The Effect of a Dual-Layer Coating for High-Capacity Silicon/Graphite Negative Electrodes on the Electrochemical Performance of Lithium-Ion Batteries
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Construction of Dual-Layer Electrode
2.3. Coin Cell Assembly
2.4. Electrochemical Analysis
2.5. Characterizations
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Allied Market Research. (2023, July). Lithium-Ion Battery Market Size, Share, Competitive Landscape and Trend Analysis Report, by Component, by Capacity, by Application: Global Opportunity Analysis and Industry Forecast, 2023–2032 (Report Code: A01071). EP: Storage and Distribution. Available online: www.alliedmarketresearch.com (accessed on 7 September 2024).
- Li, J.; Du, Z.; Ruther, R.E.; An, S.J.; David, L.A.; Hays, K.; Wood, M.; Phillip, N.D.; Sheng, Y.; Mao, C.; et al. Toward Low-Cost, High-Energy Density, and High-Power Density Lithium-Ion Batteries. JOM 2017, 69, 1484–1496. [Google Scholar] [CrossRef]
- Wu, X.; Xia, S.; Huang, Y.; Hu, X.; Yuan, B.; Chen, S.; Yu, Y.; Liu, W. High-performance, low-cost, and dense-structure electrodes with high mass loading for lithium-ion batteries. Adv. Funct. Mater. 2019, 29, 1903961. [Google Scholar] [CrossRef]
- Wang, D.; Han, C.; Mo, F.; Yang, Q.; Zhao, Y.; Li, Q.; Liang, G.; Dong, B.; Zhi, C. Energy density issues of flexible energy storage devices. Energy Storage Mater. 2020, 28, 264–292. [Google Scholar] [CrossRef]
- Zhang, S.; Zhao, K.; Zhu, T.; Li, J. Electrochemomechanical degradation of high-capacity battery electrode materials. Prog. Mater. Sci. 2017, 89, 479–521. [Google Scholar] [CrossRef]
- Maeng, S.; Chung, Y.; Min, S.; Shin, Y. Enhanced mechanical strength and electrochemical performance of core–shell structured high–nickel cathode material. J. Power Sources 2020, 448, 227395. [Google Scholar] [CrossRef]
- Shan, W.; Huang, S.; Zhang, H.; Hou, X. Surface coating for high-nickel cathode materials to achieve excellent cycle performance at elevated temperatures. J. Alloys Compd. 2021, 862, 158022. [Google Scholar] [CrossRef]
- Zhang, W.-J. A review of the electrochemical performance of alloy anodes for lithium-ion batteries. J. Power Sources 2011, 196, 13–24. [Google Scholar] [CrossRef]
- Chan, C.K.; Peng, H.; Liu, G.; McIlwrath, K.; Zhang, X.F.; Huggins, R.A.; Cui, Y. High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 2008, 3, 31–35. [Google Scholar] [CrossRef]
- Ko, M.; Chae, S.; Cho, J. Challenges in accommodating volume change of Si anodes for Li-Ion batteries. ChemElectroChem 2015, 2, 1645–1651. [Google Scholar] [CrossRef]
- Qi, Y.; Wang, G.; Li, S.; Liu, T.; Qiu, J.; Li, H. Recent progress of structural designs of silicon for performance-enhanced lithium-ion batteries. Chem. Eng. J. 2020, 397, 125380. [Google Scholar] [CrossRef]
- Liang, J.; Li, X.; Zhu, Y.; Guo, C.; Qian, Y. Hydrothermal synthesis of nano-silicon from a silica sol and its use in lithium ion batteries. Nano Res. 2015, 8, 1497–1504. [Google Scholar] [CrossRef]
- Fan, S.; Wang, H.; Qian, J.; Cao, Y.; Yang, H.; Ai, X.; Zhong, F. Covalently bonded silicon/carbon nanocomposites as cycle-stable anodes for Li-ion batteries. ACS Appl. Mater. Interfaces 2020, 12, 16411–16416. [Google Scholar] [CrossRef] [PubMed]
- Dou, F.; Weng, Y.; Chen, G.; Shi, L.; Liu, H.; Zhang, D. Volume expansion restriction effects of thick TiO2/C hybrid coatings on micro-sized SiOx anode materials. Chem. Eng. J. 2020, 387, 124106. [Google Scholar] [CrossRef]
- Tsai, S.-H.; Chen, Y.-R.; Tsou, Y.-L.; Chang, T.-L.; Lai, H.-Z.; Lee, C.-Y. Applications of Long-Length Carbon Nano-Tube (L-CNT) as Conductive Materials in High Energy Density Pouch Type Lithium Ion Batteries. Polymers 2020, 12, 1471. [Google Scholar] [CrossRef] [PubMed]
- Parikh, P.; Sina, M.; Banerjee, A.; Wang, X.; D’Souza, M.S.; Doux, J.M.; Wu, E.A.; Trieu, O.Y.; Gong, Y.; Zhou, Q.; et al. Role of Polyacrylic Acid (PAA) Binder on the Solid Electrolyte Interphase in Silicon Anodes. Chem. Mater. 2019, 31, 2535–2544. [Google Scholar] [CrossRef]
- Chen, L.C.; Liu, D.; Liu, T.J.; Tiu, C.; Yang, C.R.; Chu, W.B.; Wan, C.C. Improvement of lithium-ion battery performance using a two-layered cathode by simultaneous slot-die coating. J. Energy Storage 2016, 5, 156–162. [Google Scholar] [CrossRef]
- Imachi, N.; Fujimoto, H.; Fujitani, S. Apparatus for and Method of Manufacturing Electrodes, and Battery Using the Electrode Manufactured by the Method. US Patent 0026312, 1 February 2007. [Google Scholar]
- Imachi, N.; Takano, Y.; Fujimoto, H.; Kida, Y.; Fujitani, S. Layered Cathode for Improving Safety of Li-Ion Batteries. J. Electrochem. Soc. 2007, 154, A412–A416. [Google Scholar] [CrossRef]
- Zhang, M.; Li, J.; Sun, C.; Wang, Z.; Li, Y.; Zhang, D. Durable flexible dual-layer and free-standing silicon/carbon composite anode for lithium-ion batteries. J. Alloys Compd. 2023, 932, 167687. [Google Scholar] [CrossRef]
- Liu, D.; Chen, L.; Liu, T.; Chu, W.; Tiu, C. Improvement of Lithium-Ion Battery Performance by Two-Layered Slot–Die Coating Operation. Energy Technol. 2017, 5, 1235–1241. [Google Scholar] [CrossRef]
- Lee, Y.-S.; Ryu, K.-S. Study of the lithium diffusion properties and high rate performance of TiNb6O17 as an anode in lithium secondary battery. Sci. Rep. 2017, 7, 16617. [Google Scholar] [CrossRef]
- Laschuk, N.O.; Easton, E.B.; Zenkina, O.V. Reducing the resistance for the use of electrochemical impedance spectroscopy analysis in materials chemistry. RSC Adv. 2021, 11, 27925–27936. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Li, Z.; Liu, J.; Liu, J.; Qin, Y.; Qin, Y.; Gao, T.; Gao, T. Enhancing the charging performance of lithium-ion batteries by reducing SEI and charge transfer resistances. ACS Appl. Mater. Interfaces 2022, 14, 33004–33012. [Google Scholar] [CrossRef] [PubMed]
- Shodiev, A.; Chouchane, M.; Gaberscek, M.; Arcelus, O.; Xu, J.; Oularbi, H.; Yu, J.; Li, J.; Morcrette, M.; Franco, A.A. Deconvoluting the benefits of porosity distribution in layered electrodes on the electrochemical performance of Li-ion batteries. Energy Storage Mater. 2022, 47, 462–471. [Google Scholar] [CrossRef]
- Tremblay, M.-L.; Martin, M.; Lebouin, C.; Lasia, A.; Guay, D. Determination of the real surface area of powdered materials in cavity microelectrodes by electrochemical impedance spectroscopy. Electrochim. Acta 2010, 55, 6283–6291. [Google Scholar] [CrossRef]
- Huang, J. Diffusion impedance of electroactive materials, electrolytic solutions and porous electrodes: Warburg impedance and beyond. Electrochim. Acta 2018, 281, 170–188. [Google Scholar] [CrossRef]
- Van der Ven, A.; Bhattacharya, J.; Belak, A.A. Understanding Li diffusion in Li-intercalation compounds. Accounts Chem. Res. 2013, 46, 1216–1225. [Google Scholar] [CrossRef]
- Zhang, F.; Yang, J. Boosting initial Coulombic efficiency of Si-based anodes: A review. Emergent Mater. 2020, 3, 369–380. [Google Scholar] [CrossRef]
- Han, X.; Ouyang, M.; Lu, L.; Li, J.; Zheng, Y.; Li, Z. A comparative study of commercial lithium ion battery cycle life in electrical vehicles: Aging mechanism identification. J. Power Sources 2014, 251, 38–54. [Google Scholar] [CrossRef]
- Lee, J.K.; Yoon, W.Y.; Kim, B.K. Kinetics of reaction products of silicon monoxide with controlled amount of Li-ion insertion at various current densities for Li-ion batteries. J. Electrochem. Soc. 2014, 161, A927–A933. [Google Scholar] [CrossRef]
- Fly, A.; Chen, R. Rate dependency of incremental capacity analysis (dQ/dV) as a diagnostic tool for lithium-ion batteries. J. Energy Storage 2020, 29, 101329. [Google Scholar] [CrossRef]
- Gao, H.; Xiao, L.; Plümel, I.; Xu, G.-L.; Ren, Y.; Zuo, X.; Liu, Y.; Schulz, C.; Wiggers, H.; Amine, K.; et al. Parasitic reactions in nanosized silicon anodes for lithium-ion batteries. Nano Lett. 2017, 17, 1512–1519. [Google Scholar] [CrossRef] [PubMed]
- Moyassari, E.; Streck, L.; Paul, N.; Trunk, M.; Neagu, R.; Chang, C.-C.; Hou, S.-C.; Märkisch, B.; Gilles, R.; Jossen, A. Impact of silicon content within silicon-graphite anodes on performance and Li concentration profiles of Li-ion cells using neutron depth profiling. J. Electrochem. Soc. 2021, 168, 020519. [Google Scholar] [CrossRef]
- Chen, Y.; Key, J.; O’Regan, K.; Song, T.; Han, Y.; Kendrick, E. Revealing the rate-limiting electrode of lithium batteries at high rates and mass loadings. Chem. Eng. J. 2022, 450, 138275. [Google Scholar] [CrossRef]
- Zheng, J.; Lu, J.; Amine, K.; Pan, F. Depolarization effect to enhance the performance of lithium ion batteries. Nano Energy 2017, 33, 497–507. [Google Scholar] [CrossRef]
- Kang, J.; Koo, B.; Kang, S.; Lee, H. Physicochemical nature of polarization components limiting the fast operation of Li-ion batteries. Chem. Phys. Rev. 2021, 2, 041307. [Google Scholar] [CrossRef]
- Kim, D.-H.; Hwang, S.; Cho, J.-J.; Yu, S.; Kim, S.; Jeon, J.; Ahn, K.H.; Lee, C.; Song, H.-K.; Lee, H. Toward fast operation of lithium batteries: Ion activity as the factor to determine the concentration polarization. ACS Energy Lett. 2019, 4, 1265–1270. [Google Scholar] [CrossRef]
- Leng, F.; Wei, Z.; Tan, C.M.; Yazami, R. Hierarchical degradation processes in lithium-ion batteries during ageing. Electrochim. Acta 2017, 256, 52–62. [Google Scholar] [CrossRef]
- Wu, B.; Chen, C.; Danilov, D.L.; Jiang, M.; Raijmakers, L.H.J.; Eichel, R.-A.; Notten, P.H.L. Influence of the SEI formation on the stability and lithium diffusion in Si electrodes. ACS Omega 2022, 7, 32740–32748. [Google Scholar] [CrossRef]
- Kuwata, H.; Matsui, M.; Sonoki, H.; Manabe, Y.; Imanishi, N.; Mizuhata, M. Improved cycling performance of intermetallic anode by minimized SEI layer formation. Electrochem. Soc. 2018, 165, A1486–A1491. [Google Scholar] [CrossRef]
- Zhang, D.; Haran, B.; Durairajan, A.; White, R.; Podrazhansky, Y.; Popov, B. Studies on capacity fade of lithium-ion batteries. J. Power Sources 2000, 91, 122–129. [Google Scholar] [CrossRef]
- Zhang, S.; Xu, K.; Jow, T. EIS study on the formation of solid electrolyte interface in Li-ion battery. Electrochim. Acta 2006, 51, 1636–1640. [Google Scholar] [CrossRef]
- Wang, Z.; Zhao, T.; Takei, M. Morphological structure characterizations in lithium-ion battery (LIB) slurry under shear rotational conditions by on-line dynamic electrochemical impedance spectroscopy (EIS) method. J. Electrochem. Soc. 2017, 164, A2268–A2276. [Google Scholar] [CrossRef]
- Zhang, B.; Wang, L.; Zhang, Y.; Wang, X.; Qiao, Y.; Sun, S.-G. Reliable impedance analysis of Li-ion battery half-cell by standardization on electrochemical impedance spectroscopy (EIS). J. Chem. Phys. 2023, 158, 054202. [Google Scholar] [CrossRef] [PubMed]
- Gao, H.; Wu, Q.; Hu, Y.; Zheng, J.P.; Amine, K.; Chen, Z. Revealing the rate-limiting Li-ion diffusion pathway in ultrathick electrodes for Li-ion batteries. J. Phys. Chem. Lett. 2018, 9, 5100–5104. [Google Scholar] [CrossRef] [PubMed]
- Heubner, C.; Schneider, M.; Michaelis, A. Diffusion-limited C-rate: A fundamental principle quantifying the intrinsic limits of Li-ion batteries. Adv. Energy Mater. 2019, 10, 1902523. [Google Scholar] [CrossRef]
- Kondo, Y.; Abe, T.; Yamada, Y. Kinetics of interfacial ion transfer in lithium-ion batteries: Mechanism understanding and improvement strategies. ACS Appl. Mater. Interfaces 2022, 14, 22706–22718. [Google Scholar] [CrossRef]
- Xiong, R.; Zhou, M.; Li, L.; Xu, J.; Li, M.; Yan, B.; Li, D.; Zhang, Y.; Zhou, H. Decoupled measurement and modeling of interface reaction kinetics of ion-intercalation battery electrodes. Energy Storage Mater. 2023, 54, 836–844. [Google Scholar] [CrossRef]
- Kaghazchi, P. Mechanism of Li intercalation into Si. Appl. Phys. Lett. 2013, 102, 093901. [Google Scholar] [CrossRef]
- Li, Y.; Lu, Y.; Adelhelm, P.; Titirici, M.-M.; Hu, Y.-S. Intercalation chemistry of graphite: Alkali metal ions and beyond. Chem. Soc. Rev. 2019, 48, 4655–4687. [Google Scholar] [CrossRef]
- Ji, K.; Han, J.; Hirata, A.; Fujita, T.; Shen, Y.; Ning, S.; Liu, P.; Kashani, H.; Tian, Y.; Ito, Y.; et al. Lithium intercalation into bilayer graphene. Nat. Commun. 2019, 10, 275. [Google Scholar] [CrossRef]
- Zhang, R.; Wu, X.; Yang, J. Blockage of ultrafast and directional diffusion of Li atoms on phosphorene with intrinsic defects. Nanoscale 2016, 8, 4001–4006. [Google Scholar] [CrossRef] [PubMed]
- Chang, S.; Moon, J.; Cho, M. Stress-diffusion coupled multiscale analysis of Si anode for Li-ion battery†. J. Mech. Sci. Technol. 2015, 29, 4807–4816. [Google Scholar] [CrossRef]
- Vijayaraghavan, B.; Ely, D.R.; Chiang, Y.-M.; García-García, R.; García, R.E. An analytical method to determine tortuosity in rechargeable battery electrodes. J. Electrochem. Soc. 2012, 159, A548–A552. [Google Scholar] [CrossRef]
- Ebner, M.; Wood, V. Tool for tortuosity estimation in lithium-ion battery porous electrodes. J. Electrochem. Soc. 2015, 162, A3064–A3070. [Google Scholar] [CrossRef]
- Wu, Y.S.; van Vliet, L.J.; Frijlink, H.W.; van der Voort Maarschalk, K. The determination of relative path length as a measure for tortuosity in compacts using image analysis. Eur. J. Pharm. Sci. 2006, 28, 433–440. [Google Scholar] [CrossRef]
- Shi, Y.; Li, B.; Zhang, Y.; Cui, Y.; Cao, Z.; Du, Z.; Gu, J.; Shen, K.; Yang, S. Tortuosity modulation toward high-energy and high-power lithium metal batteries. Adv. Energy Mater. 2021, 11, 2003663. [Google Scholar] [CrossRef]
- Bae, C.; Erdonmez, C.K.; Halloran, J.W.; Chiang, Y. Design of battery electrodes with dual-scale porosity to minimize tortuosity and maximize performance. Adv. Mater. 2013, 25, 1254–1258. [Google Scholar] [CrossRef]
- Nguyen, T.-T.; Demortière, A.; Fleutot, B.; Delobel, B.; Delacourt, C.; Cooper, S.J. The electrode tortuosity factor: Why the conventional tortuosity factor is not well suited for quantifying transport in porous Li-ion battery electrodes and what to use instead. NPJ Comput. Mater. 2020, 6, 123. [Google Scholar] [CrossRef]
Rb (Ω) | Rct (Ω) | Cdl (µF) | (Ω) | DLi (cm2/s) | |
---|---|---|---|---|---|
SLE | 4.90 | 120 | 9.33 | 545 | |
Si-on-top DLE | 2.35 | 86.1 | 10.2 | 464 | |
Gr-on-top DLE | 2.63 | 96.4 | 11.8 | 502 |
Rb (Ω) | Rct (Ω) | Cdl (µF) | (Ω) | DLi (cm2/s) | |
---|---|---|---|---|---|
SLE | 6.19 | 48.0 | 18.3 | 10.4 | |
Si-on-top DLE | 4.89 | 41.8 | 18.1 | 3.85 | |
Gr-on-top DLE | 3.63 | 50.8 | 7.95 |
Intial Capacity (mAh/g) | Initial CE (%) | 100th Cycle Capacity (mAh/g) | 100th Cycle Capacity Retention (%) | Interface Resistance (Ω cm2) | |
---|---|---|---|---|---|
SLE | 846 | 92.0 | 370 | 50.3 | 0.0034 |
Si-on-top DLE | 935 | 92.2 | 537 | 70.0 | 0.0025 |
Gr-on-top DLE | 815 | 91.9 | 407 | 55.9 | 0.0069 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lim, S.; Kim, M. The Effect of a Dual-Layer Coating for High-Capacity Silicon/Graphite Negative Electrodes on the Electrochemical Performance of Lithium-Ion Batteries. Batteries 2024, 10, 320. https://doi.org/10.3390/batteries10090320
Lim S, Kim M. The Effect of a Dual-Layer Coating for High-Capacity Silicon/Graphite Negative Electrodes on the Electrochemical Performance of Lithium-Ion Batteries. Batteries. 2024; 10(9):320. https://doi.org/10.3390/batteries10090320
Chicago/Turabian StyleLim, Seonghyun, and Minjae Kim. 2024. "The Effect of a Dual-Layer Coating for High-Capacity Silicon/Graphite Negative Electrodes on the Electrochemical Performance of Lithium-Ion Batteries" Batteries 10, no. 9: 320. https://doi.org/10.3390/batteries10090320
APA StyleLim, S., & Kim, M. (2024). The Effect of a Dual-Layer Coating for High-Capacity Silicon/Graphite Negative Electrodes on the Electrochemical Performance of Lithium-Ion Batteries. Batteries, 10(9), 320. https://doi.org/10.3390/batteries10090320