Observer Design for Fractional-Order Polynomial Fuzzy Systems Depending on a Parameter
Abstract
:1. Introduction
- Based on the advantages of polynomial fuzzy models and by adopting the Caputo–Hadamard fractional-order derivative, a new class of Caputo–Hadamard Fractional-Order Polynomial Fuzzy Systems (CHFORPSs) depending on a parameter is considered in this study.
- The Practical Generalized Mittag-Leffler stability problem has not yet been explored for the general case of Caputo–Hadamard Fractional-Order systems depending on a parameter in the literature. Therefore, this paper tackles and resolves this gap.
- Compared to recent work [18], this paper addresses the Caputo–Hadamard derivative rather than the Caputo derivative, which presents a greater challenge due to its increased complexity. Additionally, our design accounts for the presence of s nonlinear function depending on a parameter.
2. Preliminaries
3. Main Results
3.1. CHFORPSs Depending on a Parameter Description
- -
- and are solely dependent on measurable variables, i.e., and
- -
- Each verifies the following condition:where is a continuous function and such that , ().
- -
- , are measurable.
3.2. Practical Generalized Mittag-Leffler Stability of the General Case of CHFOSs
- where .
- is a bounded function.
- where in whichand
4. Observer Design for FORPSs
Algorithm 1 Steps for Solving Theorem 1 |
1: Solve the SOS conditions (27) using SOSTOOLS for the known system matrices and C. 2: Ensure condition (28) for . 3: Compute and using the polynomial gains from Step 1 and the system’s initial conditions. |
5. Illustrative Example
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Naifar, O.; Makhlouf, A.B. Fractional Order Systems-Control Theory and Applications; Springer International Publishing: Berlin/Heidelberg, Germany, 2022. [Google Scholar]
- Zhang, Z.; Zeb, A.; Egbelowo, O.F.; Erturk, V.S. Dynamics of a fractional order mathematical model for COVID-19 epidemic. Adv. Differ. Equ. 2020, 2020, 420. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.C. Nonlinear dynamics and chaos in a fractional-order financial system. Chaos Solitons Fractals 2008, 36, 1305–1314. [Google Scholar] [CrossRef]
- Song, L.; Xu, S.; Yang, J. Dynamical models of happiness with fractional order. Commun. Nonlinear Sci. Numer. Simul. 2010, 15, 616–628. [Google Scholar] [CrossRef]
- Ahmad, W.M.; El-Khazali, R. Fractional-order dynamical models of love. Chaos Solitons Fractals 2007, 33, 1367–1375. [Google Scholar] [CrossRef]
- Hilfer, R. Applications of Fractional Calculus in Physics; World Scientific: Singapore, 2000. [Google Scholar]
- Zhou, P.; Ma, J.; Tang, J. Clarify the physical process for fractional dynamical systems. Nonlinear Dyn. 2020, 100, 2353–2364. [Google Scholar] [CrossRef]
- Wei, Q.; Wang, W.; Zhou, H.; Metzler, R.; Chechkin, A. Time-fractional Caputo derivative versus other integrodifferential operators in generalized Fokker-Planck and generalized Langevin equations. Phys. Rev. E 2023, 108, 024125. [Google Scholar] [CrossRef]
- Qureshi, S.; Abro, K.A.; Gómez-Aguilar, J.F. On the numerical study of fractional and non-fractional model of nonlinear Duffing oscillator: A comparison of integer and non-integer order approaches. Int. J. Model. Simul. 2023, 43, 362–375. [Google Scholar] [CrossRef]
- Hammami, M.A. On the Stability of Nonlinear Control Systems with Uncertainty. J. Dyn. Control Syst. 2001, 7, 171–179. [Google Scholar] [CrossRef]
- Caraballo, T.; Hammami, M.A.; Mchiri, L. Practical exponential stability of impulsive stochastic functional differential equations. Syst. Control Lett. 2017, 109, 43–48. [Google Scholar] [CrossRef]
- Benabdallah, A.; Hammami, M.A. On the output feedback stability for non-linear uncertain control systems. Int. J. Control 2001, 74, 547–551. [Google Scholar] [CrossRef]
- Medina, R. Exponential stabilizability of nonlinear control systems in Banach spaces. Appl. Anal. 2016, 95, 2017–2028. [Google Scholar] [CrossRef]
- Wang, G.; Pei, K.; Chen, Y.Q. Stability analysis of nonlinear Hadamard fractional differential system. J. Frankl. Inst. 2019, 356, 6538–6546. [Google Scholar] [CrossRef]
- He, B.B.; Zhou, H.C. Caputo–Hadamard fractional Halanay inequality. Appl. Math. Lett. 2022, 125, 107723. [Google Scholar] [CrossRef]
- Chen, L.; Guo, W.; Gu, P.; Lopes, A.M.; Chu, Z.; Chen, Y.Q. Stability and Stabilization of Fractional-Order Uncertain Nonlinear Systems With Multiorder. IEEE Trans. Circuits Syst. II Express Briefs 2022, 70, 576–580. [Google Scholar] [CrossRef]
- Chen, L.; Gu, P.; Lopes, A.M.; Chai, Y.; Xu, S.; Ge, S. Asymptotic Stability of Fractional-Order Incommensurate Neural Networks. Neural Process. Lett. 2023, 55, 5499–5513. [Google Scholar] [CrossRef]
- Makhlouf, A.B.; Hammami, M.A.; Sioud, K. Stability of fractional-order nonlinear systems depending on a parameter. Bull. Korean Math. Soc. 2017, 54, 1309–1321. [Google Scholar]
- Ben Makhlouf, A. Partial practical stability for fractional-order nonlinear systems. Math. Methods Appl. Sci. 2022, 45, 5135–5148. [Google Scholar] [CrossRef]
- Takagi, T.; Sugeno, M. Fuzzy identification of systems and its applications to modeling and control. IEEE Trans. Fuzzy Syst. 1985, SMC-15, 116–132. [Google Scholar] [CrossRef]
- Lin, C.; Chen, B.; Wang, Q.G. Static output feedback stabilization for fractional-order systems in T-S fuzzy models. Neurocomputing 2016, 218, 354–358. [Google Scholar] [CrossRef]
- Li, R.; Zhang, X. Adaptive sliding mode observer design for a class of T-S fuzzy descriptor fractional order systems. IEEE Trans. Fuzzy Syst. 2020, 29, 1951–1960. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, Z. Stabilisation of Takagi–Sugeno fuzzy singular fractional-order systems subject to actuator saturation. Int. J. Syst. Sci. 2020, 51, 3225–3236. [Google Scholar] [CrossRef]
- Hao, Y.; Fang, Z.; Liu, H. Stabilization of delayed fractional-order T-S fuzzy systems with input saturations and system uncertainties. Asian J. Control 2024, 26, 246–264. [Google Scholar] [CrossRef]
- Prajna, S.; Papachristodoulou, A.; Parrilo, P.A. Introducing SOSTOOLS: A general purpose sum of squares programming solver. Proceedings of 41st IEEE Conference on Decision Control, Las Vegas, NV, USA, 10–13 December 2002; pp. 741–746. [Google Scholar]
- Tanaka, K.; Yoshida, H.; Ohtake, H.; Wang, H.O.; Godínez, F.A. A sum of squares approach to stability analysis of polynomial fuzzy systems. In Proceedings of the 2007 American Control Conference, New York, NY, USA, 9–13 July 2007; pp. 4071–4076. [Google Scholar]
- Lam, H.K.; Liu, C.; Wu, L.; Zhao, X. Polynomial Fuzzy-Model-Based Control Systems: Stability Analysis via Approximated Membership Functions Considering Sector Nonlinearity of Control Input. IEEE Trans. Fuzzy Syst. 2015, 23, 2202–2214. [Google Scholar] [CrossRef]
- Saenz, J.M.; Tanaka, M.; Tanaka, K. Relaxed stabilization and disturbance attenuation control synthesis conditions for polynomial fuzzy systems. IEEE Trans. Cybern. 2021, 51, 2093–2106. [Google Scholar] [CrossRef] [PubMed]
- Majdoub, R.; Gassara, H.; Rhaima, M.; Mchiri, L.; Arfaoui, H.; Makhlouf, A.B. Observer-based control of polynomial fuzzy fractional-order systems. Trans. Inst. Meas. Control 2024, 46, 442–452. [Google Scholar] [CrossRef]
- Gassara, H.; Boukattaya, M.; Hajjaji, A.E. Polynomial Adaptive Observer-Based Fault Tolerant Control for Time Delay Polynomial Fuzzy Systems Subject to Actuator Faults. Int. J. Fuzzy Syst. 2023, 25, 1327–1337. [Google Scholar] [CrossRef]
Number of Rules | System’s Validity Domain | |
---|---|---|
CHFOTSS | 8 | |
CHFORPSs | 2 |
Domain of Feasibility | |
---|---|
LMI approach | |
SOS approach |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gassara, H.; Rhaima, M.; Mchiri, L.; Ben Makhlouf, A. Observer Design for Fractional-Order Polynomial Fuzzy Systems Depending on a Parameter. Fractal Fract. 2024, 8, 693. https://doi.org/10.3390/fractalfract8120693
Gassara H, Rhaima M, Mchiri L, Ben Makhlouf A. Observer Design for Fractional-Order Polynomial Fuzzy Systems Depending on a Parameter. Fractal and Fractional. 2024; 8(12):693. https://doi.org/10.3390/fractalfract8120693
Chicago/Turabian StyleGassara, Hamdi, Mohamed Rhaima, Lassaad Mchiri, and Abdellatif Ben Makhlouf. 2024. "Observer Design for Fractional-Order Polynomial Fuzzy Systems Depending on a Parameter" Fractal and Fractional 8, no. 12: 693. https://doi.org/10.3390/fractalfract8120693
APA StyleGassara, H., Rhaima, M., Mchiri, L., & Ben Makhlouf, A. (2024). Observer Design for Fractional-Order Polynomial Fuzzy Systems Depending on a Parameter. Fractal and Fractional, 8(12), 693. https://doi.org/10.3390/fractalfract8120693