Fractional View Study of the Brusselator Reaction–Diffusion Model Occurring in Chemical Reactions
Abstract
:1. Introduction
2. Preliminaries
2.1. Definition
2.2. Definition
2.3. Definition
2.4. Definition
3. Methodology
4. Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Magin, R. Fractional calculus in bioengineering, part 1. Crit. Rev. Biomed. Eng. 2004, 32, 104. [Google Scholar]
- Machado, J.T.; Kiryakova, V.; Mainardi, F. Recent history of fractional calculus. Commun. Nonlinear Sci. Numer. Simul. 2011, 16, 1140–1153. [Google Scholar] [CrossRef] [Green Version]
- Sabatier, J.A.T.M.J.; Agrawal, O.P.; Machado, J.T. Advances in Fractional Calculus; Springer: Dordrecht, The Netherlands, 2007; Volume 4, p. 9. [Google Scholar]
- Giusti, A.; Colombaro, I.; Garra, R.; Garrappa, R.; Polito, F.; Popolizio, M.; Mainardi, F. A practical guide to Prabhakar fractional calculus. Fract. Calc. Appl. Anal. 2020, 23, 9–54. [Google Scholar] [CrossRef] [Green Version]
- Baleanu, D.; Diethelm, K.; Scalas, E.; Trujillo, J.J. Fractional Calculus: Models and Numerical Methods; World Scientific: Singapore, 2012; Volume 3. [Google Scholar]
- Debnath, L. Recent applications of fractional calculus to science and engineering. Int. J. Math. Math. Sci. 2003, 2003, 3413–3442. [Google Scholar] [CrossRef] [Green Version]
- Axtell, M.; Bise, M.E. Fractional calculus application in control systems. In Proceedings of the IEEE Conference on Aerospace and Electronics, Dayton, OH, USA, 21–25 May 1990; pp. 563–566. [Google Scholar]
- El-Saka, H.A.A.; Arafa, A.A.M.; Gouda, M.I. Dynamical analysis of a fractional SIRS model on homogenous networks. Adv. Differ. Equ. 2019, 2019, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Alyousef, H.A.; Yasmin, H.; Shah, N.A.; El-Sherif, L.S.; El-Tantawy, S.A. Mathematical Modeling and Analysis of the Steady Electro-Osmotic Flow of Two Immiscible Fluids: A Biomedical Application. Coatings 2023, 13, 115. [Google Scholar] [CrossRef]
- Alyousef, H.A.; Nonlaopon, K.; El-Sherif, L.S.; El-Tantawy, S.A. An Efficient Analytical Method for Analyzing the Nonlinear Fractional Klein-Fock-Gordon Equations. Symmetry 2022, 14, 2640. [Google Scholar] [CrossRef]
- Singh, J.; Rashidi, M.M.; Kumar, D.; Swroop, R. A fractional model of a dynamical Brusselator reaction-diffusion system arising in triple collision and enzymatic reactions. Nonlinear Eng. 2016, 5, 277–285. [Google Scholar] [CrossRef]
- Adomian, G. The diffusion-Brusselator equation. Comput. Math. Appl. 1995, 29, 1–3. [Google Scholar] [CrossRef] [Green Version]
- Wazwaz, A.M. The decomposition method applied to systems of partial differential equations and to the reaction-diffusion Brusselator model. Appl. Math. Comput. 2000, 110, 251–264. [Google Scholar] [CrossRef]
- Twizell, E.H.; Gumel, A.B.; Cao, Q. A second-order scheme for the Brusselator reaction-diffusion system. J. Math. Chem. 1999, 26, 297–316. [Google Scholar] [CrossRef]
- Verwer, J.G.; Hundsdorfer, W.H.; Sommeijer, B.P. Convergence properties of the Runge-Kutta-Chebyshev method. Numer. Math. 1990, 57, 157–178. [Google Scholar] [CrossRef] [Green Version]
- Ang, W.T. The two-dimensional reaction-diffusion Brusselator system: A dual-reciprocity boundary element solution. Eng. Anal. Bound. Elem. 2003, 27, 897–903. [Google Scholar] [CrossRef]
- Mittal, R.C.; Jiwari, R. Numerical study of two-dimensional reaction-diffusion Brusselator system by differential quadrature method. Int. J. Comput. Methods Eng. Sci. Mech. 2011, 12, 14–25. [Google Scholar] [CrossRef]
- Ali, A.; Haq, S. A computational modeling of the behavior of the two-dimensional reaction-diffusion Brusselator system. Appl. Math. Model. 2010, 34, 3896–3909. [Google Scholar]
- Kumar, S.; Khan, Y.; Yildirim, A. A mathematical modeling arising in the chemical systems and its approximate numerical solution. Asia-Pac. J. Chem. Eng. 2012, 7, 835–840. [Google Scholar] [CrossRef]
- Alderremy, A.A.; Shah, R.; Iqbal, N.; Aly, S.; Nonlaopon, K. Fractional Series Solution Construction for Nonlinear Fractional Reaction-Diffusion Brusselator Model Utilizing Laplace Residual Power Series. Symmetry 2022, 14, 1944. [Google Scholar] [CrossRef]
- Jafari, H.; Kadem, A.; Baleanu, D. Variational iteration method for a fractional-order Brusselator system. Abstr. Appl. Anal. 2014, 2014, 496323. [Google Scholar] [CrossRef] [Green Version]
- Saadeh, R.; Alaroud, M.; Al-Smadi, M.; Ahmad, R.R.; Salma Din, U.K. Application of fractional residual power series algorithm to solve Newell-Whitehead-Segel equation of fractional order. Symmetry 2019, 11, 1431. [Google Scholar] [CrossRef] [Green Version]
- Freihet, A.; Hasan, S.; Alaroud, M.; Al-Smadi, M.; Ahmad, R.R.; Salma Din, U.K. Toward computational algorithm for time-fractional Fokker-Planck models. Adv. Mech. Eng. 2019, 11, 1687814019881039. [Google Scholar] [CrossRef]
- Al-Smadi, M.; Arqub, O.A.; Momani, S. Numerical computations of coupled fractional resonant Schrodinger equations arising in quantum mechanics under conformable fractional derivative sense. Phys. Scr. 2020, 95, 075218. [Google Scholar] [CrossRef]
- Al-Smadi, M.; Arqub, O.A.; Hadid, S. Approximate solutions of nonlinear fractional Kundu-Eckhaus and coupled fractional massive Thirring equations emerging in quantum field theory using conformable residual power series method. Phys. Scr. 2020, 95, 105205. [Google Scholar] [CrossRef]
- Alaroud, M.; Al-Smadi, M.; Ahmad, R.R.; Salma Din, U.K. Computational optimization of residual power series algorithm for certain classes of fuzzy fractional differential equations. Int. J. Differ. Equ. 2018, 2018, 8686502. [Google Scholar] [CrossRef]
- Aljahdaly, N.H.; Agarwal, R.P.; Botmart, T. The analysis of the fractional-order system of third-order KdV equation within different operators. Alex. Eng. J. 2022, 61, 11825–11834. [Google Scholar] [CrossRef]
- Dattu, M.K.U. New integral transform: Fundamental properties, investigations and applications. Iaetsd J. Adv. Res. Appl. Sci. 2018, 5, 534–539. [Google Scholar]
- Oqielat, M.A.N.; Eriqat, T.; Al-Zhour, Z.; Ogilat, O.; El-Ajou, A.; Hashim, I. Construction of fractional series solutions to nonlinear fractional reaction-diffusion for bacteria growth model via Laplace residual power series method. Int. J. Dyn. Control. 2022, 2022, 1–8. [Google Scholar] [CrossRef]
AE at | AE at | AE at | AE at [20] | ||
---|---|---|---|---|---|
0.2 | 0.0805629452 | 0.0502204062 | 0.0325020875 | 0.0325020875 | |
0.4 | 0.0825454718 | 0.0515331039 | 0.0334241734 | 0.0334241734 | |
0.1 | 0.6 | 0.0839111844 | 0.0524787587 | 0.0341170570 | 0.0341170570 |
0.8 | 0.0846437383 | 0.0530448606 | 0.0345706478 | 0.0345706478 | |
1 | 0.0847452771 | 0.0532295274 | 0.0347813764 | 0.0347813764 | |
0.2 | 0.1386150391 | 0.1064055404 | 0.0816294703 | 0.0816294703 | |
0.4 | 0.1421027846 | 0.1091805284 | 0.0838571430 | 0.0838571430 | |
0.25 | 0.6 | 0.1445063572 | 0.1111623891 | 0.0855012205 | 0.0855012205 |
0.8 | 0.1457962927 | 0.1123251454 | 0.0865387309 | 0.0865387309 | |
1 | 0.1459764695 | 0.1126662559 | 0.0869633834 | 0.0869633834 |
0.2 | 0.0365409370 | 0.0162647517 | 0.0044485940 | 0.0044485940 | |
0.4 | 0.0372349264 | 0.0167576585 | 0.0047433264 | 0.0047433264 | |
0.1 | 0.6 | 0.0378161928 | 0.0172017544 | 0.0050225392 | 0.0050225392 |
0.8 | 0.0382802895 | 0.0175933608 | 0.0052838629 | 0.0052838629 | |
1 | 0.0386242276 | 0.0179294469 | 0.0055251728 | 0.0055251728 | |
0.2 | 0.0493801887 | 0.0277102702 | 0.0109897476 | 0.0109897476 | |
0.4 | 0.0502167121 | 0.0285674155 | 0.0116808654 | 0.0116808654 | |
0.25 | 0.6 | 0.0508790642 | 0.0293301937 | 0.0123303104 | 0.0123303104 |
0.8 | 0.0513628857 | 0.0299925619 | 0.0129326754 | 0.0129326754 | |
1 | 0.0516662223 | 0.0305498127 | 0.0134832205 | 0.0134832205 |
Numerical Simulation at | Numerical Simulation at | Numerical Simulation at | ||
---|---|---|---|---|
0.2 | 1.837707373 | 1.917052547 | 1.980814044 | |
0.4 | 1.625576979 | 1.975701657 | 2.036756119 | |
0.1 | 0.6 | 1.530086586 | 2.045377487 | 2.098530194 |
0.8 | 1.551236193 | 2.126080036 | 2.166136269 | |
1 | 1.689025800 | 2.217809305 | 2.239574344 | |
0.2 | 1.713577815 | 1.674859093 | 1.702150273 | |
0.4 | 1.553928691 | 1.670189950 | 1.748038242 | |
0.25 | 0.6 | 1.503958022 | 1.722897876 | 1.830376211 |
0.8 | 1.563665809 | 1.832982869 | 1.949164180 | |
1 | 1.733052051 | 2.000444931 | 2.104402148 |
Numerical Simulation at | Numerical Simulation at | Numerical Simulation at | ||
---|---|---|---|---|
0.2 | 1.459238898 | 1.424447874 | 1.321163456 | |
0.4 | 1.754369291 | 1.528622455 | 1.421371381 | |
0.1 | 0.6 | 1.932859684 | 1.605050337 | 1.515747306 |
0.8 | 1.994710077 | 1.653731523 | 1.604291231 | |
1 | 1.939920471 | 1.674666009 | 1.687003156 | |
0.2 | 1.324648176 | 1.528861254 | 1.499959102 | |
0.4 | 2.088050864 | 1.776106048 | 1.590008633 | |
0.25 | 0.6 | 2.559853552 | 1.913672387 | 1.643608164 |
0.8 | 2.740056238 | 1.941560270 | 1.660757695 | |
1 | 2.628658925 | 1.859769698 | 1.641457227 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alshammari, S.; Al-Sawalha, M.M.; Humaidi, J.R. Fractional View Study of the Brusselator Reaction–Diffusion Model Occurring in Chemical Reactions. Fractal Fract. 2023, 7, 108. https://doi.org/10.3390/fractalfract7020108
Alshammari S, Al-Sawalha MM, Humaidi JR. Fractional View Study of the Brusselator Reaction–Diffusion Model Occurring in Chemical Reactions. Fractal and Fractional. 2023; 7(2):108. https://doi.org/10.3390/fractalfract7020108
Chicago/Turabian StyleAlshammari, Saleh, M. Mossa Al-Sawalha, and Jamal R. Humaidi. 2023. "Fractional View Study of the Brusselator Reaction–Diffusion Model Occurring in Chemical Reactions" Fractal and Fractional 7, no. 2: 108. https://doi.org/10.3390/fractalfract7020108
APA StyleAlshammari, S., Al-Sawalha, M. M., & Humaidi, J. R. (2023). Fractional View Study of the Brusselator Reaction–Diffusion Model Occurring in Chemical Reactions. Fractal and Fractional, 7(2), 108. https://doi.org/10.3390/fractalfract7020108