|---|
Crude enzyme | 1000 | 1,815,000 | 6980 | 260.02 | 1 | 100 |
(NH4)2SO4 Precipitation (70%) | 20 | 890,368 | 765.25 | 1163.50 | 6.5 | 62 |
Sephadex G-100 | 20 | 208,591 | 24.04 | 8902 | 35.91 | 10.73 |
S.No | Metal Ions/Inhibitors | Relative Activity (%) |
---|---|---|
1 | Control | 100 |
2 | Na+ (NaCl2) | 97 |
3 | Mg2+ (MgCl2) | 116 |
4 | Ca2+ (CaCl2) | 131 |
5 | Hg2+ (HgCl2) | 90 |
6 | Zn2+ (ZnCl2) | 93 |
7 | Cu2+ (CuCl2) | 97 |
8 | Ni2+ (NiCl2) | 92 |
9 | Al3+ (Al Cl3) | 96 |
10 | Co2+ (CoCl2) | 86 |
11 | Cd2+ (Cd Cl2) | 92 |
12 | phenyl methyl sulphonyl fluoride (PMSF) | 02 |
13 | pepstatine | 102 |
14 | 1, 10 phenonthroline | 95 |
15 | di-isopropyl fluorophosphates (DFP), | 11 |
16 | ethylene diamine tetra acetic acid (EDTA), | 96 |
17 | p-chloromercuric benzoate (pCMB) | 91 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ullah, N.; Rehman, M.U.; Sarwar, A.; Nadeem, M.; Nelofer, R.; Shakir, H.A.; Irfan, M.; Idrees, M.; Naz, S.; Nabi, G.; et al. Purification, Characterization, and Application of Alkaline Protease Enzyme from a Locally Isolated Bacillus cereus Strain. Fermentation 2022, 8, 628. https://doi.org/10.3390/fermentation8110628
Ullah N, Rehman MU, Sarwar A, Nadeem M, Nelofer R, Shakir HA, Irfan M, Idrees M, Naz S, Nabi G, et al. Purification, Characterization, and Application of Alkaline Protease Enzyme from a Locally Isolated Bacillus cereus Strain. Fermentation. 2022; 8(11):628. https://doi.org/10.3390/fermentation8110628
Chicago/Turabian StyleUllah, Najeeb, Mujaddad Ur Rehman, Abid Sarwar, Muhammad Nadeem, Rubina Nelofer, Hafiz Abdullah Shakir, Muhammad Irfan, Muhammad Idrees, Sumaira Naz, Ghulam Nabi, and et al. 2022. "Purification, Characterization, and Application of Alkaline Protease Enzyme from a Locally Isolated Bacillus cereus Strain" Fermentation 8, no. 11: 628. https://doi.org/10.3390/fermentation8110628
APA StyleUllah, N., Rehman, M. U., Sarwar, A., Nadeem, M., Nelofer, R., Shakir, H. A., Irfan, M., Idrees, M., Naz, S., Nabi, G., Shah, S., Aziz, T., Alharbi, M., Alshammari, A., & Alqahtani, F. (2022). Purification, Characterization, and Application of Alkaline Protease Enzyme from a Locally Isolated Bacillus cereus Strain. Fermentation, 8(11), 628. https://doi.org/10.3390/fermentation8110628