Fructooligosaccharides (FOS) Production by Microorganisms with Fructosyltransferase Activity
Abstract
:1. Introduction
2. Fructan Diversity
3. Enzymes Involved in Fructooligosaccharides Production
4. General Fructosyltransferase Activity
4.1. Microbial Fructosyltransferase Activity
4.1.1. Fructosyltransferase Activity in Bacteria
4.1.2. Fructosyltransferase Activity in Archaea
4.1.3. Fructosyltransferase Activity in Microbial Eukaryote
4.2. Improvement and Increase in Fructosyltransferase Activity
4.3. From Genetic Engineering to Synthetic Biology to Produce fructooligosaccharides in Microorganisms
5. Conclusions
6. Future Directions (Perspectives)
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Singh, R.S.; Singh, R.P.; Kennedy, J.F. Recent insights in enzymatic synthesis of fructooligosaccharides from inulin. Int. J. Biol. Macromol. 2016, 85, 565–572. [Google Scholar] [CrossRef]
- Sandoval-González, R.S.; Jiménez-Islas, H.; Navarrete-Bolaños, J.L. Design of a fermentation process for agave fructooligosaccharides production using endo-inulinases produced in situ by Saccharomyces paradoxus. Carbohydr. Polym. 2018, 198, 94–100. [Google Scholar] [CrossRef]
- Trujillo, L.E.; Martínez, D.; Pérez, E.; Rivera, L.; Pérez, J.; Pais, J.M. Fructosyltransferases and invertases: Useful enzymes in the food and feed industries. In Enzymes in Food Biotechnology; Kuddus, M., Ed.; Academic Press: Cambridge, MA, USA, 2019; pp. 451–469. [Google Scholar] [CrossRef]
- Banguela, A.; Hernández, L. Fructans: From natural sources to transgenic plants. Biotecnol. Apl. 2006, 23, 202–210. [Google Scholar]
- Paturi, G.; Butts, C.A.; Bentley-Hewitt, K.L.; Hedderley, D.; Stoklosinski, H.; Ansell, J. Differential effects of probiotics, prebiotics, and synbiotics on gut microbiota and gene expression in rats. J. Funct. Foods 2015, 13, 204–213. [Google Scholar] [CrossRef]
- Wang, M.; Cheong, K.L. Preparation, structural characterization, and bioactivities of fructans: A review. Molecules 2023, 28, 1613. [Google Scholar] [CrossRef]
- Blaut, M. Relationship of prebiotics and food to intestinal microflora. Eur. J. Nutr. 2002, 41, i11–i16. [Google Scholar] [CrossRef]
- Cummings, J.H.; Macfarlane, G.T. The control and consequences of bacterial fermentation in the human colon. J. Appl. Bacteriol. 1991, 70, 443–459. [Google Scholar] [CrossRef]
- Blaak, E.E.; Canfora, E.E.; Theis, S.; Frost, G.; Groen, A.K.; Mithieux, G.; Nauta, A.; Scott, K.; Stahl, B.; Van Harsselaar, J.; et al. Short chain fatty acids in human gut and metabolic health. Benef. Microbes 2020, 11, 411–455. [Google Scholar] [CrossRef]
- Ten Bruggencate, S.J.; Bovee-Oudenhoven, I.M.; Lettink-Wissink, M.L.; Katan, M.B.; van der Meer, R. Dietary fructooligosaccharides affect intestinal barrier function in healthy men. J. Nutr. 2006, 136, 70–74. [Google Scholar] [CrossRef]
- Di Bartolomeo, F.; Van den Ende, W. Fructose and fructans: Opposite effects on health? Plant Foods Hum. Nutr. 2015, 70, 227–237. [Google Scholar] [CrossRef]
- Urías-Silvas, J.E. Efecto Prebiótico de los Fructanos de Agaves y Dasylirion y su Implicación en el Metabolismo de Glucosa y Lípidos en Ratones. Doctoral Thesis, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato, Mexico, 2008. [Google Scholar]
- Scholz-Ahrens, K.E.; Schrezenmeir, J. Inulin and oligofructose and mineral metabolism: The evidence from animal trials. J. Nutr. 2007, 137, 2513S–2523S. [Google Scholar] [CrossRef] [PubMed]
- Vogt, L.; Ramasamy, U.; Meyer, D.; Pullens, G.; Venema, K.; Faas, M.M.; Schols, H.A.; de Vos, P. Immune modulation by different types of β2→ 1-fructans is toll-like receptor dependent. PLoS ONE 2013, 8, e68367. [Google Scholar] [CrossRef] [PubMed]
- Espinosa-Andrews, H.; Urías-Silvas, J.E.; Morales-Hernández, N. The role of agave fructans in health and food applications: A review. Trends Food Sci. Technol. 2021, 114, 585–598. [Google Scholar] [CrossRef]
- Gibson, G.R.; Roberfroid, M.B. Dietary modulation of the human colonic microbiota: Introducing the concept of prebiotics. J. Nutr. 1995, 125, 1401–1412. [Google Scholar] [CrossRef]
- De la Rosa, O.; Flores-Gallegos, A.C.; Muñíz-Marquez, D.; Nobre, C.; Contreras-Esquivel, J.C.; Aguilar, C.N. Fructooligosaccharides production from agro-wastes as alternative low-cost source. Trends Food Sci. Technol. 2019, 91, 139–146. [Google Scholar] [CrossRef]
- Femia, A.P.; Salvadori, M.; Broekaert, W.F.; François, I.E.; Delcour, J.A.; Courtin, C.M.; Caderni, G. Arabinoxylan-oligosaccharides (AXOS) reduce preneoplastic lesions in the colon of rats treated with 1, 2-dimethylhydrazine (DMH). Eur. J. Nutr. 2010, 49, 127–132. [Google Scholar] [CrossRef]
- Xu, B.; Wang, Y.; Li, J.; Lin, Q. Effect of prebiotic xylooligosaccharides on growth performances and digestive enzyme activities of allogynogenetic crucian carp (Carassius auratus gibelio). Fish Physiol. Biochem. 2009, 35, 351–357. [Google Scholar] [CrossRef]
- Kruschitz, A.; Nidetzky, B. Downstream processing technologies in the biocatalytic production of oligosaccharides. Biotechnol. Adv. 2020, 43, 107568. [Google Scholar] [CrossRef]
- Nguyen, T.T. The cholesterol-lowering action of plant stanol esters. J. Nutr. 1999, 129, 2109–2112. [Google Scholar] [CrossRef]
- Wang, Y.; Zeng, T.; Wang, S.E.; Wang, W.; Wang, Q.; Yu, H.X. Fructo-oligosaccharides enhance the mineral absorption and counteract the adverse effects of phytic acid in mice. Nutrition 2010, 26, 305–311. [Google Scholar] [CrossRef]
- Costa, G.T.; Vasconcelos, Q.D.; Aragão, G.F. Fructooligosaccharides on inflammation, immunomodulation, oxidative stress, and gut immune response: A systematic review. Nutr. Rev. 2022, 80, 709–722. [Google Scholar] [CrossRef] [PubMed]
- Guerra, L.; Ureta, M.; Romanini, D.; Woitovich, N.; Gómez-Zavaglia, A.; Clementz, A. Enzymatic synthesis of fructooligosaccharides: From carrot discards to prebiotic juice. Food Res. Int. 2023, 170, 112991. [Google Scholar] [CrossRef] [PubMed]
- Transparencymarketresearch.com. Prebiotics Ingredients Market: Health and Wellness Spending Continues to Create Opportunities. Available online: http://www.transparencymarketresearch.com/prebiotics-market.html (accessed on 13 October 2023).
- Grandviewresearch.com. Prebiotics Market Size, Share & Trends Analysis Report by Ingredients (FOS, Inulin, GOS, MOS), By Application (Food & Beverages, Dietary Supplements, Animal Feed), By Region, and Segment Forecasts, 2022–2030. Available online: https://www.grandviewresearch.com/industry-analysis/prebiotics-market (accessed on 13 October 2023).
- Reportlinker.com. Prebiotics Market Analysis by Ingredient (FOS, inulin, GOS, MOS), By Application (Food and Beverages, Animal Feed, Dietary Supplements) and Segmenta Forescasts to 2024. Available online: https://www.reportlinker.com/p03937911/Prebiotics-Market-Analysis-By-Ingredient-FOS-Inulin-GOS-MOS-By-Application-Food-Beverages-Animal-Feed-Dietary-Supplements-And-Segment-Forecasts-To.html (accessed on 13 October 2023).
- Verifiedmarketresearch.com. Fructooligosaccharide (FOS) Market Size and Forecast. Available online: https://www.verifiedmarketresearch.com/product/global-fructooligosaccharide-fos-market-size-and-forecast/#:~:text=Fructooligosaccharide%20(FOS)%20Market%20size%20was,10.5%25%20from%202023%20to%202030 (accessed on 13 October 2023).
- Van Laere, A.; Van Den Ende, W. Inulin metabolism in dicots: Chicory as a model system. Plant Cell Environ. 2002, 25, 803–813. [Google Scholar] [CrossRef]
- Ende, W.V.D. Multifunctional fructans and raffinose family oligosaccharides. Front. Plant Sci. 2013, 4, 247. [Google Scholar] [CrossRef]
- McCallum, J.; Clarke, A.; Pither-Joyce, M.; Shaw, M.; Butler, R.; Brash, D.; Scheffer, J.; Sims, I.; van Heusden, S.; Shigyo, M.; et al. Genetic mapping of a major gene affecting onion bulb fructan content. Theor. Appl. Genet. 2006, 112, 958–967. [Google Scholar] [CrossRef]
- Shiomi, N.; Onodera, S.; Chatterton, N.J.; Harrison, P.A. Separation of fructooligosaccharide isomers by anion-exchange chromatography. Agric. Biol. Chem. 1991, 55, 1427–1428. [Google Scholar] [CrossRef]
- Viera-Alcaide, I.; Hamdi, A.; Guillén-Bejarano, R.; Rodríguez-Arcos, R.; Espejo-Calvo, J.A.; Jiménez-Araujo, A. Asparagus roots: From an agricultural by-product to a valuable source of fructans. Foods 2022, 11, 652. [Google Scholar] [CrossRef]
- Sims, I.M. Structural diversity of fructans from members of the order Asparagales in New Zealand. Phytochemistry 2003, 63, 351–359. [Google Scholar] [CrossRef]
- Cimini, S.; Locato, V.; Vergauwen, R.; Paradiso, A.; Cecchini, C.; Vandenpoel, L.; Verspreet, J.; Courtin, C.M.; D’Egidio, M.G.; Ende, W.V.D.; et al. Fructan biosynthesis and degradation as part of plant metabolism controlling sugar fluxes during durum wheat kernel maturation. Front. Plant Sci. 2015, 6, 89. [Google Scholar] [CrossRef]
- Abeynayake, S.W.; Etzerodt, T.P.; Jonavičienė, K.; Byrne, S.; Asp, T.; Boelt, B. Fructan metabolism and changes in fructan composition during cold acclimation in perennial ryegrass. Front. Plant Sci. 2015, 6, 329. [Google Scholar] [CrossRef]
- López, M.G.; Mancilla-Margalli, N.A.; Mendoza-Díaz, G. Molecular structures of fructans from Agave tequilana Weber var. azul. J. Agric. Food Chem. 2003, 51, 7835–7840. [Google Scholar] [CrossRef] [PubMed]
- Mancilla-Margalli, N.A.; López, M.G. Water-soluble carbohydrates and fructan structure patterns from Agave and Dasylirion species. J. Agric. Food Chem. 2006, 54, 7832–7839. [Google Scholar] [CrossRef] [PubMed]
- Huazano-García, A.; Silva-Adame, M.B.; Vázquez-Martínez, J.; Gastelum-Arellanez, A.; Sánchez-Segura, L.; López, M.G. Highly branched neo-fructans (Agavins) attenuate metabolic endotoxemia and low-grade inflammation in association with gut microbiota modulation on high-fat diet-fed mice. Foods 2020, 9, 1792. [Google Scholar] [CrossRef] [PubMed]
- Santiago-García, P.A.; López, M.G. Agavins from Agave angustifolia and Agave potatorum affect food intake, body weight gain and satiety-related hormones (GLP-1 and ghrelin) in mice. Food Funct. 2014, 5, 3311–3319. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Wang, Y.; Zhang, X.; Cao, L.; Ji, J.; Zheng, Q.; Gao, J. Isolation and structural identification of a novel fructan from Radix Codonopsis. J. Carbohydr. Chem. 2020, 39, 163–174. [Google Scholar] [CrossRef]
- Ávila-Fernández, Á.; Olvera-Carranza, C.; Rudino-Pinera, E.; Cassab, G.I.; Nieto-Sotelo, J.; López-Munguía, A. Molecular characterization of sucrose: Sucrose 1-fructosyltransferase (1-SST) from Agave tequilana Weber var. azul. Plant Sci. 2007, 173, 478–486. [Google Scholar] [CrossRef]
- Tezgel, N.; Kırtel, O.; Van den Ende, W.; Toksoy Öner, E. Fructosyltransferase enzymes for microbial fructan production. In Microbial Enzymes: Roles and Applications in Industries; Arora, N., Mischra, J., Mischra, V., Eds.; Springer: Singapore, 2020; Volume 11, pp. 1–39. [Google Scholar] [CrossRef]
- Márquez-López, R.E.; Loyola-Vargas, V.M.; Santiago-García, P.A. Interaction between fructan metabolism and plant growth regulators. Planta 2022, 255, 49. [Google Scholar] [CrossRef]
- Sangeetha, P.T.; Ramesh, M.N.; Prapulla, S.G. Recent trends in the microbial production, analysis, and application of fructooligosaccharides. Trends Food Sci. Technol. 2005, 16, 442–457. [Google Scholar] [CrossRef]
- Álvaro-Benito, M.; de Abreu, M.; Fernández-Arrojo, L.; Plou, F.J.; Jiménez-Barbero, J.; Ballesteros, A.; Polaina, J.; Fernández-Lobato, M. Characterization of a β-fructofuranosidase from Schwanniomyces occidentalis with transfructosylating activity yielding the prebiotic 6-kestose. J. Biotechnol. 2007, 132, 75–81. [Google Scholar] [CrossRef]
- Choukade, R.; Kango, N. Production, properties, and applications of fructosyltransferase: A current appraisal. Crit. Rev. Biotechnol. 2021, 41, 1178–1193. [Google Scholar] [CrossRef]
- Nobre, C.; Teixeira, J.A.; Rodrigues, L.R. New trends and technological challenges in the industrial production and purification of fructo-oligosaccharides. Crit. Rev. Food Sci. Nutr. 2015, 55, 1444–1455. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Martínez, M.J.; Soto-Jover, S.; Antolinos, V.; Martínez-Hernández, G.B.; López-Gómez, A. Manufacturing of short-chain fructooligosaccharides: From laboratory to industrial scale. Food Eng. Rev. 2020, 12, 149–172. [Google Scholar] [CrossRef]
- Eskandari Nasab, E.; Habibi-Rezaei, M.; Khaki, A.; Balvardi, M. Investigation on acid hydrolysis of inulin: A response surface methodology approach. Int. J. Food Eng. 2009, 5, 1–8. [Google Scholar] [CrossRef]
- Sarchami, T.; Rehmann, L. Optimizing acid hydrolysis of Jerusalem artichoke-derived inulin for fermentative butanol production. BioEnergy Res. 2015, 8, 1148–1157. [Google Scholar] [CrossRef]
- Ricca, E.; Calabrò, V.; Curcio, S.; Iorio, G. The state of the art in the production of fructose from inulin enzymatic hydrolysis. Crit. Rev. Biotechnol. 2007, 27, 129–145. [Google Scholar] [CrossRef]
- Kochhar, A.; Gupta, A.K.; Kaur, N. Purification and immobilisation of inulinase from Aspergillus candidus for producing fructose. J. Sci. Food Agric. 1999, 79, 549–554. [Google Scholar] [CrossRef]
- Cheng, M.; Wu, H.; Zhang, W.; Mu, W. Difructose anhydride III: A 50-year perspective on its production and physiological functions. Crit. Rev. Food Sci. Nutr. 2022, 62, 6714–6725. [Google Scholar] [CrossRef]
- Canatar, M.; Tufan, H.N.G.; Ünsal, S.B.E.; Koc, C.Y.; Ozcan, A.; Kucuk, G.; Basmak, S.; Yatmaz, E.; Germec, M.; Yavuz, I.; et al. Inulinase and fructooligosaccharide production from carob using Aspergillus niger A42 (ATCC 204447) under solid-state fermentation conditions. Int. J. Biol. Macromol. 2023, 245, 125520. [Google Scholar] [CrossRef]
- Schorsch, J.; Castro, C.C.; Couto, L.D.; Nobre, C.; Kinnaert, M. Optimal control for fermentative production of fructo-oligosaccharides in fed-batch bioreactor. J. Process Control. 2019, 78, 124–138. [Google Scholar] [CrossRef]
- Ganaie, M.A.; Lateef, A.; Gupta, U.S. Enzymatic trends of fructooligosaccharides production by microorganisms. Appl. Biochem. Biotechnol. 2014, 172, 2143–2159. [Google Scholar] [CrossRef]
- Kushi, R.T.; Monti, R.; Contiero, J. Production, purification, and characterization of an extracellular inulinase from Kluyveromyces marxianus var. bulgaricus. J. Ind. Microbiol. Biotechnol. 2000, 25, 63–69. [Google Scholar] [CrossRef]
- Karboune, S.; Appanah, N.; Khodaei, N.; Tian, F. Enzymatic synthesis of fructooligosaccharides from sucrose by endo-inulinase-catalyzed transfructosylation reaction in biphasic systems. Process Biochem. 2018, 69, 82–91. [Google Scholar] [CrossRef]
- Maiorano, A.E.; Piccoli, R.M.; Da Silva, E.S.; de Andrade Rodrigues, M.F. Microbial production of fructosyltransferases for synthesis of prebiotics. Biotechnol. Lett. 2008, 30, 1867–1877. [Google Scholar] [CrossRef] [PubMed]
- Ghazi, I.; Fernandez-Arrojo, L.; Garcia-Arellano, H.; Ferrer, M.; Ballesteros, A.; Plou, F.J. Purification and kinetic characterization of a fructosyltransferase from Aspergillus aculeatus. J. Biotechnol. 2007, 128, 204–211. [Google Scholar] [CrossRef]
- Marín-Navarro, J.; Talens-Perales, D.; Polaina, J. One-pot production of fructooligosaccharides by a Saccharomyces cerevisiae strain expressing an engineered invertase. Appl. Microbiol. Biotechnol. 2015, 99, 2549–2555. [Google Scholar] [CrossRef]
- Magri, A.; Oliveira, M.R.; Baldo, C.; Tischer, C.A.; Sartori, D.; Mantovani, M.S.; Celligoi, M.A.P.C. Production of fructooligosaccharides by Bacillus subtilis natto CCT7712 and their antiproliferative potential. J. Appl. Microbiol. 2020, 128, 1414–1426. [Google Scholar] [CrossRef]
- Vicente-Magueyal, F.J.; Bautista-Méndez, A.; Villanueva-Tierrablanca, H.D.; García-Ruíz, J.L.; Jiménez-Islas, H.; Navarrete-Bolaños, J.L. Novel process to obtain agave sap (aguamiel) by directed enzymatic hydrolysis of agave juice fructans. LWT 2020, 127, 109387. [Google Scholar] [CrossRef]
- Picazo, B.; Flores-Gallegos, A.C.; Muñiz-Márquez, D.B.; Flores-Maltos, A.; Michel-Michel, M.R.; de la Rosa, O.; Rodriguez-Jasso, R.M.A.I.; Rodriguez, R.; Aguilar-González, C.N. Enzymes for fructooligosaccharides production: Achievements and opportunities. In Enzymes in Food Biotechnology; Kuddus, M., Ed.; Academic Press: Cambridge, MA, USA, 2019; pp. 303–320. [Google Scholar] [CrossRef]
- Schultz, G.; Alexander, R.; Lima, F.V.; Giordano, R.C.; Ribeiro, M.P. Kinetic modeling of the enzymatic synthesis of galacto-oligosaccharides: Describing galactobiose formation. Food Bioprod. Process. 2021, 127, 1–13. [Google Scholar] [CrossRef]
- Van Hijum, S.A.F.T.; van Geel-Schutten, G.H.; Rahaoui, H.; Van der Maarel, M.J.E.C.; Dijkhuizen, L. Characterization of a novel fructosyltransferase from Lactobacillus reuteri that synthesizes high-molecular-weight inulin and inulin oligosaccharides. Appl. Environ. Microbiol. 2002, 68, 4390–4398. [Google Scholar] [CrossRef]
- Antošová, M.; Polakovič, M. Fructosyltransferases: The enzymes catalyzing production of fructooligosaccharides. Chem. Pap 2001, 55, 350–358. [Google Scholar]
- Alméciga-Díaz, C.J.; Gutiérrez, Á.M.; Bahamon, I.; Rodríguez, A.; Rodríguez, M.A.; Sánchez, O.F. Computational analysis of the fructosyltransferase enzymes in plants, fungi, and bacteria. Gene 2011, 484, 26–34. [Google Scholar] [CrossRef] [PubMed]
- Ademakinwa, A.N.; Ayinla, Z.A.; Agboola, F.K. Strain improvement and statistical optimization as a combined strategy for improving fructosyltransferase production by Aureobasidium pullulans NAC8. J. Genet. Eng. Biotechnol. 2017, 15, 345–358. [Google Scholar] [CrossRef] [PubMed]
- L’Hocine, L.; Wang, Z.; Jiang, B.; Xu, S. Purification and partial characterization of fructosyltransferase and invertase from Aspergillus niger AS0023. J. Biotechnol. 2000, 81, 73–84. [Google Scholar] [CrossRef]
- Kırtel, O.; Lescrinier, E.; Van den Ende, W.; Öner, E.T. Discovery of fructans in Archaea. Carbohydr. Polym. 2019, 220, 149–156. [Google Scholar] [CrossRef] [PubMed]
- Versluys, M.; Kirtel, O.; Toksoy Öner, E.; Van den Ende, W. The fructan syndrome: Evolutionary aspects and common themes among plants and microbes. Plant Cell Environ. 2018, 41, 16–38. [Google Scholar] [CrossRef] [PubMed]
- Ko, H.; Sung, B.H.; Kim, M.J.; Sohn, J.H.; Bae, J.H. Fructan biosynthesis by yeast cell factories. J. Microbiol. Biotechnol. 2022, 32, 1373. [Google Scholar] [CrossRef] [PubMed]
- Vijn, I.; Smeekens, S. Fructan: More than a reserve carbohydrate? Plant Physiology. 1999, 120, 351–360. [Google Scholar] [CrossRef] [PubMed]
- Lammens, W.; Le Roy, K.; Schroeven, L.; Van Laere, A.; Rabijns, A.; Van den Ende, W. Structural insights into glycoside hydrolase family 32 and 68 enzymes: Functional implications. J. Exp. Bot. 2009, 60, 727–740. [Google Scholar] [CrossRef]
- Anwar, M.A.; Kralj, S.; van der Maarel, M.J.; Dijkhuizen, L. The probiotic Lactobacillus johnsonii NCC 533 produces high-molecular-mass inulin from sucrose by using an inulosucrase enzyme. Appl. Environ. Microbiol. 2008, 74, 3426–3433. [Google Scholar] [CrossRef]
- Olivares-Illana, V.; Wacher-Rodarte, C.; Le Borgne, S.; López-Munguía, A. Characterization of a cell-associated inulosucrase from a novel source: A Leuconostoc citreum strain isolated from Pozol, a fermented corn beverage of Mayan origin. J. Ind. Microbiol. Biotechnol. 2002, 28, 112–117. [Google Scholar] [CrossRef]
- Ponstein, A.S.; Van Leeuwen, M.B. In vitro synthesis of inulin by the inulosucrase from Streptococcus mutans. Stud. Plant Sci. 1993, 3, 281–287. [Google Scholar] [CrossRef]
- Malik, A. Molecular cloning and in silico characterization of fructansucrase gene from Weissella confusa MBFCNC-2(1) isolated from local beverage. Asia-Pac. J. Mol. Biol. Biotechnol. 2012, 20, 33–42. [Google Scholar]
- Támbara, Y.; Hormaza, J.V.; Pérez, C.; León, A.; Arrieta, J.; Hernández, L. Structural analysis and optimized production of fructo-oligosaccharides by levansucrase from Acetobacter diazotrophicus SRT4. Biotechnol. Lett. 1999, 21, 117–121. [Google Scholar] [CrossRef]
- Chambert, R.; Treboul, G.; Dedonder, R. Kinetic studies of levansucrase of Bacillus subtilis. Eur. J. Biochem. 1974, 41, 285–300. [Google Scholar] [CrossRef] [PubMed]
- Inthanavong, L.; Tian, F.; Khodadadi, M.; Karboune, S. Properties of Geobacillus stearothermophilus levansucrase as potential biocatalyst for the synthesis of levan and fructooligosaccharides. Biotechnol. Prog. 2013, 29, 1405–1415. [Google Scholar] [CrossRef]
- Van Hijum, S.A.F.T.; Szalowska, E.; Van Der Maarel, M.J.E.C.; Dijkhuizen, L. Biochemical and molecular characterization of a levansucrase from Lactobacillus reuteri. Microbiology 2004, 150, 621–630. [Google Scholar] [CrossRef] [PubMed]
- Morales-Arrieta, S.; Rodríguez, M.E.; Segovia, L.; López-Munguía, A.; Olvera-Carranza, C. Identification and functional characterization of levS, a gene encoding for a levansucrase from Leuconostoc mesenteroides NRRL B-512 F. Gene 2006, 376, 59. [Google Scholar] [CrossRef]
- Hettwer, U.; Gross, M.; Rudolph, K. Purification and characterization of an extracellular levansucrase from Pseudomonas syringae pv. phaseolicola. J. Bacteriol. 1995, 177, 2834–2839. [Google Scholar] [CrossRef]
- Jung, H.C.; Lebeault, J.M.; Pan, J.G. Surface display of Zymomonas mobilis levansucrase by using the ice-nucleation protein of Pseudomonas syringae. Nat. Biotechnol. 1998, 16, 576–580. [Google Scholar] [CrossRef]
- Yoshikawa, J.; Amachi, S.; Shinoyama, H.; Fujii, T. Multiple β-fructofuranosidases by Aureobasidium pullulans DSM2404 and their roles in fructooligosaccharide production. FEMS Microbiol. Lett. 2006, 265, 159–163. [Google Scholar] [CrossRef]
- Zeng, W.; Leng, S.; Zhang, Y.; Chen, G.; Liang, Z. Development of new strategies for the production of high-purity fructooligosaccharides using β-fructofuranosidase and a novel isolated Wickerhamomyces anomalus. Sep. Purif. Technol. 2022, 284, 120236. [Google Scholar] [CrossRef]
- Yoshikawa, J.; Honda, Y.; Saito, Y.; Sato, D.; Iwata, K.; Amachi, S.; Kashiwagi, Y.; Maehashi, K. Isolation and identification of Zalaria sp. Him3 as a novel fructooligosaccharides-producing yeast. J. Appl. Microbiol. 2022, 132, 1104–1111. [Google Scholar] [CrossRef] [PubMed]
- Gimeno-Pérez, M.; Linde, D.; Fernández-Arrojo, L.; Plou, F.J.; Fernández-Lobato, M. Heterologous overproduction of β-fructofuranosidase from yeast Xanthophyllomyces dendrorhous, an enzyme producing prebiotic sugars. Appl. Microbiol. Biotechnol. 2015, 99, 3459–3467. [Google Scholar] [CrossRef] [PubMed]
- Patel, V.; Saunders, G.; Bucke, C. N-Deglycosylation of fructosyltransferase and invertase from Fusarium oxysporum decreases stability but has little effect on kinetics and synthetic specificity. Biotechnol. Lett. 1997, 19, 75–77. [Google Scholar] [CrossRef]
- Dhake, A.B.; Patil, M.B. Effect of substrate feeding on production of fructosyltransferase by Penicillium purpurogenum. Braz. J. Microbiol. 2007, 38, 194–199. [Google Scholar] [CrossRef]
- Lateef, A.; Gueguim-Kana, E.B. Utilization of cassava wastes in the production of fructosyltransferase by Rhizopus stolonifer LAU 07. Rom. Biotechnol. Lett. 2012, 17, 7309–7316. [Google Scholar]
- Xie, Y.; Zhou, H.; Liu, C.; Zhang, J.; Li, N.; Zhao, Z.; Sun, G.; Zhong, Y. A molasses habitat-derived fungus Aspergillus tubingensis XG21 with high β-fructofuranosidase activity and its potential use for fructooligosaccharides production. AMB Express 2017, 7, 128. [Google Scholar] [CrossRef]
- Nascimento, A.K.C.; Nobre, C.; Cavalcanti, M.T.H.; Teixeira, J.A.; Porto, A.L.F. Screening of fungi from the genus Penicillium for production of β-fructofuranosidase and enzymatic synthesis of fructooligosaccharides. J. Mol. Catal. B Enzym. 2016, 134, 70–78. [Google Scholar] [CrossRef]
- Gimeno-Pérez, M.; Merdzo, Z.; Castillo-Rosa, E.; Hijas, C.M.D.; Fernández-Lobato, M. The β-fructofuranosidase from Rhodotorula dairenensis: Molecular cloning, heterologous expression, and evaluation of its transferase activity. Catalysts 2021, 11, 476. [Google Scholar] [CrossRef]
- López, M.G.; Salomé-Abarca, L.F. The agavins (agave carbohydrate) story. Carbohydr. Polym. 2023, in press. [Google Scholar]
- Xu, W.; Ni, D.; Zhang, W.; Guang, C.; Zhang, T.; Mu, W. Recent advances in levansucrase and inulosucrase: Evolution, characteristics, and application. Crit. Rev. Food Sci. Nutr. 2019, 59, 3630–3647. [Google Scholar] [CrossRef]
- Porras-Domínguez, J.R.; Ávila-Fernández, Á.; Rodríguez-Alegría, M.E.; Miranda-Molina, A.; Escalante, A.; González-Cervantes, R.; Olvera, C.; Munguía, A.L. Levan-type FOS production using a Bacillus licheniformis endolevanase. Process Biochem. 2014, 49, 783–790. [Google Scholar] [CrossRef]
- Santos-Moriano, P.; Fernandez-Arrojo, L.; Poveda, A.; Jimenez-Barbero, J.; Ballesteros, A.O.; Plou, F.J. Levan versus fructooligosaccharide synthesis using the levansucrase from Zymomonas mobilis: Effect of reaction conditions. J. Mol. Catal. B Enzym. 2015, 119, 18–25. [Google Scholar] [CrossRef]
- De Siqueira, E.C.; Öner, E.T. Co-production of levan with other high-value bioproducts: A review. Int. J. Biol. Macromol. 2023, 235, 123800. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, H.T.; Nguyen, T.H.; Otto, M. The staphylococcal exopolysaccharide PIA–Biosynthesis and role in biofilm formation, colonization, and infection. Comput. Struct. Biotechnol. J. 2020, 18, 3324–3334. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira, M.R.; da Silva, R.S.S.F.; Buzato, J.B.; Celligoi, M.A.P.C. Study of levan production by Zymomonas mobilis using regional low-cost carbohydrate sources. Biochem. Eng. J. 2007, 37, 177–183. [Google Scholar] [CrossRef]
- Ritsema, T.; Smeekens, S. Fructans: Beneficial for plants and humans. Curr. Opin. Plant Biol. 2003, 6, 223–230. [Google Scholar] [CrossRef]
- Visnapuu, T.; Mardo, K.; Alamäe, T. Levansucrases of a Pseudomonas syringae pathovar as catalysts for the synthesis of potentially prebiotic oligo-and polysaccharides. New Biotechnol. 2015, 32, 597–605. [Google Scholar] [CrossRef]
- Li, W.; Yu, S.; Zhang, T.; Jiang, B.; Mu, W. Recent novel applications of levansucrases. Appl. Microbiol. Biotechnol. 2015, 99, 6959–6969. [Google Scholar] [CrossRef]
- Öner, E.T.; Hernández, L.; Combie, J. Review of levan polysaccharide: From a century of past experiences to future prospects. Biotechnol. Adv. 2016, 34, 827–844. [Google Scholar] [CrossRef]
- Shih, L.; Chen, L.D.; Wu, J.Y. Levan production using Bacillus subtilis natto cells immobilized on alginate. Carbohydr. Polym. 2010, 82, 111–117. [Google Scholar] [CrossRef]
- Xavier, J.R.; Ramana, K.V. Optimization of levan production by cold-active Bacillus licheniformis ANT 179 and fructooligosaccharide synthesis by its levansucrase. Appl. Biochem. Biotechnol. 2017, 181, 986–1006. [Google Scholar] [CrossRef] [PubMed]
- Wahyuningrum, D.; Hertadi, R. Isolation and characterization of levan from moderate halophilic bacteria Bacillus licheniformis BK AG21. Procedia Chem. 2015, 16, 292–298. [Google Scholar] [CrossRef]
- Djurić, A.; Gojgić-Cvijović, G.; Jakovljević, D.; Kekez, B.; Kojić, J.S.; Mattinen, M.L.; Harju, I.E.; Vrvić, M.M.; Beškoski, V.P. Brachybacterium sp. CH-KOV3 isolated from an oil-polluted environment–a new producer of levan. Int. J. Biol. Macromol. 2017, 104, 311–321. [Google Scholar] [CrossRef] [PubMed]
- Erkorkmaz, B.A.; Kırtel, O.; Duru, Ö.A.; Öner, E.T. Development of a cost-effective production process for Halomonas levan. Bioprocess Biosyst. Eng. 2018, 41, 1247–1259. [Google Scholar] [CrossRef]
- van Hijum, S.A.; Bonting, K.; van der Maarel, M.J.; Dijkhuizen, L. Purification of a novel fructosyltransferase from Lactobacillus reuteri strain 121 and characterization of the levan produced. FEMS Microbiol. Lett. 2001, 205, 323–328. [Google Scholar] [CrossRef]
- Liu, J.; Luo, J.; Ye, H.; Zeng, X. Preparation, antioxidant, and antitumor activities in vitro of different derivatives of levan from endophytic bacterium Paenibacillus polymyxa EJS-3. Food Chem. Toxicol. 2012, 50, 767–772. [Google Scholar] [CrossRef]
- Simms, P.J.; Boyko, W.J.; Edwards, J.R. The structural analysis of a levan produced by Streptococcus salivarius SS2. Carbohydr. Res. 1990, 208, 193–198. [Google Scholar] [CrossRef]
- Nasir, A.; Sattar, F.; Ashfaq, I.; Lindemann, S.R.; Chen, M.H.; Van den Ende, W.; Öner, E.T.; Kirtel, O.; Khaliq, S.; Ghauri, M.A.; et al. Production and characterization of a high molecular weight levan and fructooligosaccharides from a rhizospheric isolate of Bacillus aryabhattai. LWT 2020, 123, 109093. [Google Scholar] [CrossRef]
- Gojgic-Cvijovic, G.D.; Jakovljevic, D.M.; Loncarevic, B.D.; Todorovic, N.M.; Pergal, M.V.; Ciric, J.; Loos, K.; Beskoski, V.; Vrvic, M.M. Production of levan by Bacillus licheniformis NS032 in sugar beet molasses-based medium. Int. J. Biol. Macromol. 2019, 121, 142–151. [Google Scholar] [CrossRef]
- Xu, W.; Liu, Q.; Bai, Y.; Yu, S.; Zhang, T.; Jiang, B.; Mu, W. Physicochemical properties of a high molecular weight levan from Brenneria sp. EniD312. Int. J. Biol. Macromol. 2018, 109, 810–818. [Google Scholar] [CrossRef] [PubMed]
- Kralj, S.; Leeflang, C.; Sierra, E.I.; Kempiński, B.; Alkan, V.; Kolkman, M. Synthesis of fructooligosaccharides (FosA) and inulin (InuO) by GH68 fructosyltransferases from Bacillus agaradhaerens strain WDG185. Carbohydr. Polym. 2018, 179, 350–359. [Google Scholar] [CrossRef] [PubMed]
- Aduse-Opuko, J.; Gilpin, M.L.; Russell, R.R.B. Genetic and antigenic comparison of Streptococcus mutans fructosyltransferase and glucan-binding protein. FEMS Microbiol. Lett. 1989, 59, 279–282. [Google Scholar] [CrossRef]
- Rosell, K.G.; Birkhed, D. An inulin-like fructan produced by Streptococcus mutans, strain JC2. Acta Chem. Scand. B 1974, 28, 589. [Google Scholar] [CrossRef]
- Loesche, W.J. The identification of bacteria associated with periodontal disease and dental caries by enzymatic methods. Oral Microbiol. Immunol. 1986, 1, 65–70. [Google Scholar] [CrossRef]
- Ni, D.; Xu, W.; Zhu, Y.; Zhang, W.; Zhang, T.; Guang, C.; Mu, W. Inulin and its enzymatic production by inulosucrase: Characteristics, structural features, molecular modifications and applications. Biotechnol. Adv. 2019, 37, 306–318. [Google Scholar] [CrossRef]
- Olivares-Illana, V.; López-Munguía, A.; Olvera, C. Molecular characterization of inulosucrase from Leuconostoc citreum: A fructosyltransferase within a glucosyltransferase. J. Bacteriol. 2003, 185, 3606–3612. [Google Scholar] [CrossRef]
- Bersaneti, G.T.; Pan, N.C.; Baldo, C.; Celligoi, M.A.P.C. Co-production of fructooligosaccharides and levan by levansucrase from Bacillus subtilis natto with potential application in the food industry. Appl. Biochem. Biotechnol. 2018, 184, 838–851. [Google Scholar] [CrossRef]
- Zhang, T.; Li, R.; Qian, H.; Mu, W.; Miao, M.; Jiang, B. Biosynthesis of levan by levansucrase from Bacillus methylotrophicus SK 21.002. Carbohydr. Polym. 2014, 101, 975–981. [Google Scholar] [CrossRef]
- Liu, J.; Luo, J.; Ye, H.; Sun, Y.; Lu, Z.; Zeng, X. Medium optimization and structural characterization of exopolysaccharides from endophytic bacterium Paenibacillus polymyxa EJS-3. Carbohydr. Polym. 2010, 79, 206–213. [Google Scholar] [CrossRef]
- Silbir, S.; Dagbagli, S.; Yegin, S.; Baysal, T.; Goksungur, Y. Levan production by Zymomonas mobilis in batch and continuous fermentation systems. Carbohydr. Polym. 2014, 99, 454–461. [Google Scholar] [CrossRef] [PubMed]
- Ghauri, K.; Ali, H.; Munawar, N.; Ghauri, M.A.; Anwar, M.A. Glycoside hydrolase family 68 gene of halophilic archaeon Halalkalicoccus jeotgali B3T codes for an inulosucrase enzyme. Biocatal. Biotransformation 2021, 39, 206–213. [Google Scholar] [CrossRef]
- Kırtel, O.; Versluys, M.; Van den Ende, W.; Öner, E.T. Fructans of the saline world. Biotechnol. Adv. 2018, 36, 1524–1539. [Google Scholar] [CrossRef]
- Hirabayashi, K.; Kondo, N.; Toyota, H.; Hayashi, S. Production of the functional trisaccharide 1-kestose from cane sugar molasses using Aspergillus japonicus β-fructofuranosidase. Curr. Microbiol. 2017, 74, 145–148. [Google Scholar] [CrossRef]
- de Almeida, M.N.; Guimarães, V.M.; Falkoski, D.L.; de Camargo, B.R.; Fontes-Sant’ana, G.C.; Maitan-Alfenas, G.P.; de Rezende, S.T. Purification and characterization of an invertase and a transfructosylase from Aspergillus terreus. J. Food Biochem. 2018, 42, e12551. [Google Scholar] [CrossRef]
- Ganaie, M.A.; Rawat, H.K.; Wani, O.A.; Gupta, U.S.; Kango, N. Immobilization of fructosyltransferase by chitosan and alginate for efficient production of fructooligosaccharides. Process Biochem. 2014, 49, 840–844. [Google Scholar] [CrossRef]
- Sánchez, O.; Guio, F.; Garcia, D.; Silva, E.; Caicedo, L. Fructooligosaccharides production by Aspergillus sp. N74 in a mechanically agitated airlift reactor. Food Bioprod. Process. 2008, 86, 109–115. [Google Scholar] [CrossRef]
- Mostafa, F.A.; Wahab, W.A.A.; Salah, H.A.; Nawwar, G.A.; Esawy, M.A. Kinetic and thermodynamic characteristic of Aspergillus awamori EM66 levansucrase. Int. J. Biol. Macromol. 2018, 119, 232–239. [Google Scholar] [CrossRef]
- Muñiz-Márquez, D.B.; Contreras, J.C.; Rodríguez, R.; Mussatto, S.I.; Teixeira, J.A.; Aguilar, C.N. Enhancement of fructosyltransferase and fructooligosaccharides production by A. oryzae DIA-MF in Solid-State Fermentation using aguamiel as culture medium. Bioresour. Technol. 2016, 213, 276–282. [Google Scholar] [CrossRef]
- Antošová, M.; Illeová, V.; Vandáková, M.; Družkovská, A.; Polakovič, M. Chromatographic separation and kinetic properties of fructosyltransferase from Aureobasidium pullulans. J. Biotechnol. 2008, 135, 58–63. [Google Scholar] [CrossRef]
- Ghazi, I.; De Segura, A.G.; Fernández-Arrojo, L.; Alcalde, M.; Yates, M.; Rojas-Cervantes, M.L.; Plou, F.J.; Ballesteros, A. Immobilisation of fructosyltransferase from Aspergillus aculeatus on epoxy-activated Sepabeads EC for the synthesis of fructo-oligosaccharides. J. Mol. Catal. B Enzym. 2005, 35, 19–27. [Google Scholar] [CrossRef]
- Ojwach, J.; Kumar, A.; Mukaratirwa, S.; Mutanda, T. Fructooligosaccharides synthesized by fructosyltransferase from an indigenous coprophilous Aspergillus niger strain XOBP48 exhibits antioxidant activity. Bioact. Carbohydr. Diet. Fibre 2020, 24, 100238. [Google Scholar] [CrossRef]
- Van der Klei, I.J.; Veenhuis, M. Yeast and filamentous fungi as model organisms in microbody research. Biochim. Et Biophys. Acta (BBA)-Mol. Cell Res. 2006, 1763, 1364–1373. [Google Scholar] [CrossRef] [PubMed]
- Smedsgaard, J.; Nielsen, J. Metabolite profiling of fungi and yeast: From phenotype to metabolome by MS and informatics. J. Exp. Bot. 2005, 56, 273–286. [Google Scholar] [CrossRef]
- Khatun, M.S.; Hassanpour, M.; Mussatto, S.I.; Harrison, M.D.; Speight, R.E.; O’Hara, I.M.; Zhang, Z. Transformation of sugarcane molasses into fructooligosaccharides with enhanced prebiotic activity using whole-cell biocatalysts from Aureobasidium pullulans FRR 5284 and an invertase-deficient Saccharomyces cerevisiae 1403-7A. Bioresour. Bioprocess. 2021, 8, 85. [Google Scholar] [CrossRef]
- Straathof, A.J.; Kieboom, A.P.; van Bekkum, H. Invertase-catalyzed fructosyl transfer in concentrated solutions of sucrose. Carbohydr. Res. 1986, 146, 154–159. [Google Scholar] [CrossRef] [PubMed]
- Maugeri, F.; Hernalsteens, S. Screening of yeast strains for transfructosylating activity. J. Mol. Catal. B Enzym. 2007, 49, 43–49. [Google Scholar] [CrossRef]
- Bhalla, T.C.; Thakur, N.; Thakur, N. Invertase of Saccharomyces cerevisiae SAA-612: Production, characterization, and application in synthesis of fructo-oligosaccharides. LWT 2017, 77, 178–185. [Google Scholar] [CrossRef]
- Gomes, P.M.; Pereira, T.; Aparecida, C.; da Silva Santos, F.R.; Lisbo, N.F.; Fonseca, G.G.; Leite, R.S.R.; da Paz, M.F. Biochemical characterization, and evaluation of invertases produced from Saccharomyces cerevisiae CAT-1 and Rhodotorula mucilaginosa for the production of fructooligosaccharides. Prep. Biochem. Biotechnol. 2018, 48, 506–513. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, C.; Xie, Y.; Li, N.; Ning, Z.; Du, N.; Huang, X.; Zhong, Y. Enhancing fructooligosaccharides production by genetic improvement of the industrial fungus Aspergillus niger ATCC 20611. J. Biotechnol. 2017, 249, 25–33. [Google Scholar] [CrossRef]
- Hidaka, H.; Hirayama, M.; Sumi, N. A fructooligosaccharide-producing enzyme from Aspergillus niger ATCC 20611. Agric. Biol. Chem. 1988, 52, 1181–1187. [Google Scholar] [CrossRef]
- Nakakuki, T. Present status and future prospects of functional oligosaccharide development in Japan. J. Appl. Glycosci. 2005, 52, 267–271. [Google Scholar] [CrossRef]
- Jung, K.H.; Bang, S.H.; Oh, T.K.; Park, H.J. Industrial production of fructooligosaccharides by immobilized cells of Aureobasidium pullulans in a packed bed reactor. Biotechnol. Lett. 2011, 33, 1621–1624. [Google Scholar] [CrossRef] [PubMed]
- Han, S.; Pan, L.; Zeng, W.; Yang, L.; Yang, D.; Chen, G.; Liang, Z. Improved production of fructooligosaccharides (FOS) using a mutant strain of Aspergillus oryzae S719 overexpressing β-fructofuranosidase (FTase) genes. LWT 2021, 146, 111346. [Google Scholar] [CrossRef]
- Mba, I.E.; Nweze, E.I. Nanoparticles as therapeutic options for treating multidrug-resistant bacteria: Research progress, challenges, and prospects. World J. Microbiol. Biotechnol. 2021, 37, 108. [Google Scholar] [CrossRef]
- Kodym, A.; Afza, R. Physical and chemical mutagenesis. Plant Funct. Genom. 2003, 236, 189–203. [Google Scholar] [CrossRef]
- Rajoka, M.I.; Yasmeen, A. Improved productivity of β-fructofuranosidase by a derepressed mutant of Aspergillus niger from conventional and non-conventional substrates. World J. Microbiol. Biotechnol. 2005, 21, 471–478. [Google Scholar] [CrossRef]
- Lee, L.S.; Till, B.J.; Hill, H.; Huynh, O.A.; Jankowicz-Cieslak, J. Mutation and mutation screening. In Cereal Genomics: Methods and Protocols; Henry, R., Furtado, A., Eds.; Humana Press: Totowa, NJ, USA, 2014; Volume 1099, pp. 77–95. [Google Scholar] [CrossRef]
- Terleth, C.; Schenk, P.; Poot, R.; Brouwer, J.; Van De Putte, P. Differential repair of UV damage in rad mutants of Saccharomyces cerevisiae: A possible function of G2 arrest upon UV irradiation. Mol. Cell. Biol. 1990, 10, 4678–4684. [Google Scholar] [CrossRef]
- Witkin, E.M. Ultraviolet-induced mutation and DNA repair. Annu. Rev. Genet. 1969, 3, 525–552. [Google Scholar] [CrossRef]
- Parekh, S.; Vinci, V.A.; Strobel, R.J. Improvement of microbial strains and fermentation processes. Appl. Microbiol. Biotechnol. 2000, 54, 287–301. [Google Scholar] [CrossRef]
- Baeshen, N.A.; Baeshen, M.N.; Sheikh, A.; Bora, R.S.; Ahmed, M.M.M.; Ramadan, H.A.; Saini, K.S.; Redwan, E.M. Cell factories for insulin production. Microb. Cell Factories 2014, 13, 141. [Google Scholar] [CrossRef]
- Lafraya, A.; Sanz-Aparicio, J.; Polaina, J.; Marín-Navarro, J. Fructo-oligosaccharide synthesis by mutant versions of Saccharomyces cerevisiae invertase. Appl. Environ. Microbiol. 2011, 77, 6148–6157. [Google Scholar] [CrossRef] [PubMed]
- Schroeven, L.; Lammens, W.; Van Laere, A.; Van den Ende, W. Transforming wheat vacuolar invertase into a high affinity sucrose: Sucrose 1-fructosyltransferase. New Phytol. 2008, 180, 822–831. [Google Scholar] [CrossRef] [PubMed]
- Yuan, X.L.; Goosen, C.; Kools, H.; van der Maarel, M.J.; van den Hondel, C.A.J.; Dijkhuizen, L.; Ram, A.F. Database mining and transcriptional analysis of genes encoding inulin-modifying enzymes of Aspergillus Niger. Microbiol. 2006, 152, 3061–3073. [Google Scholar] [CrossRef] [PubMed]
- Chuankhayan, P.; Hsieh, C.Y.; Huang, Y.C.; Hsieh, Y.Y.; Guan, H.H.; Hsieh, Y.C.; Tien, Y.-C.; Chen, C.-D.; Chiang, C.-M.; Chen, C.-J. Crystal structures of Aspergillus japonicus fructosyltransferase complex with donor/acceptor substrates reveal complete subsites in the active site for catalysis. J. Biol. Chem. 2010, 285, 23251–23264. [Google Scholar] [CrossRef]
- Jakob, F.; Meißner, D.; Vogel, R.F. Comparison of novel GH 68 levansucrases of levan-overproducing Gluconobacter species. Acetic Acid Bact. 2012, 1, e2. [Google Scholar] [CrossRef]
- van Hijum, S.A.; Kralj, S.; Ozimek, L.K.; Dijkhuizen, L.; van Geel-Schutten, I.G. Structure-function relationships of glucansucrase and fructansucrase enzymes from lactic acid bacteria. Microbiol. Mol. Biol. Rev. 2006, 70, 157–176. [Google Scholar] [CrossRef]
- Wuerges, J.; Caputi, L.; Cianci, M.; Boivin, S.; Meijers, R.; Benini, S. The crystal structure of Erwinia amylovora levansucrase provides a snapshot of the products of sucrose hydrolysis trapped into the active site. J. Struct. Biol. 2015, 191, 290–298. [Google Scholar] [CrossRef]
- Kaplan-Türköz, B.; Bakar, B. Structural modelling and structure-function analysis of Zymomonas mobilis levansucrase. J. Nat. Appl. Sci. 2017, 21, 279–285. [Google Scholar] [CrossRef]
- Martínez-Fleites, C.; Ortíz-Lombardía, M.; Pons, T.; Tarbouriech, N.; Taylor, E.J.; Arrieta, J.G.; Hernández, L.; Davies, G.J. Crystal structure of levansucrase from the Gram-negative bacterium Gluconacetobacter diazotrophicus. Biochem. J. 2005, 390, 19–27. [Google Scholar] [CrossRef]
- Álvaro-Benito, M.; Polo, A.; González, B.; Fernández-Lobato, M.; Sanz-Aparicio, J. Structural and kinetic analysis of Schwanniomyces occidentalis invertase reveals a new oligomerization pattern and the role of its supplementary domain in substrate binding. J. Biol. Chem. 2010, 285, 13930–13941. [Google Scholar] [CrossRef] [PubMed]
- Lanigan, T.M.; Kopera, H.C.; Saunders, T.L. Principles of genetic engineering. Genes 2020, 11, 291. [Google Scholar] [CrossRef] [PubMed]
- Trollope, K.M. Engineering a Fungal β-Fructofuranosidase. Doctoral Thesis, Stellenbosch University, Stellenbosch, South Africa, 2015. [Google Scholar]
- Stephanopoulos, G. Synthetic biology and metabolic engineering. ACS Synth. Biol. 2012, 1, 514–525. [Google Scholar] [CrossRef] [PubMed]
- Xu, N.; Liu, Y.; Jiang, H.; Liu, J.; Ma, Y. Combining protein and metabolic engineering to construct efficient microbial cell factories. Curr. Opin. Biotechnol. 2020, 66, 27–35. [Google Scholar] [CrossRef]
- Bailey, J.E. Toward a science of metabolic engineering. Science 1991, 252, 1668–1675. [Google Scholar] [CrossRef]
- Benner, S.A.; Sismour, A.M. Synthetic biology. Nat. Rev. Genet. 2005, 6, 533–543. [Google Scholar] [CrossRef]
- Martin, V.J.; Pitera, D.J.; Withers, S.T.; Newman, J.D.; Keasling, J.D. Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nat. Biotechnol. 2003, 21, 796–802. [Google Scholar] [CrossRef]
- Ke, J.; Yoshikuni, Y. Multi-chassis engineering for heterologous production of microbial natural products. Curr. Opin. Biotechnol. 2020, 62, 88–97. [Google Scholar] [CrossRef]
- Medema, M.H.; Kottmann, R.; Yilmaz, P.; Cummings, M.; Biggins, J.B.; Blin, K.; de Bruijn, I.; Chooi, Y.H.; Claesen, J.; Coates, R.C.; et al. Minimum information about a biosynthetic gene cluster. Nat. Chem. Biol. 2015, 11, 625–631. [Google Scholar] [CrossRef]
- Geers, A.U.; Buijs, Y.; Strube, M.L.; Gram, L.; Bentzon-Tilia, M. The natural product biosynthesis potential of the microbiomes of Earth–Bioprospecting for novel anti-microbial agents in the meta-omics era. Comput. Struct. Biotechnol. J. 2022, 20, 343–352. [Google Scholar] [CrossRef]
- Adams, B.L. The next generation of synthetic biology chassis: Moving synthetic biology from the laboratory to the field. ACS Synth. Biol. 2016, 5, 1328–1330. [Google Scholar] [CrossRef] [PubMed]
- Tian, T.; Kang, J.W.; Kang, A.; Lee, T.S. Redirecting metabolic flux via combinatorial multiplex CRISPRi-mediated repression for isopentenol production in Escherichia coli. ACS Synth. Biol. 2019, 8, 391–402. [Google Scholar] [CrossRef] [PubMed]
- Kang, H.K.; Seo, M.Y.; Seo, E.S.; Kim, D.; Chung, S.Y.; Kimura, A.; Day, D.F.; Robyt, J.F. Cloning and expression of levansucrase from Leuconostoc mesenteroides B-512 FMC in Escherichia coli. Biochim. Et Biophys. Acta (BBA)-Gene Struct. Expr. 2005, 1727, 5–15. [Google Scholar] [CrossRef] [PubMed]
- Braga, A.; Gomes, D.; Rainha, J.; Cardoso, B.B.; Amorim, C.; Silvério, S.C.; Fernández-Lobato, M.; Rodrigues, J.L.; Rodrigues, L.R. Tailoring fructooligosaccharides composition with engineered Zymomonas mobilis ZM4. Appl. Microbiol. Biotechnol. 2022, 106, 4617–4626. [Google Scholar] [CrossRef] [PubMed]
- Chu, J.; Tian, Y.; Li, Q.; Liu, G.; Yu, Q.; Jiang, T.; He, B. Engineering the β-fructofuranosidase Fru6 with promoted transfructosylating capacity for fructooligosaccharide production. J. Agric. Food Chem. 2022, 70, 9694–9702. [Google Scholar] [CrossRef]
- Yang, H.; Wang, Y.; Zhang, L.; Shen, W. Heterologous expression, and enzymatic characterization of fructosyltransferase from Aspergillus niger in Pichia pastoris. New Biotechnol. 2016, 33, 164–170. [Google Scholar] [CrossRef]
- Aung, T.; Jiang, H.; Chen, C.C.; Liu, G.L.; Hu, Z.; Chi, Z.M.; Chi, Z. Production, gene cloning, and overexpression of a laccase in the marine-derived yeast Aureobasidium melanogenum strain 11-1 and characterization of the recombinant laccase. Mar. Biotechnol. 2019, 21, 76–87. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, X.; Xu, Y.; Xu, S.; Bilal, M.; Cheng, H. Engineering thermotolerant Yarrowia lipolytica for sustainable biosynthesis of mannitol and fructooligosaccharides. Biochem. Eng. J. 2022, 187, 108604. [Google Scholar] [CrossRef]
- Franken, J.; Brandt, B.A.; Tai, S.L.; Bauer, F.F. Biosynthesis of levan, a bacterial extracellular polysaccharide, in the yeast Saccharomyces cerevisiae. PLoS ONE 2013, 8, e77499. [Google Scholar] [CrossRef]
- Zhang, L.; An, J.; Li, L.; Wang, H.; Liu, D.; Li, N.; Cheng, H.; Deng, Z. Highly efficient fructooligosaccharides production by an erythritol-producing yeast Yarrowia lipolytica displaying fructosyltransferase. J. Agric. Food Chem. 2016, 64, 3828–3837. [Google Scholar] [CrossRef]
- García, L.H.; Rodríguez, C.M.; Cruz, E.R.P.; García, D.M.; Lasa, A.M.; Ibañez, R.R.; Legon, A.S.; Toledo, L.E.T.; González, D.A. Novel enzymatic catalysts for fructooligosaccharides production from cane sugar. Biotecnol. Apl. 2015, 32, 1301–1307. [Google Scholar]
- Burghardt, J.P.; Fan, R.; Baas, M.; Eckhardt, D.; Gerlach, D.; Czermak, P. Enhancing the heterologous fructosyltransferase activity of Kluyveromyces lactis: Developing a scaled-up process and abolishing invertase by CRISPR/Cas9 genome editing. Front. Bioeng. Biotechnol. 2020, 8, 607507. [Google Scholar] [CrossRef] [PubMed]
Fructan Type | Linkage | Example | Reference |
---|---|---|---|
Inulin | linear, β(2→1) | Chicory (Cichorium intybus L.), Jerusalem artichoke (Helianthus L.), Artichoke (Cynara cardunculus L.), Dahlia (Dahlia pinnata Cav.), Yacon tuber (Smallanthus connatus (Spreng.) H.Rob.) | [29] |
Levan | linear, β(2→6) | Dactylis glomerata L., Phleum pratense L., Puccinellia rupestris (With.) Fernald and Weath. | [30] |
Graminan | β(2→1) and β(2→6) and branched | Triticum aestivum L., Hordeum vulgare L., Arthropodium cirrhatum (G. Forst.) R.Br., Astelia banksii A. Cunn., Bulbinella hookeri (Colenso ex Hook.) Cheeseman | [30,31,32] |
neo-Fructan (neo-inulin) | neokestose, predominantly β(2→1) | Onion (Allium cepa L.), Garlic (Allium sativum L.), Asparagus (Asparagus officinalis L.) | [33,34,35] |
neo-Fructan (neo-levan) | neokestose, predominantly β(2→6) | Perennial ryegrass (Lolium perenne L.) | [36] |
neo-Fructan (agavins) | neokestose, β(2→1) and β(2→6), highly branched | Agave tequilana Weber var. Azul, Agave angustifolia, Agave potatorum | [37,38,39,40] |
No name | β(2→3) | Radix Codonopsis | [41] |
Bacteria | Enzyme | Culturing Conditions | Product | Reference | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Name | Molecular Weight | Enzymatic Activity | Units | Culture | Component | g/L | Conditions | Name | g/L | YP/S (%) | ||||
Gram-negative | Bacillus subtilis (Natto) CCT7712 | Levansucrase | n.d. | 23.9 | U/mL | Cells | Sucrose Yeast extract KH2PO4 (NH4)2SO4 MgSO4•7H2O MnSO4 Ammonium citrate | 3502 1 3 0.6 0.2 0.25 | Agitation = pH = T = t = | 50 rpm 6 35 °C 36 h | Levan FOS (nystose) | 63.6 41.3 | 18.1 11.8 | [126] |
Bacillus subtilis (Natto) CCT7712 | Levansucrase | n.d. | 60 | Mmol/mL | Cells | Sucrose Yeast extract KH2PO4 (NH4)2SO4 MgSO4•7H2O MnSO4 Dibasic ammonium citrate ((NH4)2HC6H5O7) | 400 2 1 3 0.6 0.2 0.25 | Agitation = pH = T = t = | 150 rpm 7.7 35 °C 48 h | Levan FOS (nystose) | 192.41 173.6 | 48.1 43.4 | [63] | |
Bacillus methylotrophicus | Levansucrase | n.d. | n.d. | n.d. | Cells | Sucrose Yeast extract KH2PO4 Peptone | 20 10 4.5 4.5 | Agitation = pH = T = t = | 180 rpm 7.5 30 °C 24 h | n.d. | n.d. | n.d. | [127] | |
n.d. | 6 | U/g | Enzyme | Sucrose | 300 | Agitation = pH = T = t = | n.s. 6 37 °C 16 h | Levan (4–5 kDa) | 100 | 33 | ||||
Bacillus aryabhattai | Levansucrase | n.d. | n.d. | n.d. | Cells | Sucrose GYC media: Yeast extract Glucose CaCO3 | 250 10 50 5 | Agitation = pH = T = t = | 150 rpm 8 30 °C 120 h | Levan (5.317 × 107Da, 5.19% branched) FOS (1-kestose, 6-kestose, neokestose, nystose and others) | 26 | 10.4 | [117] | |
Paenibacillus polymyxa EJS-3 | Levansucrase | n.d. | n.d. | n.d. | Cells | Sucrose Yeast extract KH2PO4 CaCl2 | 188.2 25.8 5 0.34 | Agitation = pH = T = t = | 150 rpm 8 24 °C 60 h | Levan | 35.26 | 18.7 | [128] | |
Gram-positive | Zymomonas mobilis | Levansucrase | n.d. | n.d. | n.d. | Cells | Sucrose Yeast extract KH2PO4 (NH4)2SO4 MgSO4•7H2O | 250 2.5 1 1 0.5 | Agitation = pH = T = t = | n.s. n.s. 24 °C 24 h | Levan | 21.69 | 8.67 | [104] |
Zymomonas mobilis | Levansucrase | n.d. | n.d. | n.d. | Cells | Sucrose Yeast extract KH2PO4 (NH4)2SO4 MgSO4•7H2O | 299.1 1 1 0.5 | Agitation = pH = T = t = | 0 rpm 6 28 °C 42.3 h | Levan | 40.2 | 13.44 | [129] | |
Leuconostoc citreum CW28 | Inulosucrase | 170 | n.d. | n.d. | Cells | Sucrose Yeast extract K2HPO4 MgSO4 CaCl2 NaCl MnSO4 FeSO4 | 20 20 20 0.2 0.05 0.01 0.01 0.01 | Agitation = pH = T = t = | 200 rpm 6.9 30 °C 12 h | Inulin | n.d. | n.d. | [78] |
Fungi | Enzyme | Growing Conditions | Product | Reference | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Name | Molecular Weight | Enzymatic Activity | Units | Culture | Component | g/L | Conditions | Name | g/L | YP/S (%) | |||
Aspergillus oryzae DIA-MF | FTase | n.d. | 1347 | U/L | Cells | Aguamiel (content of sucrose) | 37 | Agitation = pH = T = t = | n.s. 4.5 30 °C 48 h | FOS | 15.5 | 41.89 | [137] |
FTase | n.d. | 1431 | U/L | Enzymatic extract | Aguamiel (content of sucrose) | 37 | Agitation = pH = T = t = | n.s. 5 30 °C 3 h | FOS (kestose) | 11 | 29.72 | ||
Aureobasidium pullulans CCY 27-1-94 | FTase | 570,000 | 1310 | U/mg | Enzyme | Sucrose | 600 | Agitation = pH = T = t = | n.s. 5.5 55 °C 8.3 h | FOS kestose nystose | 300 150 150 | 50 25 25 | [138] |
Aspergillus aculeatus | FTase | n.d. | 25.9 | U/g | Enzymatic extract | Sucrose | 630 | Agitation = pH = T = t = | 1000 rpm 5.6 60 °C 36 h | FOS kestose n.s. fructofuranosylnystose | 387 240 144 3 | 61.42 38.09 22.85 0.47 | [61,139] |
FTase | 135 kDa for dymer | 5 | U/mL | Enzyme | Sucrose | 600 | Agitation = pH = T = t = | n.s. 5.5 60 °C 24 h | FOS kestose nystose fructosylnystose | 364.2 112.2 213.6 38.4 | 60.7 18.7 35.6 6.4 | ||
Cocrophilous fungi (Aspergillus niger sp. XOBP48) | FTase | n.d. | n.d. | n.d. | Cells | Sucrose Yeast extract NaNO3 K2HPO4 MgSO4•7H2O FeSO4•7H2O KCl | 30 5 3 1 0.5 0.01 0.5 | Agitation = pH = T = t = | 200 rpm 6.5 28 °C 168 h | n.d. | n.d. | n.d. | [140] |
FTase | n.d. | 529.5 | U/mL | Enzymatic extract | Sucrose | 50 | Agitation = pH = T = t = | n.s. 6.5 60 °C 0.5 h | kestose nystose | n.d. | n.d. | [140] |
Yeast | Enzyme | Growing Conditions | Product | Reference | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Name | Molecular Weight | Enzymatic Activity | Units | Culture | Component | g/L | Conditions | Name | g/L | YP/S (%) | |||
Schwanniomyces occidentalis | β-fructofuranosydase (with FTase activity) | 85 kDa | 0.3 | U/mL | Enzyme | Sucrose | 600 | Agitation = pH = T = t = | 650 5.6 50 °C 24 h | FOS (6-kestose) | 76 | 0.16 | [46] |
Saccharomyces cerevisiae SAA-612 | β-fructofuranosydase (with FTase activity) | n.d. | 17.8 | U/mg | Enzymatic extract | Sucrose Yeast extract (NH4)2SO4 K2HPO4 MgSO4 | 20 10 1 3.5 0.75 | Agitation = pH = T = t = | n.s. 5.5 40 °C 4 h | FOS (n.e) | n.s. | n.d. | [146] |
Saccharomyces cerevisiae CAT-1 | β-fructofuranosydase (with FTase activity) | n.d | n.d. | n.d | Enzymatic extract | Sucrose | 200 | Agitation = pH = T = t = | not 4.5 50 °C 2 h | FOS (kestose) | 13.3 | 6.65 | [147] |
Rhodotorula mucilaginosa | β-fructofuranosydase (with FTase activity) | n.d | n.d. | n.d | Enzymatic extract | Sucrose | 200 | Agitation = pH = T = t = | not 4.5 50 °C 2 h | FOS (kestose) | 12.6 | 6.30 |
Modification | Culturing Conditions | Product | Reference | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Modified Microorganism | Enzyme | Method/Technique | Activity Increase | Culture | Component | g/L | Conditions | Name | g/L | YP/S (%) | ||
Aureobasidium pullulans | FTase | Genetic modification of A. pullulans using sequential, random chemical mutagenesis using ethidium bromide and ethyl methane sulfonate. | Increase in 6 and 2-fold extracellular and intracellular FTase, respectively, compared to the wild-type. | Cells | Sucrose Yeast extract NaNO3 KH2PO4 NH4Cl NaCl | 200 5 2 1 1 5 | Agitation = pH = T = t = | n.s. 5 45 °C 1 h | n.d | n.d. | n.d. | [70] |
Aspergillus oryzae S719 | FTase | A. oryaze S719 irradiation overexpressing a β-fructofuranosidase. | n.d. | Enzymatic extract | Sucrose | 900 | Agitation = pH = T = t = | 160 pm 6 50 °C 20 h | FOS | 586 | 65.11 | [152] |
Yarrowia lipolytica CGMCC11368 | FTase | The A. oryaze FTase was displayed on the cell surface of an engineered Y. lipolytica. | The yield increased by 10%. | Cells | Sucrose | 800 | Agitation = pH = T = t = | n.s. 6 60 °C 3 h | FOS kestose neo-kestose nystose fructofuranosylnystose | 480 | 60% | [190] |
Pichia pastoris | FTase and β-fructanofuranosidase | T. maritima FFase and S. arundinaceus 1-SST were modified by directed mutagenesis and expressed constitutively in P. pastoris. | n.d. | Enzyme | Sucrose Yeast extract | 50 0.5 | Agitation = pH = T = t = | 900 rpm 5.5 30 °C 72 h | FOS 6-kestose neo-kestose | n.s. | 37 | [191] |
Pichia pastoris GS115 | FTase | A. niger YZ59 FTase was obtained and expressed in P. pastoris. | Increase 1160-fold the activity than the native FTase. | Enzyme | Sucrose | 600 | Agitation = pH = T = t = | n.s. 5.5 4z0 °C 2 h | FOS | 343 | 57.16 | [186] |
Pichia pastoris | FTase | A. terreus FTase into K. lactics, then CRISPR/Cas9 was used to inactive a native INV. | Increase 66.9% the transferase activity. | Cells | FM22 medium: Glucose Galactose Lactose | 30 7 or 7 | Agitation = pH = T = t = | n.s. 6 30 °C n.s. | n.d. | n.d. | n.d. | [192] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Belmonte-Izquierdo, Y.; Salomé-Abarca, L.F.; González-Hernández, J.C.; López, M.G. Fructooligosaccharides (FOS) Production by Microorganisms with Fructosyltransferase Activity. Fermentation 2023, 9, 968. https://doi.org/10.3390/fermentation9110968
Belmonte-Izquierdo Y, Salomé-Abarca LF, González-Hernández JC, López MG. Fructooligosaccharides (FOS) Production by Microorganisms with Fructosyltransferase Activity. Fermentation. 2023; 9(11):968. https://doi.org/10.3390/fermentation9110968
Chicago/Turabian StyleBelmonte-Izquierdo, Yadira, Luis Francisco Salomé-Abarca, Juan Carlos González-Hernández, and Mercedes G. López. 2023. "Fructooligosaccharides (FOS) Production by Microorganisms with Fructosyltransferase Activity" Fermentation 9, no. 11: 968. https://doi.org/10.3390/fermentation9110968
APA StyleBelmonte-Izquierdo, Y., Salomé-Abarca, L. F., González-Hernández, J. C., & López, M. G. (2023). Fructooligosaccharides (FOS) Production by Microorganisms with Fructosyltransferase Activity. Fermentation, 9(11), 968. https://doi.org/10.3390/fermentation9110968