Aroma Profiles of Vitis vinifera L. cv. Gewürztraminer Must Fermented with Co-Cultures of Saccharomyces cerevisiae and Seven Hanseniaspora spp.
Abstract
:1. Introduction
2. Materials and Methods
2.1. Yeast Strains Used in the Study
2.2. Microvinification
2.3. Analysis of the Must and Wines
2.3.1. HPLC
2.3.2. GC-MS
Aroma Bouquet Analysis
Terpenes
2.4. Statistical Analysis
3. Results and Discussion
3.1. Fermentation Curves
3.2. Organic Acids
3.3. Ethanol and Glycerol
3.4. Aroma Analysis
3.5. Terpenes
3.6. PCA
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Van Wyk, N.; Badura, J.; Von Wallbrunn, C.; Pretorius, I.S. Exploring future applications of the apiculate yeast Hanseniaspora. Crit. Rev. Biotechnol. 2023, in press. [Google Scholar] [CrossRef]
- Martin, V.; Valera, M.; Medina, K.; Boido, E.; Carrau, F. Oenological impact of the Hanseniaspora/Kloeckera yeast genus on wines—A review. Fermentation 2018, 4, 76. [Google Scholar] [CrossRef] [Green Version]
- Díaz-Montaño, D.M.; de Jesús Ramírez Córdova, J. The fermentative and aromatic ability of Kloeckera and Hanseniaspora yeasts. In Yeast Biotechnology: Diversity and Applications; Satyanarayana, T., Kunze, G., Eds.; Springer: Dordrecht, The Netherlands, 2009; pp. 282–301. ISBN 9781402082917. [Google Scholar]
- Wei, J.; Zhang, Y.; Qiu, Y.; Guo, H.; Ju, H.; Wang, Y.; Yuan, Y.; Yue, T. Chemical composition, sensorial properties, and aroma-active compounds of ciders fermented with Hanseniaspora osmophila and Torulaspora quercuum in co- and sequential fermentations. Food Chem. 2020, 306, 125623. [Google Scholar] [CrossRef] [PubMed]
- Elhalis, H.; Cox, J.; Frank, D.; Zhao, J. The crucial role of yeasts in the wet fermentation of coffee beans and quality. Int. J. Food Microbiol. 2020, 333, 108796. [Google Scholar] [CrossRef]
- Ho, V.T.T.; Zhao, J.; Fleet, G. Yeasts are essential for cocoa bean fermentation. Int. J. Food Microbiol. 2014, 174, 72–87. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Mas, A.; Esteve-Zarzoso, B. Interaction between Hanseniaspora uvarum and Saccharomyces cerevisiae during alcoholic fermentation. Int. J. Food Microbiol. 2015, 206, 67–74. [Google Scholar] [CrossRef] [PubMed]
- Hierro, N.; Esteve-Zarzoso, B.; Mas, A.; Guillamón, J.M. Monitoring of Saccharomyces and Hanseniaspora populations during alcoholic fermentation by real-time quantitative PCR. FEMS Yeast Res. 2007, 7, 1340–1349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moreira, N.; Mendes, F.; Guedes de Pinho, P.; Hogg, T.; Vasconcelos, I. Heavy sulphur compounds, higher alcohols and esters production profile of Hanseniaspora uvarum and Hanseniaspora guilliermondii grown as pure and mixed cultures in grape must. Int. J. Food Microbiol. 2008, 124, 231–238. [Google Scholar] [CrossRef]
- Rojas, V.; Gil, J.V.; Piñaga, F.; Manzanares, P. Acetate ester formation in wine by mixed cultures in laboratory fermentations. Int. J. Food Microbiol. 2003, 86, 181–188. [Google Scholar] [CrossRef]
- Loureiro, V.; Malfeito-Ferreira, M. Spoilage yeasts in the wine industry. Int. J. Food Microbiol. 2003, 86, 23–50. [Google Scholar] [CrossRef]
- Malfeito-Ferreira, M. Yeasts and wine off-flavours: A technological perspective. Ann. Microbiol. 2011, 61, 95–102. [Google Scholar] [CrossRef]
- Rossouw, D.; Bauer, F.F. Exploring the phenotypic space of non-Saccharomyces wine yeast biodiversity. Food Microbiol. 2016, 55, 32–46. [Google Scholar] [CrossRef] [PubMed]
- Medina, K.; Boido, E.; Fariña, L.; Gioia, O.; Gomez, M.E.; Barquet, M.; Gaggero, C.; Dellacassa, E.; Carrau, F. Increased flavour diversity of Chardonnay wines by spontaneous fermentation and co-fermentation with Hanseniaspora vineae. Food Chem. 2013, 141, 2513–2521. [Google Scholar] [CrossRef]
- Van Wyk, N.; Scansani, S.; Beisert, B.; Brezina, S.; Fritsch, S.; Semmler, H.; Pretorius, I.S.; Rauhut, D.; von Wallbrunn, C. The use of Hanseniaspora occidentalis in a sequential must inoculation to reduce the malic acid content of wine. Appl. Sci. 2022, 12, 6919. [Google Scholar] [CrossRef]
- Manzanares, P.; Rojas, V.; Genovés, S.; Vallés, S. A preliminary search for anthocyanin-β-D-glucosidase activity in non-Saccharomyces wine yeasts. Int. J. Food Sci. Technol. 2000, 35, 95–103. [Google Scholar] [CrossRef]
- Manuel, J.; Escott, C.; Carrau, F.; Herbert-Pucheta, J.E.; Vaquero, C.; Gonz, C.; Morata, A. Improving aroma complexity with Hanseniaspora spp.: Terpenes, acetate esters, and safranal. Fermentation 2022, 8, 654. [Google Scholar] [CrossRef]
- Carrau, F.; Henschke, P.A. Hanseniaspora vineae and the concept of friendly yeasts to increase autochthonous wine flavor diversity. Front. Microbiol. 2021, 12, 702093. [Google Scholar] [CrossRef]
- Van Wyk, N.; Grossmann, M.; Wendland, J.; von Wallbrunn, C.; Pretorius, I.S. The whiff of wine yeast innovation: Strategies for enhancing aroma production by yeast during wine fermentation. J. Agric. Food Chem. 2019, 67, 13496–13505. [Google Scholar] [CrossRef]
- Tristezza, M.; Tufariello, M.; Capozzi, V.; Spano, G.; Mita, G.; Grieco, F. The oenological potential of Hanseniaspora uvarum in simultaneous and sequential co-fermentation with Saccharomyces cerevisiae for industrial wine production. Front. Microbiol. 2016, 7, 670. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Li, D. Effects of simultaneous and sequential cofermentation of Wickerhamomyces anomalus and Saccharomyces cerevisiae on physicochemical and flavor properties of rice wine. Food Sci. Nutr. 2021, 9, 71–86. [Google Scholar] [CrossRef] [PubMed]
- Gobbi, M.; Comitini, F.; Domizio, P.; Romani, C.; Lencioni, L.; Mannazzu, I.; Ciani, M. Lachancea thermotolerans and Saccharomyces cerevisiae in simultaneous and sequential co-fermentation: A strategy to enhance acidity and improve the overall quality of wine. Food Microbiol. 2013, 33, 271–281. [Google Scholar] [CrossRef] [PubMed]
- Viana, F.; Belloch, C.; Vallés, S.; Manzanares, P. Monitoring a mixed starter of Hanseniaspora vineae-Saccharomyces cerevisiae in natural must: Impact on 2-phenylethyl acetate production. Int. J. Food Microbiol. 2011, 151, 235–240. [Google Scholar] [CrossRef]
- Steenwyk, J.L.; Opulente, D.A.; Kominek, J.; Shen, X.; Zhou, X.; Labella, A.L.; Bradley, N.P.; Eichman, B.F.; Libkind, D.; Devirgilio, J.; et al. Extensive loss of cell-cycle and DNA repair genes in an ancient lineage of bipolar budding yeasts. PLoS Biol. 2019, 1, e3000255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Phillips, M.A.; Steenwyk, J.L.; Shen, X.-X.; Rokas, A. Examination of gene loss in the DNA mismatch repair pathway and its mutational consequences in a fungal phylum. Genome Biol. Evol. 2021, 13, evab219. [Google Scholar] [CrossRef] [PubMed]
- Čadež, N.; Bellora, N.; Ulloa, R.; Tome, M.; Petković, H.; Groenewald, M.; Hittinger, C.T.; Libkind, D. Hanseniaspora smithiae sp. nov., a novel apiculate yeast species from Patagonian forests that lacks the typical genomic domestication signatures for fermentative environments. Front. Microbiol. 2021, 12, 679894. [Google Scholar] [CrossRef]
- Schwarz, L.V.; Valera, M.J.; Delamare, A.P.L.; Carrau, F.; Echeverrigaray, S. A peculiar cell cycle arrest at g2/m stage during the stationary phase of growth in the wine yeas Hanseniaspora vineae. Curr. Res. Microb. Sci. 2022, 3, 100129. [Google Scholar] [CrossRef]
- Dukes, B.C.; Butzke, C.E. Rapid determination of primary amino acids in grape juice using an o-phthaldialdehyde/N-acetyl-L-cysteine spectrophotometric assay. Am. J. Enol. Vitic. 1998, 49, 125–134. [Google Scholar] [CrossRef]
- Scansani, S.; van Wyk, N.; Nader, K.B.; Beisert, B.; Brezina, S.; Fritsch, S.; Semmler, H.; Pasch, L.; Pretorius, I.S.; von Wallbrunn, C.; et al. The film-forming Pichia spp. in a winemaker’s toolbox: A simple isolation procedure and their performance in a mixed-culture fermentation of Vitis vinifera L. cv. Gewürztraminer must. Int. J. Food Microbiol. 2022, 365, 109549. [Google Scholar] [CrossRef]
- Jung, R.; Kumar, K.; Patz, C.; Rauhut, D.; Tarasov, A.; Schuessler, C. Influence of transport temperature profiles on wine quality. Food Packag. Shelf Life 2021, 29, 100706. [Google Scholar] [CrossRef]
- Brandt, M. The Influence of Abiotic Factors on the Composition of Berries, Juice and Wine in Vitis vinifera L. cv. Riesling. Ph.D. Thesis, Hochschule Geisenheim University, Geisenheim, Germany, 2021. [Google Scholar]
- González-Robles, I.W.; Estarrón-Espinosa, M.; Díaz-Montaño, D.M. Fermentative capabilities and volatile compounds produced by Kloeckera/Hanseniaspora and Saccharomyces yeast strains in pure and mixed cultures during Agave tequilana juice fermentation. Antonie Van Leeuwenhoek 2015, 108, 525–536. [Google Scholar] [CrossRef]
- Del Fresno, J.M.; Loira, I.; Escott, C.; Carrau, F.; Gonz, C.; Cuerda, R.; Morata, A. Application of Hanseniaspora vineae yeast in the production of Rosé wines from a blend of Tempranillo and Albillo grapes. Fermentation 2021, 7, 141. [Google Scholar] [CrossRef]
- Contreras, A.; Hidalgo, C.; Henschke, P.A.; Chambers, P.J.; Curtin, C.; Varela, C. Evaluation of non-Saccharomyces yeasts for the reduction of alcohol content in wine. Appl. Environ. Microbiol. 2014, 80, 1670–1678. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mestre, M.V.; Maturano, Y.P.; Gallardo, C.; Combina, M.; Mercado, L.; Toro, M.E.; Carrau, F.; Vazquez, F.; Dellacassa, E. Impact on sensory and aromatic profile of low ethanol Malbec wines fermented by sequential culture of Hanseniaspora uvarum and Saccharomyces cerevisiae native yeasts. Fermentation 2019, 5, 65. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B.; Shen, J.Y.; Duan, C.Q.; Yan, G.L. Use of indigenous Hanseniaspora vineae and Metschnikowia pulcherrima co-fermentation with Saccharomyces cerevisiae to improve the aroma diversity of Vidal blanc icewine. Front. Microbiol. 2018, 9, 2303. [Google Scholar] [CrossRef]
- Capozzi, V.; Berbegal, C.; Tufariello, M.; Grieco, F.; Spano, G.; Grieco, F. Impact of co-inoculation of Saccharomyces cerevisiae, Hanseniaspora uvarum and Oenococcus oeni autochthonous strains in controlled multi starter grape must fermentations. LWT Food Sci. Technol. 2019, 109, 241–249. [Google Scholar] [CrossRef]
- Hu, K.; Jin, G.J.; Xu, Y.H.; Tao, Y.S. Wine aroma response to different participation of selected Hanseniaspora uvarum in mixed fermentation with Saccharomyces cerevisiae. Food Res. Int. 2018, 108, 119–127. [Google Scholar] [CrossRef] [PubMed]
- Goold, H.D.; Kroukamp, H.; Williams, T.C.; Paulsen, I.T.; Varela, C.; Pretorius, I.S. Yeast’s balancing act between ethanol and glycerol production in low-alcohol wines. Microb. Biotechnol. 2017, 10, 264–278. [Google Scholar] [CrossRef]
- van Wyk, N.; Kroukamp, H.; Espinosa, M.I.; von Wallbrunn, C.; Wendland, J.; Pretorius, I.S. Blending wine yeast phenotypes with the aid of CRISPR DNA editing technologies. Int. J. Food Microbiol. 2020, 324, 108615. [Google Scholar] [CrossRef]
- van Wyk, N.; Pretorius, I.S.; von Wallbrunn, C. Assessing the oenological potential of Nakazawaea ishiwadae, Candida railenensis and Debaryomyces hansenii strains in mixed-culture grape must fermentation with Saccharomyces cerevisiae. Fermentation 2020, 6, 49. [Google Scholar] [CrossRef]
- Garcia, A.; Carcel, C.; Dulau, L.; Samson, A.; Aguera, E.; Agosin, E.; Günata, Z. Influence of a mixed culture with Debaryomyces vanriji and Saccharomyces cerevisiae on the volatiles of a Muscat wine. J. Food Sci. 2002, 67, 1138–1143. [Google Scholar] [CrossRef]
- Fernández-González, M.; Di Stefano, R.; Briones, A. Hydrolysis and transformation of terpene glycosides from muscat must by different yeast species. Food Microbiol. 2003, 20, 35–41. [Google Scholar] [CrossRef]
- Vaudano, E.; Moruno, E.G.; Di Stefano, R. Modulation of geraniol metabolism during alcohol fermentation. J. Inst. Brew. 2004, 110, 213–219. [Google Scholar] [CrossRef]
S. cerevisiae | H. guilliermondii | H. meyeri | H. nectarophila | H. occidentalis | H. opuntiae | H. osmophila | H. uvarum | |
---|---|---|---|---|---|---|---|---|
Total sugars | nd | nd | nd | nd | nd | nd | nd | nd |
Tartaric acid | 2.60 ± 0.12 | 2.40 ± 0.09 | 2.53 ± 0.03 | 2.59 ± 0.01 | 2.52 ± 0.07 | 2.45 ± 0.09 | 2.75 ± 0.02 | 2.56 ± 0.05 |
Malic acid | 1.48 ± 0.06 | 1.35 ± 0.02 | 1.48 ± 0.02 | 1.57 ± 0.01 | 1.71 ± 0.05 ↑ | 1.65 ± 0.03 ↑ | 1.56 ± 0.02 | 1.55 ± 0.01 |
Lactic acid | 0.25 ± 0.02 | 0.23 ± 0.01 | 0.23 ± 0.01 | 0.20 ± 0.01 ↓ | 0.22 ± 0.00 | 0.22 ± 0.02 | 0.04 ± 0.00 ↓ | 0.22 ± 0.01 |
Acetic acid | 0.84 ± 0.04 | 0.75 ± 0.01 | 0.75 ± 0.03 ↓ | 1.10 ± 0.01 ↑ | 0.56 ± 0.01 ↓ | 0.94 ± 0.02 ↑ | 1.23 ± 0.01 ↑ | 0.68 ± 0.02 ↓ |
Citric acid | 0.14 ± 0.01 | 0.12 ± 0.00 ↓ | 0.12 ± 0.00 ↓ | 0.13 ± 0.01 | 0.14 ± 0.00 | 0.11 ± 0.01 ↓ | 0.14 ± 0.00 | 0.10 ± 0.01 ↓ |
Ethanol | 117.10 ± 3.20 | 114.67 ± 1.39 | 115.75 ± 0.91 | 117.35 ± 1.34 | 116.65 ± 2.74 | 116.37 ± 1.62 | 118.56 ± 0.59 | 116.31 ± 0.61 |
Glycerol | 9.39 ± 0.35 | 9.28 ± 0.15 | 10.17 ± 0.05 | 10.05 ± 0.08 | 7.80 ± 0.12 ↓ | 10.10 ± 0.22 ↑ | 8.25 ± 0.08 ↓ | 9.98 ± 0.02 |
S. cerevisiae | H. guilliermondii | H. meyeri | H. nectarophila | H. occidentalis | H. opuntiae | H. osmophila | H. uvarum | |
---|---|---|---|---|---|---|---|---|
Acetate esters (μg/L, except for ethyl acetate (mg/L)) | ||||||||
Ethyl acetate | 115.80 ± 6.73 | 318.93 ± 28.10 ↑ | 332.86 ± 97.78 | 312.98 ± 55.29 ↑ | 108.19 ± 12.18 | 291.07 ± 21.83 ↑ | 151.60 ± 34.74 | 558.07 ± 52.66 ↑ |
Isoamyl acetate | 1089 ± 104 | 3788 ± 614 ↑ | 2731 ± 803 | 2120 ± 351 ↑ | 646 ± 19 ↓ | 723 ± 51 ↓ | 640 ± 197 ↓ | 2523 ± 383 ↑ |
2-Phenylethyl acetate | 203 ± 16 | 1185 ± 24 ↑ | 488 ± 59 ↑ | 269 ± 22 ↑ | 225 ± 2 | 683 ± 45 ↑ | 1236 ± 48 ↑ | 466 ± 13 ↑ |
2-Methylbutyl acetate | 108 ± 16 | 416 ± 63 ↑ | 390 ± 134 | 336 ± 127 | 62 ± 17↓ | 147 ± 16 ↑ | 63 ± 10 ↓ | 339 ± 118 |
Hexyl acetate | 3 ± 2 | 24 ± 5 ↑ | 9 ± 5 | 13 ± 4 ↑ | nq | nq | 3 ± 1 | 15 ± 2 ↑ |
Ethyl esters (μg/L) | ||||||||
Ethyl propionate | 217 ± 17 | 238 ± 24 | 274 ± 70 | 253 ± 53 | 482 ± 34 ↑ | 265 ± 19 ↑ | 122 ± 29 ↓ | 425 ± 67 ↑ |
Ethyl butyrate | 222 ± 21 | 312 ± 37 ↑ | 248 ± 55 | 241 ± 39 | 182 ± 7 | 177 ± 14 ↓ | 227 ± 46 | 272 ± 30 |
Ethyl hexanoate | 76 ± 21 | 92 ± 40 | 51 ± 59 | 66 ± 47 | nq | nq | 35 ± 32 | 77 ± 11 |
Ethyl octanoate | 494 ± 99 | 459 ± 184 | 266 ± 268 | 541 ± 305 | nq | nq | 317 ± 140 | 473 ± 33 |
Ethyl decanoate | 468 ± 44 | 525 ± 85 | 425 ± 88 | 666 ± 318 | 172 ± 48 ↓ | 106 ± 44 ↓ | 462 ± 138 | 576 ± 205 |
Medium-chain fatty acids (mg/L) | ||||||||
Hexanoic acid | 5.63 ± 0.06 | 5.56 ± 0.04 | 5.44 ± 0.05 ↓ | 5.53 ± 0.05 | 5.37 ± 0.02 ↓ | 5.30 ± 0.01 ↓ | 5.47 ± 0.02 ↓ | 5.57 ± 0.01 |
Octanoic acid | 3.17 ± 0.07 | 3.09 ± 0.04 | 2.97 ± 0.03 ↓ | 3.02 ± 0.03 ↓ | 2.88 ± 0.00 ↓ | 2.86 ± 0.01 ↓ | 2.98 ± 0.03 ↓ | 3.02 ± 0.00 |
Higher alcohols (mg/L) | ||||||||
Isobutanol | 141.80 ± 12.75 | 149.54 ± 18.24 | 161.05 ± 41.06 | 150.83 ± 26.32 | 121.33 ± 16.12 | 190.04 ± 23.72 | 116.23 ± 13.69 | 140.45 ± 0.83 |
Isoamyl alcohol | 668.82 ± 40.95 | 539.02 ± 54.58 ↓ | 581.12 ± 112.97 | 493.20 ± 92.87 | 510.68 ± 64.69 ↓ | 544.60 ± 66.44 | 429.67 ± 37.26 ↓ | 540.64 ± 7.27 ↓ |
2-Methyl butanol | 125.16 ± 3.01 | 97.85 ± 8.83 ↓ | 101.78 ± 21.19 | 104.83 ± 19.05 | 53.08 ± 6.59 ↓ | 105.55 ± 9.04 | 99.63 ± 2.63 ↓ | 102.37 ± 1.21 ↓ |
1-Hexanol | 1411.90 ± 71.14 | 1099.56 ± 46.86↓ | 1348.98 ± 34.27 | 1257.44 ± 161.69 | 1029.03 ± 40.98 ↓ | 1431.11 ± 46.72 | 1312.47 ± 25.20 | 1168.21 ± 26.82 ↓ |
2-Phenyl ethanol | 44.34 ± 0.43 | 28.34 ± 0.45 ↓ | 41.82 ± 5.42 | 27.75 ± 4.54 ↓ | 59.40 ± 4.51 ↑ | 48.52 ± 2.11 | 36.31 ± 2.32 ↓ | 37.70 ± 1.17 ↓ |
S. cerevisiae | H. guilliermondii | H. meyeri | H. nectarophila | H. occidentalis | H. opuntiae | H. osmophila | H. uvarum | |
---|---|---|---|---|---|---|---|---|
β-myrcene | 6.71 ± 0.31 | 9.82 ± 1.26 ↑ | 7.87 ± 1.05 | 9.37 ± 0.58 ↑ | 7.95 ± 1.74 | 9.13 ± 0.17 ↑ | 8.87 ± 0.67 ↑ | 9.06 ± 0.24 ↑ |
limonene | 0.96 ± 0.01 | 0.99 ± 0.02 | 0.97 ± 0.02 | 0.99 ± 0.01 ↑ | 0.96 ± 0.03 | 1.01 ± 0.01 ↑ | 0.98 ± 0.01 | 1.02 ± 0.01 ↑ |
cis-rose oxide | 0.42 ± 0.03 | 0.24 ± 0.03 ↓ | 0.35 ± 0.07 | 0.38 ± 0.04 | 0.19 ± 0.07 ↓ | 0.36 ± 0.03 ↓ | 0.24 ± 0.04 ↓ | 0.45 ± 0.02 |
trans-rose oxide | 0.15 ± 0.01 | 0.09 ± 0.01 ↓ | 0.14 ± 0.02 | 0.15 ± 0.01 | 0.09 ± 0.02 ↓ | 0.13 ± 0.01 ↓ | 0.11 ± 0.01 ↓ | 0.17 ± 0.01 |
cis-linalool oxide | 19.74 ± 1.03 | 19.68 ± 0.13 | 19.11 ± 0.19 | 18.37 ± 0.24 | 18.13 ± 0.54 | 18.84 ± 1.43 | 18.54 ± 0.65 | 19.12 ± 0.68 |
nerol oxide | 1.29 ± 0.04 | 1.35 ± 0.07 | 1.27 ± 0.11 | 1.32 ± 0.09 | 1.25 ± 0.18 | 1.45 ± 0.05 ↑ | 1.29 ± 0.16 | 1.38 ± 0.07 |
trans-linalool oxide | 6.20 ± 0.67 | 5.75 ± 0.18 | 5.43 ± 0.34 | 5.77 ± 0.21 | 5.45 ± 0.20 | 5.72 ± 0.25 | 5.63 ± 0.52 | 5.52 ± 0.03 |
vitispirane | 0.56 ± 0.01 | 0.54 ± 0.00 ↓ | 0.55 ± 0.01 | 0.54 ± 0.01 ↓ | 0.54 ± 0.01 ↓ | 0.55 ± 0.01 | 0.52 ± 0.01 ↓ | 0.57 ± 0.00 |
linalool | 72.43 ± 3.71 | 72.93 ± 1.80 | 71.43 ± 0.69 | 72.13 ± 3.01 | 71.18 ± 2.51 | 73.91 ± 3.70 | 72.04 ± 5.49 | 72.50 ± 0.45 |
hotrienol | 36.61 ± 6.24 | 29.52 ± 1.85 | 31.48 ± 4.25 | 28.38 ± 3.47 | 39.98 ± 3.95 | 43.04 ± 3.24 | 35.04 ± 0.35 | 31.78 ± 1.97 |
α-terpineol | 55.46 ± 9.81 | 47.13 ± 2.74 | 50.75 ± 6.32 | 46.91 ± 5.59 | 68.66 ± 7.75 | 72.42 ± 4.46 | 69.19 ± 2.49 | 49.01 ± 3.90 |
citronellol | 26.97 ± 4.40 | 9.52 ± 0.56 ↓ | 18.96 ± 4.08 | 13.83 ± 1.22 ↓ | 27.37 ± 4.97 | 38.08 ± 1.52 ↑ | 20.31 ± 2.57 | 13.85 ± 1.88 ↓ |
β-damascenone | 0.46 ± 0.01 | 0.56 ± 0.04 | 0.53 ± 0.05 | 0.61 ± 0.04 ↑ | 0.64 ± 0.14 | 0.69 ± 0.03 ↑ | 0.70 ± 0.10 | 0.55 ± 0.06 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Badura, J.; Kiene, F.; Brezina, S.; Fritsch, S.; Semmler, H.; Rauhut, D.; Pretorius, I.S.; von Wallbrunn, C.; van Wyk, N. Aroma Profiles of Vitis vinifera L. cv. Gewürztraminer Must Fermented with Co-Cultures of Saccharomyces cerevisiae and Seven Hanseniaspora spp. Fermentation 2023, 9, 109. https://doi.org/10.3390/fermentation9020109
Badura J, Kiene F, Brezina S, Fritsch S, Semmler H, Rauhut D, Pretorius IS, von Wallbrunn C, van Wyk N. Aroma Profiles of Vitis vinifera L. cv. Gewürztraminer Must Fermented with Co-Cultures of Saccharomyces cerevisiae and Seven Hanseniaspora spp. Fermentation. 2023; 9(2):109. https://doi.org/10.3390/fermentation9020109
Chicago/Turabian StyleBadura, Jennifer, Florian Kiene, Silvia Brezina, Stefanie Fritsch, Heike Semmler, Doris Rauhut, Isak S. Pretorius, Christian von Wallbrunn, and Niël van Wyk. 2023. "Aroma Profiles of Vitis vinifera L. cv. Gewürztraminer Must Fermented with Co-Cultures of Saccharomyces cerevisiae and Seven Hanseniaspora spp." Fermentation 9, no. 2: 109. https://doi.org/10.3390/fermentation9020109
APA StyleBadura, J., Kiene, F., Brezina, S., Fritsch, S., Semmler, H., Rauhut, D., Pretorius, I. S., von Wallbrunn, C., & van Wyk, N. (2023). Aroma Profiles of Vitis vinifera L. cv. Gewürztraminer Must Fermented with Co-Cultures of Saccharomyces cerevisiae and Seven Hanseniaspora spp. Fermentation, 9(2), 109. https://doi.org/10.3390/fermentation9020109