Monitoring the Aroma Compound Profiles in the Microbial Fermentation of Seaweeds and Their Effects on Sensory Perception
Abstract
:1. Introduction
2. Materials and Methods
2.1. Seaweeds
2.2. Fermentation Strains
2.3. Fermentation on Seaweeds
2.4. Headspace-Solid Phase Microextraction (HS-SPME)
2.5. Gas Chromatography–Mass Spectrometry (GC–MS) and Gas Chromatography Olfactometry (GC–O)
2.6. Statistical Analysis
3. Results and Discussion
3.1. Seaweed Fermentation by the GRAS Microorganisms
3.2. Monitoring the Volatile Compound Profiles in Seaweed Fermentation
3.2.1. Ulva sp. Fermentation
3.2.2. Laminaria sp. Fermentation
3.3. Principal Component Analysis (PCA) of the Volatile Compounds in the Fermented Seaweeds
3.3.1. Ulva sp.
3.3.2. Laminaria sp.
3.4. Sensory Evaluation of the Intensity of the Odor-Active Compounds in the Fermented Seaweeds
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Amsler, C.D.; Fairhead, V.A. Defensive and sensory chemical ecology of brown algae. Adv. Bot. Res. 2005, 43, 1–91. [Google Scholar] [CrossRef]
- Mouritsen, O.G.; Rhatigan, P.; Pérez-Lloréns, J.L. The rise of seaweed gastronomy: Phycogastronomy. Bot. Mar. 2019, 62, 195–209. [Google Scholar] [CrossRef]
- Vilar, E.G.; O’Sullivan, M.G.; Kerry, J.P.; Kilcawley, K.N. Volatile compounds of six species of edible seaweed: A review. Algal Res. 2020, 45, 101740. [Google Scholar] [CrossRef]
- Gressler, V.; Stein, É.M.; Dörr, F.; Fujii, M.T.; Colepicolo, P.; Pinto, E. Sesquiterpenes from the essential oil of Laurencia dendroidea (Ceramiales, Rhodophyta): Isolation, biological activities and distribution among seaweeds. Rev. Bras. De Farmacogn. 2011, 21, 248–254. [Google Scholar] [CrossRef]
- Smit, A.J. Medicinal and pharmaceutical uses of seaweed natural products: A review. J. Appl. Phycol. 2004, 16, 245–262. [Google Scholar] [CrossRef]
- Qin, Y. Bioactive Seaweeds for Food Applications: Natural Ingredients for Healthy Diets; Academic Press: Cambridge, MA, USA, 2018. [Google Scholar]
- Du, X.; Xu, Y.; Jiang, Z.; Zhu, Y.; Li, Z.; Ni, H.; Chen, F. Removal of the fishy malodor from Bangia fusco-purpurea via fermentation of Saccharomyces cerevisiae, Acetobacter pasteurianus, and Lactobacillus plantarum. J. Food Biochem. 2021, 45, e13728. [Google Scholar] [CrossRef]
- Francezon, N.; Tremblay, A.; Mouget, J.-L.; Pasetto, P.; Beaulieu, L. Algae as a source of natural flavors in innovative foods. J. Agric. Food Chem. 2021, 69, 11753–11772. [Google Scholar] [CrossRef]
- López-Pérez, O.; Picon, A.; Nuñez, M. Volatile compounds and odour characteristics of seven species of dehydrated edible seaweeds. Food Res. Int. 2017, 99, 1002–1010. [Google Scholar] [CrossRef]
- Hernández, T.; Estrella, I.; Pérez-Gordo, M.; Alegría, E.G.; Tenorio, C.; Ruiz-Larrrea, F.; Moreno-Arribas, M. Contribution of malolactic fermentation by Oenococcus oeni and Lactobacillus plantarum to the changes in the nonanthocyanin polyphenolic composition of red wine. J. Agric. Food Chem. 2007, 55, 5260–5266. [Google Scholar] [CrossRef]
- Seo, Y.-S.; Bae, H.-N.; Eom, S.-H.; Lim, K.-S.; Yun, I.-H.; Chung, Y.-H.; Jeon, J.-M.; Kim, H.-W.; Lee, M.-S.; Lee, Y.-B. Removal of off-flavors from sea tangle (Laminaria japonica) extract by fermentation with Aspergillus oryzae. Bioresour. Technol. 2012, 121, 475–479. [Google Scholar] [CrossRef]
- Bao, J.; Zhang, X.; Zheng, J.-H.; Ren, D.-F.; Lu, J. Mixed fermentation of Spirulina platensis with Lactobacillus plantarum and Bacillus subtilis by random-centroid optimization. Food Chem. 2018, 264, 64–72. [Google Scholar] [CrossRef] [PubMed]
- Lu, W.-J.; Lin, H.-J.; Hsu, P.-H.; Lai, M.; Chiu, J.-Y.; Lin, H.-T.V. Brown and red seaweeds serve as potential efflux pump inhibitors for drug-resistant Escherichia coli. Evid.-Based Complement Altern. Med. 2019, 2019, 1836982. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hung, Y.-H.R.; Chen, G.-W.; Pan, C.-L.; Lin, H.-T.V. Production of ulvan oligosaccharides with antioxidant and angiotensin-converting enzyme-inhibitory activities by microbial enzymatic hydrolysis. Fermentation 2021, 7, 160. [Google Scholar] [CrossRef]
- Vilar, E.G.; O’Sullivan, M.G.; Kerry, J.P.; Kilcawley, K.N. A chemometric approach to characterize the aroma of selected brown and red edible seaweeds/extracts. J. Sci. Food Agric. 2021, 101, 1228–1238. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, T.; Wang, D.; Zhang, L.; Chen, G. Study on the volatile profile characteristics of oyster Crassostrea gigas during storage by a combination sampling method coupled with GC/MS. Food Chem. 2009, 115, 1150–1157. [Google Scholar] [CrossRef]
- Hosoglu, M.I. Aroma characterization of five microalgae species using solid-phase microextraction and gas chromatography–mass spectrometry/olfactometry. Food Chem. 2018, 240, 1210–1218. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Zheng, F.-p.; Chen, H.-t.; Liu, S.-y.; Gu, C.; Song, Z.-y.; Sun, B.-g. Identification of volatile components in Chinese Sinkiang fermented camel milk using SAFE, SDE, and HS-SPME-GC/MS. Food Chem. 2011, 129, 1242–1252. [Google Scholar] [CrossRef]
- Paparella, A.; Shaltiel-Harpaza, L.; Ibdah, M. β-Ionone: Its occurrence and biological function and metabolic engineering. Plants 2021, 10, 754. [Google Scholar] [CrossRef]
- Neta, M.; Narain, N. Volatile components in seaweeds. Examines Mar. Biol. Oceanogr. 2018, 2, 195–201. [Google Scholar]
- Park, M.K.; Kim, Y.-S. Comparative metabolic expressions of fermented soybeans according to different microbial starters. Food Chem. 2020, 305, 125461. [Google Scholar] [CrossRef]
- Peinado, I.; Girón, J.; Koutsidis, G.; Ames, J. Chemical composition, antioxidant activity and sensory evaluation of five different species of brown edible seaweeds. Food Res. Int. 2014, 66, 36–44. [Google Scholar] [CrossRef]
- Kiritsakis, A. Flavor components of olive oil—A review. J. Am. Oil Chem. Soc. 1998, 75, 673–681. [Google Scholar] [CrossRef]
- Hazelwood, L.A.; Daran, J.-M.; Van Maris, A.J.; Pronk, J.T.; Dickinson, J.R. The Ehrlich pathway for fusel alcohol production: A century of research on Saccharomyces cerevisiae metabolism. Appl. Environ. Microbiol. 2008, 74, 2259–2266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Long, A.; James, P.; Ward, O. Aromatic aldehydes as substrates for yeast and yeast alcohol dehydrogenase. Biotechnol. Bioeng. 1989, 33, 657–660. [Google Scholar] [CrossRef]
- Wang, R.; Sun, J.; Lassabliere, B.; Yu, B.; Liu, S.Q. Biotransformation of green tea (Camellia sinensis) by wine yeast Saccharomyces cerevisiae. J. Food Sci. 2020, 85, 306–315. [Google Scholar] [CrossRef]
- Moreira, R.; Trugo, L.; Pietroluongo, M.; De Maria, C. Flavor composition of cashew (Anacardium occidentale) and marmeleiro (Croton species) honeys. J. Agric. Food Chem. 2002, 50, 7616–7621. [Google Scholar] [CrossRef]
- Sieber, R.; Bütikofer, U.; Bosset, J. Benzoic acid as a natural compound in cultured dairy products and cheese. Int. Dairy J. 1995, 5, 227–246. [Google Scholar] [CrossRef]
- Lubran, M.B.; Lawless, H.T.; Lavin, E.; Acree, T.E. Identification of metallic-smelling 1-octen-3-one and 1-nonen-3-one from solutions of ferrous sulfate. J. Agric. Food Chem. 2005, 53, 8325–8327. [Google Scholar] [CrossRef]
- Synos, K.; Reynolds, A.; Bowen, A. Effect of yeast strain on aroma compounds in Cabernet franc icewines. LWT-Food Sci. Technol. 2015, 64, 227–235. [Google Scholar] [CrossRef]
- Brunke, E.J.; Hammerschmidt, F.J.; Schmaus, G. Scent of roses–recent results. Flavour Fragr. J. 1992, 7, 195–198. [Google Scholar] [CrossRef]
- Hattori, S.; Takagaki, H.; Fujimori, T. Identification of volatile compounds which enhance odor notes in Japanese green tea using the OASIS (Original aroma simultaneously input to the sniffing port) method. Food Sci. Technol. Res. 2005, 11, 171–174. [Google Scholar] [CrossRef]
- Pan, J.; Jia, H.; Shang, M.; Li, Q.; Xu, C.; Wang, Y.; Wu, H.; Dong, X. Effects of deodorization by powdered activated carbon, β-cyclodextrin and yeast on odor and functional properties of tiger puffer (Takifugu rubripes) skin gelatin. Int. J. Biol. Macromol. 2018, 118, 116–123. [Google Scholar] [CrossRef] [PubMed]
- Giri, A.; Osako, K.; Ohshima, T. Identification and characterisation of headspace volatiles of fish miso, a Japanese fish meat based fermented paste, with special emphasis on effect of fish species and meat washing. Food Chem. 2010, 120, 621–631. [Google Scholar] [CrossRef]
- Leejeerajumnean, A.; Duckham, S.C.; Owens, J.D.; Ames, J.M. Volatile compounds in Bacillus-fermented soybeans. J. Sci. Food Agric. 2001, 81, 525–529. [Google Scholar] [CrossRef]
- King, E.S.; Kievit, R.L.; Curtin, C.; Swiegers, J.H.; Pretorius, I.S.; Bastian, S.E.; Francis, I.L. The effect of multiple yeasts co-inoculations on Sauvignon Blanc wine aroma composition, sensory properties and consumer preference. Food Chem. 2010, 122, 618–626. [Google Scholar] [CrossRef]
- Kim, Y.; Lee, K.-G.; Kim, M.K. Volatile and non-volatile compounds in green tea affected in harvesting time and their correlation to consumer preference. J. Food Sci. Technol. 2016, 53, 3735–3743. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, S.M.; Lee, D.-J.; Kim, J.-Y.; Lim, S.-T. Volatile composition and sensory characteristics of onion powders prepared by convective drying. Food Chem. 2017, 231, 386–392. [Google Scholar] [CrossRef] [PubMed]
- Kang, W.; Li, Y.; Xu, Y.; Jiang, W.; Tao, Y. Characterization of aroma compounds in Chinese bayberry (Myrica rubra Sieb. et Zucc.) by gas chromatography mass spectrometry (GC-MS) and olfactometry (GC-O). J. Food Sci. 2012, 77, C1030–C1035. [Google Scholar] [CrossRef]
- Burdock, G.A. Fenaroli’s Handbook of Flavor Ingredients; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Guo, X.; Song, C.; Ho, C.-T.; Wan, X. Contribution of L-theanine to the formation of 2, 5-dimethylpyrazine, a key roasted peanutty flavor in Oolong tea during manufacturing processes. Food Chem. 2018, 263, 18–28. [Google Scholar] [CrossRef]
- Buttery, R.G.; Teranishi, R.; Ling, L.C.; Turnbaugh, J.G. Quantitative and sensory studies on tomato paste volatiles. J. Agric. Food Chem. 1990, 38, 336–340. [Google Scholar] [CrossRef]
- Mall, V.; Sellami, I.; Schieberle, P. New degradation pathways of the key aroma compound 1-penten-3-one during storage of not-from-concentrate orange juice. J. Agric. Food Chem. 2018, 66, 11083–11091. [Google Scholar] [CrossRef] [PubMed]
- Ritter, S.W.; Gastl, M.I.; Becker, T.M. The modification of volatile and nonvolatile compounds in lupines and faba beans by substrate modulation and lactic acid fermentation to facilitate their use for legume-based beverages—A review. Compr. Rev. Food Sci. Food Saf. 2022, 21, 4018–4055. [Google Scholar] [CrossRef] [PubMed]
Compounds | Concentration (µg/L) | |||||
---|---|---|---|---|---|---|
Unfermented | BS | SC | LA | LB | LC | |
Ketones | ||||||
2-Butanone | nd | 56.33 ± 2.05 a | 11.18 ± 1.80 b | 10.53 ± 4.07 b | 2.67 ± 0.34 b | 7.29 ± 0.20 b |
2-Pentanone | nd | 164.64 ± 6.60 a | 81.24 ± 3.89 b | nd | nd | nd |
3-Hexanone | nd | 7.93 ± 0.14 | 14.78 ± 0.01 | nd | nd | nd |
2-Hexanone | nd | 33.03 ± 0.12 | nd | nd | nd | nd |
5-Methyl-2-hexanone | nd | 23.45 ± 1.86 | nd | nd | nd | nd |
2-Heptanone | nd | 436.59 ± 4.50 | nd | nd | nd | nd |
6-Methyl-2-heptanone | nd | 12.85 ± 1.70 | nd | nd | nd | nd |
2,2,6-Trimethylcyclohexanone | 39.66 ±1.64 a | 30.28 ± 1.32 b | nd | nd | 6.03 ±1.92 c | nd |
6-Methyl-5-hepten-2-one | 23.07 ± 3.21 c | 47.32 ± 4.38 b | nd | 114.31 ± 7.44 a | 62.84 ± 2.52 b | 47.43 ± 2.14 b |
3,5,5-Trimethyl-2-cyclohexen-1-one | 31.33 ± 2.60 a | 4.57 ± 0.08 b | 5.92 ± 0.13 b | 7.55 ± 1.15 b | 5.33 ±0.27 b | 5.68 ± 0.11 b |
3,5-Octadien-2-one | 47.78 ± 1.12 cd | 34.12 ± 0.37 d | 77.71 ± 3.92 b | 147.08 ± 5.40 a | 48.77 ± 3.48 cd | 61.86 ± 10.29 bc |
6-Methyl-3,5-heptadien-2-one | 31.68 ± 3.58 d | 50.78 ± 5.93 b | 33.91 ± 1.21 cd | 69.67 ± 3.29 a | 46.88 ± 0.57 bc | 60.75 ± 1.35 ab |
4-Ketoisophorone | 19.68 ± 1.48 b | 1.08 ± 0.22 c | 56.07 ± 3.39 a | 11.94 ± 2.77 b | nd | nd |
Propiophenone | 61.68 ± 1.12 a | 33.20 ± 0.50 b | 61.16 ± 3.09 a | nd | nd | nd |
5-Ethyl-2(5H)-furanone | 15.33 ± 0.33 ab | 7.34 ± 0.34 c | 18.09 ± 0.32 a | 12.96 ± 1.12 b | 5.81 ± 0.28 c | 6.42 ± 1.22 c |
trans-β-Ionone | nd | 36.35 ± 0.32 | nd | nd | nd | nd |
β-Ionone | 211.59 ± 3.93 ab | 149.52 ± 2.60 d | 201.70 ± 6.00 bc | 183.55 ± 1.56 c | 147.39 ± 3.51 d | 223.88 ± 8.74 a |
5,6-Epoxide-β-Ionone | 210.31 ± 0.64 a | 114.60 ± 2.73 cd | 189.46 ± 3.09 a | 149.01 ± 11.20 b | 104.40 ± 3.81 d | 143.16 ± 11.36 bc |
Total ketones | 738.05 ± 38.28 b | 1243.98 ± 19.14 a | 751.21 ± 16.28 b | 706.59 ± 25.97 b | 430.11 ± 7.18 d | 556.47 ± 26.58 c |
Aldehydes | ||||||
3-Methylbutanal | 99.47 ± 1.69 a | nd | nd | 34.47 ± 3.47 b | 28.33 ± 2.90 b | nd |
Hexanal | 234.47 ± 4.27 a | nd | 58.38 ± 1.21 b | 44.98 ± 6.08 b | 20.55 ± 1.80 c | 56.88 ± 1.82 b |
(E)-2-Pentenal | 61.75 ± 1.52 a | nd | 29.38 ± 0.06 b | 23.20 ± 1.52 bc | 11.59 ± 1.54 d | 22.48 ± 0.66 c |
2-Methyl-2-pentenal | 8.61 ± 1.11 a | nd | nd | nd | 7.14 ± 0.91 a | nd |
Heptanal | 194.50 ± 12.07 a | nd | nd | 108.34 ± 10.39 b | 52.29 ± 4.77 c | nd |
(E)-2-Hexenal | 63.60 ± 5.26 a | nd | nd | 45.49 ± 3.77 b | 18.09 ± 0.11 c | 20.88 ± 2.13 c |
Furfural | 49.72 ± 2.77 a | nd | nd | 51.72 ± 3.24 a | 26.02 ± 1.51 b | 22.69 ±1.37 b |
5-Methylfurfural | 560.93 ± 25.70 a | nd | 501.50 ± 12.66 b | 405.88 ± 7.23 c | 308.09 ± 11.48 d | 321.86 ± 11.53 d |
2,4-Heptadienal | 25.02 ± 1.78 a | nd | 16.98 ± 0.59 b | nd | nd | nd |
Safranal | 43.37 ± 4.61 b | nd | 93.64 ± 4.49 a | 44.26 ± 0.76 b | 6.38 ± 0.46 c | 1.81 ± 0.57 c |
Total aldehydes | 1341.44 ± 30.80 a | nd | 699.87 ± 17.50 b | 758.34 ± 28.53 b | 478.48 ± 8.92 c | 446.59 ± 12.27 c |
Alcohols | ||||||
Ethanol | nd | nd | 7.78 ± 0.73 | nd | nd | nd |
1-Butanol | nd | 5.01 ± 0.93 | nd | nd | nd | nd |
1-Penten-3-ol | 61.13 ± 3.21 a | 32.03 ± 5.10 b | 40.44 ± 3.71 b | 27.75 ± 0.56 bc | 12.90 ± 0.77 c | nd |
1-Pentanol | nd | 21.92 ± 1.34 b | 61.16 ± 0.34 a | nd | nd | nd |
1-Hexanol | nd | nd | 289.18 ± 12.93 | nd | nd | nd |
1-Heptanol | nd | nd | 116.55 ± 5.13 | nd | nd | nd |
1-Octanol | nd | nd | 20.19 ± 0.76 | nd | nd | nd |
2,6-Dimethylcyclohexanol | 109.89 ± 4.73 a | nd | 106.64 ± 0.26 a | nd | nd | nd |
5-Methyl-2-furanmethanol | nd | 28.48 ± 1.22 | nd | nd | nd | nd |
Total alcohols | 171.02 ± 5.90 b | 87.44 ± 5.47 c | 641.94 ± 18.53 a | 27.75 ± 0.46 d | 12.90 ± 0.63 d | nd |
Acids | ||||||
Hexanoic acid | nd | nd | nd | 7.87 ± 0.57 a | 4.93 ± 0.39 b | 5.86 ± 0.13 b |
Esters | ||||||
Methyl salicylate | 163.25 ± 1.61 c | 240.20 ± 12.70 ab | 190.91 ± 4.58 c | 219.98 ± 1.52 b | 70.57 ± 6.66 d | 257.76 ± 4.48 a |
Benzenes and benzene derivatives | ||||||
Benzaldehyde | 321.98 ± 4.94 a | 25.18 ± 0.49 c | 30.14 ± 3.05 c | 299.63 ± 14.09 a | 242.48 ± 9.25 b | 238.97 ± 10.15 b |
Benzyl alcohol | nd | 14.81 ± 0.44 b | 23.34 ± 0.69 a | nd | nd | nd |
Benzoic acid | nd | nd | nd | nd | 8.21 ± 0.54 b | 16.93 ± 1.21 a |
Phenol | nd | 20.90 ± 0.28 | nd | nd | nd | nd |
2,4-Di-tert-butylphenol | 7.65 ± 1.25 a | 7.47 ± 0.37 a | 5.56 ± 0.57 ab | 5.67 ± 0.14 ab | 3.40 ± 0.25 b | 4.56 ± 0.44 b |
Total benzenes and benzene derivatives | 329.64 ± 5.87 a | 68.56 ± 0.64 c | 59.03 ± 2.17 c | 305.30 ± 11.51 a | 254.09 ± 9.09 b | 260.46 ± 9.71 b |
Hydrocarbons | ||||||
Toluene | 173.85 ± 1.65 a | 39.45 ± 1.94 c | 62.61 ± 2.18 b | 15.35 ± 0.40 e | 26.97 ± 1.89 d | nd |
Furans | ||||||
2-Ethylfuran | 299.42 ± 23.69 a | nd | 38.19 ± 2.18 b | 61.68 ± 0.39 b | 14.32 ± 1.12 b | 16.55 ± 0.66 b |
Pyrazines | ||||||
2,5-Dimethylpyrazine | nd | 159.03 ± 5.90 | nd | nd | nd | nd |
Sulfur-containing | ||||||
Dimethyl sulfide | nd | 26.71 ± 3.56 | nd | nd | nd | nd |
Isobutyl isothiocyanate | nd | 3.16 ± 0.52 | nd | nd | nd | nd |
Miscellaneous | ||||||
Methylethylmaleimide | 19.43 ± 0.23 ab | 6.32 ± 0.29 e | 16.14 ± 1.59 bc | 20.84 ± 0.46 a | 15.10 ± 1.38 cd | 12.03 ± 1.05 d |
Dihydroactinidiolide | 56.51 ± 3.48 ab | 58.12 ± 0.63 a | 47.21 ± 5.19 ab | 57.08 ± 1.09 a | 43.17 ± 1.64 b | 48.28 ± 2.49 ab |
Total Miscellaneous | 75.94 ± 4.45 a | 64.44 ± 0.38 b | 63.35 ± 5.28 b | 77.92 ± 1.81 a | 58.27± 1.67 b | 60.31 ± 1.22 b |
Compounds | Concentration (µg/L) | |||||
---|---|---|---|---|---|---|
Unfermented | BS | SC | LA | LB | LC | |
Ketones | ||||||
2,3-Butanedione | nd | 29.03 ± 8.54 | nd | nd | nd | nd |
1-Penten-3-one | 18.97 ± 2.08 a | 8.65 ± 0.78 b | 3.32 ± 0.57 b | 7.03 ± 1.33 b | 20.77 ± 2.45 a | 22.18 ± 0.84 a |
3-Octanone | nd | 113.96 ± 9.33 b | 215.13 ± 7.16 a | 33.38 ± 0.88 d | 53.68 ± 1.83 c | 46.85 ± 2.08 cd |
3-Hydroxy-2-butanone | nd | 672.20 ± 35.20 | nd | nd | nd | nd |
2-Octanone | nd | nd | 40.54 ± 1.44 | nd | nd | nd |
1-Octen-3-one | 254.73 ± 4.42 bc | 207.96 ± 2.92 d | 87.66 ± 0.70 e | 228.68 ± 4.92 cd | 277.10 ± 11.00 ab | 297.45 ± 16.51 a |
3-Octen-2-one | nd | nd | 11.49 ± 0.77 | nd | nd | nd |
3,5-Octadien-2-one | 9.86 ± 0.22 d | 10.12 ± 1.75 d | 21.77 ± 1.03 a | 11.99 ± 0.97 cd | 13.29 ± 0.85 bc | 15.54 ± 0.66 b |
β-Ionone | 3.82 ± 0.58 c | 3.71 ± 0.21 c | 7.85 ± 0.79 b | 11.78 ± 1.25 a | 13.47 ± 0.76 a | 12.77 ± 0.25 a |
Total ketones | 278.38 ± 7.98 c | 1048.63 ± 37.34 a | 387.76 ± 8.23 b | 285.83 ± 6.33 c | 378.31 ± 9.95 b | 394.79 ± 23.44 b |
Aldehydes | ||||||
3-Methylbutanal | 2.56 ± 0.05 b | nd | nd | 6.42 ± 0.74 a | 1.90 ± 0.08 b | 1.42 ± 0.36 b |
2-Butenal | 55.74 ± 0.89 ab | 28.78 ± 1.89 cd | 24.42 ± 3.09 d | 41.96 ± 4.29 bc | 67.56 ± 3.39 a | 64.68 ± 7.23 a |
Hexanal | 265.90 ± 15.47 a | 95.22 ± 3.50 cd | 60.55 ± 2.27 d | 112.22 ± 10.99 c | 191.26 ± 9.72 b | 162.73 ± 13.50 b |
(E)-2-Pentenal | 18.89 ± 1.92 ab | 10.38 ± 0.97 c | 10.02 ± 0.35 c | 13.64 ± 0.71 bc | 21.36 ± 1.84 a | 20.71 ± 2.57 a |
Heptanal | 26.92 ± 2.84 a | 11.99 ± 1.57 b | 15.39 ± 1.12 b | 11.45 ± 0.74 b | 14.69 ± 2.82 b | 13.66 ± 1.70 b |
(E)-2-Hexenal | 29.48 ± 0.83 a | 13.27 ± 0.80 c | 10.22 ± 0.19 c | 18.70 ± 2.31 b | 28.88 ± 0.91 a | 28.26 ± 1.01 a |
(Z)-4-Heptenal | 10.94 ± 2.58 a | 4.42 ± 0.21 b | 4.40 ± 0.06 b | 9.92 ± 0.32 ab | 11.78 ± 1.72 a | 15.23 ± 1.24 a |
Octanal | 40.10 ± 1.26 b | nd | nd | 35.97 ± 1.29 b | 60.53 ± 3.28 a | 61.45 ± 1.74 a |
(E)-2-Heptenal | 1179.00 ± 45.48 a | 538.71 ± 31.97 d | 429.48 ± 7.48 d | 761.00 ± 32.68 c | 931.45 ± 7.23 b | 1053.81 ± 37.85 ab |
Nonanal | 20.36 ± 0.86 ab | 6.56 ± 1.58 d | 21.16 ± 1.58 a | 11.82 ± 0.59 c | 16.55 ± 0.46 abc | 16.22 ± 1.46 bc |
Furfural | 65.36 ± 1.74 a | nd | nd | 26.26 ± 1.93 b | 22.71 ±2.21 b | 23.45 ± 2.80 b |
(E)-2-Octenal | nd | nd | nd | 95.66 ± 7.85 b | 163.08 ± 17.07 a | 106.47 ± 3.97 b |
2,4-Heptadienal | 76.42 ± 8.21 a | 39.33 ± 2.57 cd | 34.32 ± 3.78 d | 49.91 ± 1.59 bcd | 62.51 ± 6.82 ab | 57.43 ± 0.86 bc |
5-Methylfurfural | 8.22 ± 0.61 b | nd | nd | 6.92 ± 0.79 b | 11.52 ± 0.40 a | 10.95 ± 1.11 a |
(E,Z)-2,6-Nonadienal | 5.68 ± 0.48 c | nd | 6.60 ± 1.48 c | 24.14 ± 0.87 b | 27.55 ± 0.56 a | 21.88 ± 0.49 b |
(E)-2-Decenal | 76.05 ± 5.16 d | 107.63 ± 4.87 d | 155.49 ± 4.71 c | 264.40 ± 16.70 b | 358.26 ± 14.80 a | 362.13 ± 14.09 a |
2,4-Nonadienal | 15.89 ± 0.73 c | 5.15 ± 0.80 d | nd | 31.85 ± 0.92 a | 24.02 ± 1.59 b | 28.67 ±1.00 a |
2,4-Decadienal | 49.62 ± 2.56 b | 15.08 ± 1.12 c | 24.91 ± 3.88 bc | 106.58 ± 2.20 a | 121.19 ± 9.81 a | 118.74 ± 16.88 a |
Total aldehydes | 1947.12 ± 53.11 b | 876.51 ± 33.6 d | 796.96 ± 12.63 d | 1628.84 ± 47.68 c | 2136.79 ± 50.62 a | 2167.90 ± 48.24 a |
Alcohols | ||||||
Ethanol | nd | nd | 12.63 ± 0.80 | nd | nd | nd |
Cyclopentanol | nd | nd | 11.70 ± 0..58 | nd | nd | nd |
3-Methylbutanol | nd | nd | 23.46 ± 0.96 | nd | nd | nd |
1-Pentanol | nd | 7.30 ± 0.62 b | 16.89 ± 1.66 a | 4.64 ± 0.54 b | 7.90 ± 0.35 b | 7.53 ± 0.51 b |
1-Hexanol | nd | 127.85 ± 3.58 c | 259.36 ± 2.34 a | 128.01 ± 8.90 c | 201.03 ± 10.89 b | 211.71 ± 11.57 b |
1-Octen-3-ol | 529.91 ± 24.37 a | 538.68 ± 16.09 a | 253.74 ± 3.03 b | 544.97 ±18.97 a | 514.24 ±31.25 a | 593.38 ± 3.70 a |
1-Heptanol | nd | nd | 910.33 ± 23.18 | nd | nd | nd |
2,3-Butanediol | nd | 456.59 ± 4.97 | nd | nd | nd | nd |
1-Octanol | 90.09 ± 1.90 d | 201.19 ± 14.91 c | 455.22 ± 4.54 a | 196.11 ± 2.55 c | 262.85 ± 2.90 b | 290.12 ± 11.55 b |
(E)-2-Octen-1-ol | 191.70 ± 4.63 b | 202.29 ± 31.14 b | 192.55 ± 10.89 b | 192.66 ± 4.30 b | 274.78 ± 19.36 a | 288.80 ± 15.10 a |
2,7-Octadien-1-ol | 51.53 ± 1.56 d | 64.25 ± 1.84 c | 57.60 ± 2.07 cd | 76.57 ± 4.31 b | 111.36 ± 1.79 a | 104.31 ± 2.80 a |
1-Decanol | nd | nd | 23.09 ± 1.34 | nd | nd | nd |
Total alcohols | 863.23 ± 30.80 e | 1598.15 ± 39.04 b | 2216.58 ± 24.71 a | 1142.96 ± 14.19 d | 1372.16 ± 62.92 c | 1495.85 ± 42.46 bc |
Acids | ||||||
Acetic acid | nd | 17.36 ± 0.43 | nd | nd | nd | nd |
2-Methylbutanoic acid | nd | 49.21 ± 44.15 | nd | nd | nd | nd |
Hexanoic acid | nd | nd | nd | 10.91 ± 0.48 b | 15.98 ± 1.17 a | 15.26 ± 0.78 a |
Octanoic acid | nd | 12.20 ± 0.55 a | 6.31 ± 0.67 b | 10.29 ± 0.92 a | 10.23 ± 0.86 a | 12.45 ± 0.76 a |
Nonanoic acid | nd | 11.07 ± 0.93 a | nd | 14.96 ± 1.84 a | 13.94 ± 3.46 a | 14.33 ± 0.76 a |
Decanoic acid | nd | nd | nd | 4.20 ± 0.61 a | 4.94 ± 0.44 a | 5.67 ± 0.60 a |
Dodecanoic acid | nd | nd | nd | 5.32 ± 0.48 | nd | nd |
Tetradecanoic acid | 18.80 ± 1.95 d | 24.98 ± 1.55 d | 48.72 ± 4.91 bc | 56.89 ± 2.48 ab | 62.49 ± 0.94 a | 40.36 ± 1.68 c |
Hexadecanoic acid | nd | 12.89 ± 1.71 c | 24.13 ± 3.76 b | 41.40 ± 0.76 a | 35.01 ± 3.87 ab | 31.15 ± 3.54 ab |
Total acids | 18.80 ± 1.95 d | 127.71 ± 1.58 ab | 79.17 ± 8.81 c | 143.97 ± 2.80 a | 142.58 ± 4.55 a | 119.21 ± 5.36 b |
Esters | ||||||
Methyl salicylate | 46.54 ± 6.17 d | 59.44 ± 4.59 d | 131.18 ± 7.47 c | 296.03 ± 8.07 a | 219.04 ± 6.85 b | 118.80 ± 2.05 c |
Benzenes and benzene derivatives | ||||||
Benzaldehyde | 37.53 ± 1.77 b | nd | 10.57 ± 0.60 c | 43.14 ± 1.38 ab | 41.65 ± 1.80 b | 47.99 ± 2.40 a |
Benzyl alcohol | nd | nd | 8.49 ± 045 | nd | nd | nd |
Phenethyl alcohol | nd | nd | 39.24 ± 2.20 | nd | nd | nd |
2,4-Di-tert-butylphenol | 3.10 ± 0.26 c | 4.21 ± 0.07 bc | 3.96 ± 0.09 c | 5.42 ± 0.10 ab | 5.55 ± 0.27 a | 5.31 ± 0.59 ab |
Total benzenes and benzene derivatives | 40.63 ± 1.58 c | 4.21 ± 0.07 d | 62.27 ± 2.75 a | 48.56 ± 1.31 b | 47.20 ± 1.60 bc | 53.31 ± 2.70 b |
Miscellaneous | ||||||
Methylethylmaleimide | 3.71 ± 0.60 b | 2.68 ± 0.37 b | 6.32 ± 0.24 a | 3.84 ± 0.58 b | 4.03 ± 0.56 b | 4.20 ± 0.36 ab |
Dihydroactinidiolide | 8.22 ± 0.64 c | 9.68 ± 0.48 bc | 9.00 ± 0.15 bc | 12.19 ± 0.42 a | 10.86 ± 0.34 ab | 10.77 ± 0.74 ab |
Total Miscellaneous | 11.94 ± 0.39 b | 12.36 ± 0.30 b | 15.32 ± 0.42 a | 16.03 ± 0.81 a | 14.89 ± 0.96 a | 14.97 ± 1.25 a |
Compounds | Odor Description a | Odor Intensity b | ||
---|---|---|---|---|
UF | BS | SC | ||
Pleasant odors | ||||
6-Methyl-5-hepten-2-one | Floral | W | M | |
3,5-Octadien-2-one | Fruity | W | W | W |
Propiophenone | Floral | M | W | M |
trans-β-Ionone | Floral | W | ||
β-Ionone | Violet, floral | S | S | S |
5,6-Epoxide-β-Ionone | Floral, sweet | M | M | M |
Benzaldehyde | Floral, sweet | M | W | W |
1-Hexanol | Floral, sweet | M | ||
1-Heptanol | Sweet | W | ||
1-Octanol | Waxy, citrus | M | ||
Benzyl alcohol | Floral, fruity | M | M | |
2,5-Dimethylpyrazine | Nutty, roasted | M | ||
Unknown 1 | Floral | M | M | |
Unpleasant odors | ||||
Hexanal | Fishy, grassy | M | W | |
5-Methylfurfural | Caramellic, fried, toasty | S | S | |
Unknown 2 | Fishy | M | M | M |
Unknown 3 | Earthy, musty | M | M | M |
Unknown 4 | Fatty, oily | W | W | W |
Neutral odors | ||||
Safranal | Herbal | W | W | |
Methyl salicylate | Minty, wintergreen | M | M | M |
Unknown 5 | Tea | M | W | M |
Unknown 6 | Plastic | W | W |
Compounds | Odor Description a | Odor Intensity b | ||
---|---|---|---|---|
UF | BS | SC | ||
Pleasant odors | ||||
2,3-Butanedione | Yogurt, creamy | M | ||
3-Hydroxy-2-butanone | Sweet | W | ||
2-Octanone | Fruity | W | ||
3,5-Octadien-2-one | Fruity | W | ||
β-Ionone | Violet, floral | M | M | M |
Benzaldehyde | Fruity, sweet | M | W | |
1-Hexanol | Floral, sweet | M | ||
1-Heptanol | Sweet | S | ||
2,3-Butanediol | Fruity, sweet | W | ||
1-Octanol | Waxy, citrus | W | M | M |
Benzyl alcohol | Fruity, floral | W | ||
Phenethyl alcohol | Floral | W | ||
Unpleasant odors | ||||
1-Octen-3-one | Fishy, Metallic | S | S | M |
Hexanal | Grassy | M | W | W |
Octanal | Fatty | W | ||
(E)-2-Heptenal | Fatty, oily | S | W | W |
2,4-Heptadienal | Fatty | W | ||
(E,Z)-2,6-Nonadienal | Cucumber | W | W | |
(E)-2-Decenal | Coriander | S | S | S |
2,4-Nonadienal | Fatty, oily | M | W | |
2,4-Decadienal | Fatty, oily | M | W | W |
1-Octen-3-ol | Fatty, oily | M | M | W |
(E)-2-Octen-1-ol | Fatty, oily | W | W | W |
2-Methylbutanoic acid | Rancid, sweaty | W | ||
Unknown 1 | Fishy | S | W | W |
Unknown 2 | Earthy, unpleasant | M | W | M |
Unknown 3 | Rancid, musty | S | M | M |
Unknown 4 | Fishy, rancid | S | S | W |
Neutral odors | ||||
1-Penten-3-one | Pungent, fresh | M | W | W |
(Z)-4-Heptenal | Tea | M | M | M |
Nonanal | Waxy, fresh | M | W | W |
Methyl salicylate | Minty, wintergreen | W | W | M |
Unknown 5 | Tea | M | W | W |
Unknown 6 | Bitter | M | W | W |
Unknown 7 | Herbal | M | M | M |
Unknown 8 | Herbal | M | M | W |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hung, Y.-H.R.; Peng, C.-Y.; Huang, M.-Y.; Lu, W.-J.; Lin, H.-J.; Hsu, C.-L.; Fang, M.-C.; Lin, H.-T.V. Monitoring the Aroma Compound Profiles in the Microbial Fermentation of Seaweeds and Their Effects on Sensory Perception. Fermentation 2023, 9, 135. https://doi.org/10.3390/fermentation9020135
Hung Y-HR, Peng C-Y, Huang M-Y, Lu W-J, Lin H-J, Hsu C-L, Fang M-C, Lin H-TV. Monitoring the Aroma Compound Profiles in the Microbial Fermentation of Seaweeds and Their Effects on Sensory Perception. Fermentation. 2023; 9(2):135. https://doi.org/10.3390/fermentation9020135
Chicago/Turabian StyleHung, Yueh-Hao Ronny, Chien-Yu Peng, Mei-Ying Huang, Wen-Jung Lu, Hsuan-Ju Lin, Chih-Ling Hsu, Ming-Chih Fang, and Hong-Ting Victor Lin. 2023. "Monitoring the Aroma Compound Profiles in the Microbial Fermentation of Seaweeds and Their Effects on Sensory Perception" Fermentation 9, no. 2: 135. https://doi.org/10.3390/fermentation9020135
APA StyleHung, Y. -H. R., Peng, C. -Y., Huang, M. -Y., Lu, W. -J., Lin, H. -J., Hsu, C. -L., Fang, M. -C., & Lin, H. -T. V. (2023). Monitoring the Aroma Compound Profiles in the Microbial Fermentation of Seaweeds and Their Effects on Sensory Perception. Fermentation, 9(2), 135. https://doi.org/10.3390/fermentation9020135