Design Analysis of 26650 and 18650 LFP Cells for High Power and Low Temperature Use Cases
Abstract
:1. Introduction
Design of Battery Cells
2. Materials and Methods
2.1. Methodology
- Usually, high power cells are not examined regarding thicknesses.
- 26650 are extended 18650 cells.
- Low-temperature cells are based on existing formats with adjusted chemistry.
2.2. Selection of LFP Cells
2.3. Selection of Analysis Approach
2.4. Initial Electrical Testing
2.5. Setup and CT Scans
2.6. Tear-Down of the Cells
3. Results and Discussion
3.1. Analysis of Cell Designs and Geometry
3.2. Thicknesses of Main Components
3.3. Deviated Reference Model of 18650 and 26650 High-Power Cells
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Rahimzei, E. Kompendium: Li-Ionen-Batterien: Im BMWi Förderprogramm IKT Für Elektromobilität II: Smart Car—Smart Grid—Smart Traffic; VDE: Frankfurt am Main, Germany, 2015. [Google Scholar]
- Waldmann, T.; Scurtu, R.-G.; Richter, K.; Wohlfahrt-Mehrens, M. 18650 vs. 21700 Li-Ion Cells—A Direct Comparison of Electrochemical, Thermal, and Geometrical Properties. J. Power Sources 2020, 472, 228614. [Google Scholar] [CrossRef]
- Baazouzi, S.; Feistel, N.; Wanner, J.; Landwehr, I.; Fill, A.; Birke, K.P. Design, Properties, and Manufacturing of Cylindrical Li-Ion Battery Cells—A Generic Overview. Batteries 2023, 9, 309. [Google Scholar] [CrossRef]
- BMW Future Batteries. Available online: https://www.sae.org/site/news/2023/01/bmw-future-batteries---ulrich (accessed on 26 October 2024).
- Primary Batteries General; Revision Underway. 2022. Available online: https://www.en-standard.eu/bs-en-iec-60086-1-2021-primary-batteries-general/ (accessed on 15 January 2025).
- Kurzweil, P.; Dietlmeier, O.K. Elektrochemische Speicher; Springer Fachmedien Wiesbaden: Wiesbaden, Germany, 2018; ISBN 978-3-658-21828-7. [Google Scholar]
- Li, F.; Tao, R.; Tan, X.; Xu, J.; Kong, D.; Shen, L.; Mo, R.; Li, J.; Lu, Y. Graphite-Embedded Lithium Iron Phosphate for High-Power–Energy Cathodes. Nano Lett. 2021, 21, 2572–2579. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, W.; Lu, S.; Lu, H. Progress in Materials for Lithium-Ion Power Batteries. In Proceedings of the 2014 International Conference on Intelligent Green Building and Smart Grid (IGBSG), Taipei, Taiwan, 23–25 April 2014; pp. 1–2. [Google Scholar]
- Wu, Y.; Huang, X.; Huang, L.; Chen, J. Strategies for Rational Design of High-Power Lithium-ion Batteries. Energy Env. Mater. 2021, 4, 19–45. [Google Scholar] [CrossRef]
- Worku, B.E.; Zheng, S.; Wang, B. Review of Low-temperature Lithium-ion Battery Progress: New Battery System Design Imperative. Int. J. Energy Res. 2022, 46, 14609–14626. [Google Scholar] [CrossRef]
- Wätzold, F.; Dahm, H.-P.; Binder, J.; Standfest, J. Leichtbaubewertung von Starterbatterien auf Lithium-Basis. ATZ-Automobiltech. Z. 2021, 123, 60–65. [Google Scholar] [CrossRef]
- Bauknecht, S.; Wätzold, F.; Schlösser, A.; Kowal, J. Comparing the Cold-Cranking Performance of Lead-Acid and Lithium Iron Phosphate Batteries at Temperatures below 0 °C. Batteries 2023, 9, 176. [Google Scholar] [CrossRef]
- How the Climatic Wind Tunnel in Weissach Works. Available online: https://newsroom.porsche.com/en/2024/innovation/porsche-simulating-climate-conditions-climatic-wind-tunnel-weissach-36348.html (accessed on 20 October 2024).
- Wallentowitz, H.; Reif, K. (Eds.) Handbuch Kraftfahrzeugelektronik: Grundlagen, Komponenten, Systeme, Anwendungen; Auflage; Vieweg: Wiesbaden, Germany, 2006; ISBN 978-3-528-03971-4. [Google Scholar]
- Ketterer, B.; Karl, U.; Möst, D.; Ulrich, S. Lithium-Ionen Batterien: Stand Der Technik Und Anwendungspotential in Hybrid-, Plug-In Hybrid- Und Elektrofahrzeugen. Lithium-Ion Batteries: State of the Art and Application Potential in Hybrid-, Plug-in Hybrid- and Electric Vehicles; Karlsruhe Institute of Technology: Karlsruhe, Germany, 2010. [Google Scholar]
- Zhu, P.; Gastol, D.; Marshall, J.; Sommerville, R.; Goodship, V.; Kendrick, E. A Review of Current Collectors for Lithium-Ion Batteries. J. Power Sources 2021, 485, 229321. [Google Scholar] [CrossRef]
- Lain, B. Kendrick Design Strategies for High Power vs. High Energy Lithium Ion Cells. Batteries 2019, 5, 64. [Google Scholar] [CrossRef]
- Son, B.; Ryou, M.-H.; Choi, J.; Kim, S.-H.; Ko, J.M.; Lee, Y.M. Effect of Cathode/Anode Area Ratio on Electrochemical Performance of Lithium-Ion Batteries. J. Power Sources 2013, 243, 641–647. [Google Scholar] [CrossRef]
- Tagawa, K.; Brodd, R.J. Production Processes for Fabrication of Lithium-Ion Batteries. In Lithium-Ion Batteries; Yoshio, M., Brodd, R.J., Kozawa, A., Eds.; Springer: New York, NY, USA, 2009; pp. 1–14. ISBN 978-0-387-34444-7. [Google Scholar]
- Kim, S.; Lee, Y.S.; Lee, H.S.; Jin, H.L. A Study on the Behavior of a Cylindrical Type Li–Ion Secondary Battery under Abnormal Conditions. Mater. Werkst. 2010, 41, 378–385. [Google Scholar] [CrossRef]
- Li, W.; Crompton, K.R.; Hacker, C.; Ostanek, J.K. Comparison of Current Interrupt Device and Vent Design for 18650 Format Lithium-Ion Battery Caps. J. Energy Storage 2020, 32, 101890. [Google Scholar] [CrossRef]
- Willenberg, L.; Dechent, P.; Fuchs, G.; Teuber, M.; Eckert, M.; Graff, M.; Kürten, N.; Sauer, D.U.; Figgemeier, E. The Development of Jelly Roll Deformation in 18650 Lithium-Ion Batteries at Low State of Charge. J. Electrochem. Soc. 2020, 167, 120502. [Google Scholar] [CrossRef]
- Wierzbicki, T.; Sahraei, E. Homogenized Mechanical Properties for the Jellyroll of Cylindrical Lithium-Ion Cells. J. Power Sources 2013, 241, 467–476. [Google Scholar] [CrossRef]
- Ender, M.; Joos, J.; Weber, A.; Ivers-Tiffée, E. Anode Microstructures from High-Energy and High-Power Lithium-Ion Cylindrical Cells Obtained by X-Ray Nano-Tomography. J. Power Sources 2014, 269, 912–919. [Google Scholar] [CrossRef]
- Quinn, J.B.; Waldmann, T.; Richter, K.; Kasper, M.; Wohlfahrt-Mehrens, M. Energy Density of Cylindrical Li-Ion Cells: A Comparison of Commercial 18650 to the 21700 Cells. J. Electrochem. Soc. 2018, 165, A3284–A3291. [Google Scholar] [CrossRef]
- Pfrang, A.; Kersys, A.; Kriston, A.; Sauer, D.U.; Rahe, C.; Käbitz, S.; Figgemeier, E. Long-Term Cycling Induced Jelly Roll Deformation in Commercial 18650 Cells. J. Power Sources 2018, 392, 168–175. [Google Scholar] [CrossRef]
- Orendorff, C.J. The Role of Separators in Lithium-Ion Cell Safety. Interface Mag. 2012, 21, 61–65. [Google Scholar] [CrossRef]
- Zheng, H.; Li, J.; Song, X.; Liu, G.; Battaglia, V.S. A Comprehensive Understanding of Electrode Thickness Effects on the Electrochemical Performances of Li-Ion Battery Cathodes. Electrochim. Acta 2012, 71, 258–265. [Google Scholar] [CrossRef]
- Li, D.; Lv, Q.; Zhang, C.; Zhou, W.; Guo, H.; Jiang, S.; Li, Z. The Effect of Electrode Thickness on the High-Current Discharge and Long-Term Cycle Performance of a Lithium-Ion Battery. Batteries 2022, 8, 101. [Google Scholar] [CrossRef]
- Wang, J.; Yu, D.; Sun, X.; Wang, H.; Li, J. Anodes for Low-Temperature Rechargeable Batteries. eScience 2024, 4, 100252. [Google Scholar] [CrossRef]
- Selinis, P.; Farmakis, F. Review—A Review on the Anode and Cathode Materials for Lithium-Ion Batteries with Improved Subzero Temperature Performance. J. Electrochem. Soc. 2022, 169, 010526. [Google Scholar] [CrossRef]
- Zhan, J.; Deng, Y.; Ren, J.; Gao, Y.; Liu, Y.; Rao, S.; Li, W.; Gao, Z. Cell Design for Improving Low-Temperature Performance of Lithium-Ion Batteries for Electric Vehicles. Batteries 2023, 9, 373. [Google Scholar] [CrossRef]
- Lee, K.-J.; Smith, K.; Pesaran, A.; Kim, G.-H. Three Dimensional Thermal-, Electrical-, and Electrochemical-Coupled Model for Cylindrical Wound Large Format Lithium-Ion Batteries. J. Power Sources 2013, 241, 20–32. [Google Scholar] [CrossRef]
- Duan, Y.; Wu, H.; Huang, L.; Liu, L.; Zhang, Y. Optimizing Current Terminals of 18 650 Lithium-Ion Power Batteries under High Discharge Current. Energy Technol. 2017, 5, 1619–1626. [Google Scholar] [CrossRef]
- Li, S.; Kirkaldy, N.; Zhang, C.; Gopalakrishnan, K.; Amietszajew, T.; Diaz, L.B.; Barreras, J.V.; Shams, M.; Hua, X.; Patel, Y.; et al. Optimal Cell Tab Design and Cooling Strategy for Cylindrical Lithium-Ion Batteries. J. Power Sources 2021, 492, 229594. [Google Scholar] [CrossRef]
- Tranter, T.G.; Timms, R.; Shearing, P.R.; Brett, D.J.L. Communication—Prediction of Thermal Issues for Larger Format 4680 Cylindrical Cells and Their Mitigation with Enhanced Current Collection. J. Electrochem. Soc. 2020, 167, 160544. [Google Scholar] [CrossRef]
- LG Chem, Ltd. Zylinderförmige Wiederaufladbare Batterie; LG Chem, Ltd.: Seoul, Republic of Korea, 2017. [Google Scholar]
- VDI/VDE-Gesellschaft Mess- und Automatisierungstechnik. Computed Tomography in Dimensional Measurement—Influencing Variables on Measurement Results and Recommendations for Computed Tomography Dimensional Measurements; VDI/VDE-Gesellschaft Mess- und Automatisierungstechnik: Berlin-Charlottenburg, Germany, 2018. [Google Scholar]
- Kok, M.D.R.; Robinson, J.B.; Weaving, J.S.; Jnawali, A.; Pham, M.; Iacoviello, F.; Brett, D.J.L.; Shearing, P.R. Virtual Unrolling of Spirally-Wound Lithium-Ion Cells for Correlative Degradation Studies and Predictive Fault Detection. Sustain. Energy Fuels 2019, 3, 2972–2976. [Google Scholar] [CrossRef]
- Villarraga-Gómez, H.; Begun, D.L.; Bhattad, P.; Mo, K.; Norouzi Rad, M.; White, R.T.; Kelly, S.T. Assessing Rechargeable Batteries with 3D X-Ray Microscopy, Computed Tomography, and Nanotomography. Nondestruct. Test. Eval. 2022, 37, 519–535. [Google Scholar] [CrossRef]
- Evaluation of Measurement Data—Guide to the Expression of Uncertainty in Measurement. 2008. Available online: https://www.bipm.org/documents/20126/2071204/JCGM_100_2008_E.pdf/cb0ef43f-baa5-11cf-3f85-4dcd86f77bd6 (accessed on 15 January 2025).
- Chen, C.-H.; Brosa Planella, F.; O’Regan, K.; Gastol, D.; Widanage, W.D.; Kendrick, E. Development of Experimental Techniques for Parameterization of Multi-Scale Lithium-Ion Battery Models. J. Electrochem. Soc. 2020, 167, 080534. [Google Scholar] [CrossRef]
- Wildfeuer, L.; Wassiliadis, N.; Karger, A.; Bauer, F.; Lienkamp, M. Teardown Analysis and Characterization of a Commercial Lithium-Ion Battery for Advanced Algorithms in Battery Electric Vehicles. J. Energy Storage 2022, 48, 103909. [Google Scholar] [CrossRef]
- Rankin, D.W.H. CRC Handbook of Chemistry and Physics, 89th Edition, Edited by David R. Lide. Crystallogr. Rev. 2009, 15, 223–224. [Google Scholar] [CrossRef]
- Sunderlin, N.; Colclasure, A.; Yang, C.; Major, J.; Fink, K.; Saxon, A.; Keyser, M. Effects of Cryogenic Freezing upon Lithium-Ion Battery Safety and Component Integrity. J. Energy Storage 2023, 63, 107046. [Google Scholar] [CrossRef]
Source | Cell | Centre Pin | Anode Coating | Anode Current Collector | Separator | Cathode Coating | Cathode Current Collector | Tabs | Cell Top | Can |
---|---|---|---|---|---|---|---|---|---|---|
[20] | 18650 (Li-Ion) | Geometry: 50 mm length, diameter 3 mm, thickness 0.1 mm | Geometry: Diameter of the jelly roll hollow 3.5 mm and diameter of the jelly roll 18 mm Material: Elastic Modulus (GPa): 1.1, Poisson’s ratio: 0.5, Density (kg/m3): 0.9, Yield Strength (MPa): 31.0, Tensile Strength (MPa):/ | Ni-tab: Thickness 0.1 mm, width 4 mm Material: Ni—according to ABAQUS’ user manual, Elastic Modulus (GPa): 2.19, Poisson’s ratio: 0.31, Density (kg/m3): 8900, Yield Strength (MPa): 148, Tensile Strength (MPa): 462 Al-tab: Thickness 0.1 mm, width 3 mm Material: Al—according to ABAQUS’ user manual, Elastic Modulus (GPa): 1.78, Poisson’s ratio: 0.35, Density (kg/m3): 2700, Yield Strength (MPa):/, Tensile Strength (MPa): 551 | / | Geometry: Thickness 0.25 mm Material: Elastic Modulus (GPa): 166.7, Poisson’s ratio: 0.3, Density (kg/m3): 7860.0, Yield Strength (MPa): 291.9, Tensile Strength (MPa): 354.7 | ||||
[21] | LG MJ1 18650 | / | / | / | / | / | / | / | Geometry: Thickness insert current collector 0.497 mm and depth of its notch groove 0.413 mm. Minimum thickness at notch groove bottom 0.084 mm. Thickness burst disc 0.314 mm and groove depth 0.258 mm. Minimum thickness at groove bottom burst disk 0.056 mm. Cap thickness burst disk 0.303 mm and groove depth 0.237 mm. Minimum thickness at groove bottom 0.066 mm. | / |
[22] | 18650 (Samsung SDI INR18650 35E—high energy) | / | Geometry: Changed thickness from 174 µm to 252 µm reported via postmortem analysis. | / | Geometry: Unchanged thickness of 157 µm reported via postmortem analysis. | / | / | / | ||
[23] | / | / | Geometry: Thickness-coated foils 0.1–0.2 mm. Metal foils contribute 10–15 µm each, remaining thickness of graphite or lithium metal oxide or phosphate powder. Thickness polymeric 10–25 µm. Material: Coated copper, and aluminium foils kept apart by polymeric separator. Coating is a mixture of active powders and binder soaked in electrolyte. | / | / | / | ||||
[24] | 18650 high-power | / | Geometry: Anode thickness 47.7 µm | / | / | / | / | / | / | |
[2] | 18650 and 21700 | / | Geometry: 10 µm | / | / | Geometry: 20 µm | / | / | / | |
[25] | 21,700 and 18650 | / | Geometry: 21,700 high power and 18650 high power anode thicknesses of 65 μm and 34 μm, respectively. | / | / | / | / | / | ||
[19] | / | / | / | / | / | / | / | Geometry: Positive tab thickness 0.08–0.15 mm Material: Aluminium Geometry: Negative tab thickness 0.04–0.1 mm Material: Nickel | / | / |
[26] | Sanyo 18650 | / | / | / | / | / | / | Geometry: Thickness Al-tab 0.104–0.097 mm | / | / |
[3] | 18650, 21,700, 2070 and 4680 cells | / | Geometry: Anode thickness 325.23 μm and cathode thickness 326.37 μm. Standard deviations more significant than electrode coating tolerances varying between ±2 μm and ±5 μm. Randomly selected positions resulted in thicknesses of separator 11 μm, cathode coating 52.5 μm, anode coating 82.5 μm, aluminium current collector 25 μm, and copper current collector 10 μm, resulting in a composite thickness of 327 μm. | / | / | / | ||||
[27] | / | / | / | / | Geometry: Thinner 25 μm and there are examples of 12 µm thin (with low mech. strength) | / | / | / | / | / |
Range thicknesses | See [20] | 82.5–185 µm, but 38 µm (assuming 48 µm −10 µm for high power) and potential 45% increase after use | 10–15 µm | 10–25 µm | 52.5–185 µm | 10–25 µm | 40–150 µm | See [21] | See [20] |
Cell ~ | Code | Length in mm * | Diameter in mm * | Weight in g * | Capacity in Ah ~ | Voltage in V ~ | Impedance in mOhm | Max Pulse Discharge Current in A ~ | Temperature Range in °C ~ |
---|---|---|---|---|---|---|---|---|---|
IFR26650-25B | red | 66.04 | 26.08 | 82.8 | 2.5 | 2–3.65 | 6 | 75 | −20 to +70 |
ANR26650M1B | green | 65.41 | 25.95 | 75.2 | 2.56 | 3.3 | 6 | 120 | −20 to +60 |
APR18650M1B | orange | 64.97 | 18.37 | 41.6 | 1.2 | 3.3 | 12.6 | 50 | −40 to + 60 |
IFR26650P2.5Ah | blue | 65.87 | 26.16 | 84.5 | 2.5 | 3.2 | 7 | 75 | −20 to +60 |
IFR26650LT3.0Ah | grey | 66.39 | 26.37 | 85.4 | 3 | 3.2 | 9 | 30 (≥−20 °C)/ 21 (<−20 °C) | −50 to 60 |
Cell | Blue | Grey | Orange | Red | Green |
---|---|---|---|---|---|
Cathode | 1835 (56) | 1640 (53) | 811 (56) | 1823 (57) | 1713 (55) |
Separator A | 1890 (58) | 1640 (58) | 940 (58) | 1900 (57) | 1800 (58) |
Anode | 1910 (56) | 1685 (53) | 860 (56) | 1895 (57) | 1774 (55) |
Separator B | 1890 (58) | 1690 (58) | 940 (58) | 1940 (57) | 1830 (58) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wätzold, F.; Schlösser, A.; Leistikow, M.; Kowal, J. Design Analysis of 26650 and 18650 LFP Cells for High Power and Low Temperature Use Cases. Batteries 2025, 11, 38. https://doi.org/10.3390/batteries11010038
Wätzold F, Schlösser A, Leistikow M, Kowal J. Design Analysis of 26650 and 18650 LFP Cells for High Power and Low Temperature Use Cases. Batteries. 2025; 11(1):38. https://doi.org/10.3390/batteries11010038
Chicago/Turabian StyleWätzold, Florian, Anton Schlösser, Max Leistikow, and Julia Kowal. 2025. "Design Analysis of 26650 and 18650 LFP Cells for High Power and Low Temperature Use Cases" Batteries 11, no. 1: 38. https://doi.org/10.3390/batteries11010038
APA StyleWätzold, F., Schlösser, A., Leistikow, M., & Kowal, J. (2025). Design Analysis of 26650 and 18650 LFP Cells for High Power and Low Temperature Use Cases. Batteries, 11(1), 38. https://doi.org/10.3390/batteries11010038