Polyhydroxyalkanoates Composites and Blends: Improved Properties and New Applications
Abstract
:1. Introduction
2. Results
2.1. Biocompatibility
2.1.1. Effects of Surface Morphology
2.1.2. Addition of Bacterial Cellulose or Microcrystalline Cellulose
2.1.3. Biocompatibility for Neural Regeneration
2.2. Mechanical Properties
2.2.1. Blending PHAs with Plasticizers
2.2.2. Adding Hydrophobically Treated CNCs to Form a PHA Composite
2.2.3. Incorporation of Natural Rubber into PHBV
2.2.4. Using Nanofillers to Enhance Barrier Properties
2.3. Biodegradation
2.3.1. Effects of Water Absorption and Diffusion on Degradability
2.3.2. PHA Blends and Biodegradation
2.4. Electrical and Thermal Properties
2.4.1. Thermal Properties
2.4.2. Electrical Properties
2.5. Antimicrobial Properties
2.5.1. PHA–Vegetal Fiber Composites
2.5.2. PHAs as Controlled Drug Release Systems
2.5.3. PHAs in Wound Healing
3. Discussion
Property | Composite | Effect | Reference |
---|---|---|---|
Biodegradation | PHBHHx/normal plastics | Blends degrade considerably faster than typical plastics | [64] |
OMW/PHB film | Accelerated rate of degradation noted | [65] | |
UPE/PHB | Significant weight loss noted after 30 days | [66] | |
Biocompatibility | PHBHHx/PHB | Reduction in pore size and enhanced cell adhesion to film | [8] |
PHBHHx/gelatin | Increase in surface porosity and decrease in crystallinity | [19] | |
Physical | PHBV–miscanthus | Increased tensile strength | [35] |
+resin | Increased thermal ability | [44] | |
CNC/PHA | High ductility | [24] | |
PHBV/NR | Better melting power and enhanced processability | [25] | |
Antimicrobial | P(3HB/4HB) | Wounds healed 3.5 time faster than control | [56] |
PHB + tetracycline | Suggested for controlled drug delivery | [52,53,67] |
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Samrot, A.V.; Samanvitha, S.K.; Shobana, N.; Renitta, E.R.; Senthilkumar, P.; Kumar, S.S.; Abirami, S.; Dhiva, S.; Bavanilatha, M.; Prakash, P.; et al. Polymers the Synthesis, Characterization and Applications of Polyhydroxyalkanoates (PHAs) and PHA-Based Nanoparticles. Polymers 2021, 13, 3302. [Google Scholar] [CrossRef] [PubMed]
- Zhila, N.O.; Sapozhnikova, K.Y.; Kiselev, E.G.; Vasiliev, A.D.; Nemtsev, I.V.; Shishatskaya, E.I.; Volova, T.G. Properties of Degradable Polyhydroxyalkanoates (PHAs) Synthesized by a New Strain, Cupriavidus Necator IBP/SFU-1, from Various Carbon Sources. Polymers 2021, 13, 3142. [Google Scholar] [CrossRef] [PubMed]
- Ong, S.Y.; Chee, J.Y.; Sudesh, K. Degradation of Polyhydroxyalkanoate (PHA): A Review. J. Sib. Fed. University. Biol. 2017, 10, 21–225. [Google Scholar] [CrossRef]
- Alejandra, R.-C.; Guillem-Marti, J.; Lopez, O.; Manero, J.M.; Rupérez, E. Antimicrobial PHAs Coatings for Solid and Porous Tantalum Implants. Colloids Surf. B Biointerfaces 2019, 182, 110317. [Google Scholar] [CrossRef]
- Rodriguez-Contreras, A. Recent Advances in the Use of Polyhydroyalkanoates in Biomedicine. Bioengineering 2019, 6, 82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, J.; Shen, J.; Chen, S.; Cooper, M.A.; Fu, H.; Wu, D.; Yang, Z. Polymers Nanofiller Reinforced Biodegradable PLA/PHA Composites: Current Status and Future Trends. Polymers 2018, 10, 505. [Google Scholar] [CrossRef] [Green Version]
- Kai, Z.; Ying, D.; Guo-Qiang, C. Effects of Surface Morphology on the Biocompatibility of Polyhydroxyalkanoates. Biochem. Eng. J. 2003, 16, 115–123. [Google Scholar] [CrossRef]
- Ruan, D.; Wu, C.; Deng, S.; Zhang, Y.; Guan, G. The Anatase Phase of Nanotopography Titania with Higher Roughness Has Better Biocompatibility in Osteoblast Cell Morphology and Proliferation. BioMed Res. Int. 2020, 2020, 8032718. [Google Scholar] [CrossRef]
- Suárez-Franco, J.L.; García-Hipólito, M.; Surárez-Rosales, M.Á.; Fernández-Pedrero, J.A.; Álvarez-Fregoso, O.; Juárez-Islas, J.A.; Álvarez-Pérez, M.A. Effects of Surface Morphology of ZnAl2O4 Ceramic Materials on Osteoblastic Cells Responses. J. Nanomater. 2013, 2013. [Google Scholar] [CrossRef] [Green Version]
- Râpă, M.; Zaharia, C.; Stanescu, P. Grosu E. Biocompatibility of PHAs Biocomposites Obtained by Melt Processing. Mater. Plast. 2015, 52, 295–300. [Google Scholar]
- Chen, G.-Q.; Wu, Q. The Application of Polyhydroxyalkanoates as Tissue Engineering Materials. Biomaterials 2005, 26, 6565–6578. [Google Scholar] [CrossRef] [PubMed]
- Ren, Y.; Wang, C.; Qiu, Y. Aging of Surface Properties of Ultra High Modulus Polyethylene Fibers Treated with He/O2 Atmospheric Pressure Plasma Jet. Surf. Coat. Technol. 2008, 202, 2670–2676. [Google Scholar] [CrossRef]
- Ma, Z.; Gao, C.; Gong, Y.; Shen, J. Chondrocyte Behaviors on Poly-l-Lactic Acid (PLLA) Membranes Containing Hydroxyl, Amide or Carboxyl Groups. Biomaterials 2003, 24, 3725–3730. [Google Scholar] [CrossRef]
- Shangguan, Y.-Y.; Wang, Y.-W.; Wu, Q.; Chen, G.-Q. The Mechanical Properties and in Vitro Biodegradation and Biocompatibility of UV-Treated Poly(3-Hydroxybutyrate-Co-3-Hydroxyhexanoate). Biomaterials 2006, 27, 2349–2357. [Google Scholar] [CrossRef]
- Benavente, J.; Vázquez, M.I. Effect of Age and Chemical Treatments on Characteristic Parameters for Active and Porous Sublayers of Polymeric Composite Membranes. J. Colloid Interface Sci. 2004, 273, 547–555. [Google Scholar] [CrossRef]
- Lee, I.S.; Kwon, O.H.; Meng, W.; Kang, I.-K.; Ito, Y. Nanofabrication of Microbial Polyester by Electrospinning Promotes Cell Attachment. Macromol. Res. 2004, 12, 374–378. [Google Scholar] [CrossRef]
- Dong, C.-L.; Li, S.-Y.; Wang, Y.; Dong, Y.; Tang, J.Z.; Chen, J.-C.; Chen, G.-Q. The Cytocompatability of Polyhydroxyalkanoates Coated with a Fusion Protein of PHA Repressor Protein (PhaR) and Lys-Gln-Ala-Gly-Asp-Val (KQAGDV) Polypeptide. Biomaterials 2012, 33, 2593–2599. [Google Scholar] [CrossRef]
- You, M.; Peng, G.; Li, J.; Ma, P.; Wang, Z.; Shu, W.; Peng, S.; Chen, G.-Q. Chondrogenic Differentiation of Human Bone Marrow Mesenchymal Stem Cells on Polyhydroxyalkanoate (PHA) Scaffolds Coated with PHA Granule Binding Protein PhaP Fused with RGD Peptide. Biomaterials 2011, 32, 2305–2313. [Google Scholar] [CrossRef]
- Wang, Y.-W.; Wu, Q.; Chen, G.-Q. Gelatin Blending Improves the Performance of Poly(3-Hydroxybutyrate-Co-3-Hydroxyhexanoate) Films for Biomedical Application. Biomacromolecules 2005, 6, 566–571. [Google Scholar] [CrossRef]
- Bijarimi, M.; Ahmad, S.; Rasid, R. Mechanical, Thermal and Morphological Properties of Poly(Lactic Acid)/Epoxidized Natural Rubber Blends. J. Elastomers Plast. 2014, 46, 338–354. [Google Scholar] [CrossRef]
- Shen, L.; Haufe, J.; Patel, M.K. Product Overviw and Market Projection of Emerging Bio-Based Plastics. PRO-BIP 2009; Utrecht University: Utrecht, The Netherlands, 2009; 243 p, Available online: https://plasticker.de/docs/news/PROBIP2009_Final_June_2009.pdf (accessed on 26 June 2022).
- Hong, S.-G.; Heng Wei, H.; Ye, M.-T. Thermal Properties and Applications of Low Molecular Weight Polyhydroxybutyrate. J. Therm. Anal. Calorim. 2012, 111, 1243–1250. [Google Scholar] [CrossRef]
- Bugnicourt, E.; Cinelli, P.; Lazzeri, A.; Alvarez, V. Polyhydroxyalkanoate (PHA): Review of Synthesis, Characteristics, Processing and Potential Applications in Packaging. Express Polym. Lett. 2014, 8, 791–808. [Google Scholar] [CrossRef] [Green Version]
- Jo, J.; Kim, H.; Jeong, S.Y.; Park, C.; Hwang, H.S.; Koo, B. Changes in Mechanical Properties of Polyhydroxyalkanoate with Double Silanized Cellulose Nanocrystals Using Different Organosiloxanes. Nanomaterials 2021, 11, 1542. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Venoor, V.; Koelling, K.; Cornish, K.; Vodovotz, Y. Bio-Based Blends from Poly(3-Hydroxybutyrate-Co-3-Hydroxyvalerate) and Natural Rubber for Packaging Applications. J. Appl. Polym. Sci. 2018, 136, 47334. [Google Scholar] [CrossRef]
- Johannson, C. Bio-Nanocomposites for Food Packaging Applications. In Nanocomposites with Biodegradable Polymers; Oxford University Press: Oxford, UK, 2011; pp. 348–367. [Google Scholar]
- Sinha Ray, S.; Okamoto, M. Polymer/Layered Silicate Nanocomposites: A Review from Preparation to Processing. Prog. Polym. Sci. 2003, 28, 1539–1641. [Google Scholar] [CrossRef]
- Cataldi, P.; Condurache, O.; Spirito, D.; Krahne, R.; Bayer, I.S.; Athanassiou, A.; Perotto, G. Keratin-Graphene Nanocomposite: Transformation of Waste Wool in Electronic Devices. ACS Sustain. Chem. Eng. 2019, 7, 12544–12551. [Google Scholar] [CrossRef]
- Liu, M.; Kinloch, I.A.; Young, R.J.; Papageorgiou, D.G. Modelling Mechanical Percolation in Graphene-Reinforced Elastomer Nanocomposites. Compos. Part B Eng. 2019, 178, 107506. [Google Scholar] [CrossRef] [Green Version]
- Cataldi, P.; Steiner, P.; Raine, T.; Lin, K.; Kocabas, C.; Young, R.J.; Bissett, M.; Kinloch, I.A.; Papageorgiou, D.G. Multifunctional Biocomposites Based on Polyhydroxyalkanoate and Graphene/Carbon Nanofiber Hybrids for Electrical and Thermal Applications. ACS Appl. Polym. Mater. 2020, 2, 3525–3534. [Google Scholar] [CrossRef]
- Iordanskii, A.L.; Karpova, S.G.; Olkhov, A.; Borovikov, P.I.; Kildeeva, N.R.; Liu, Y. Structure-Morphology Impact upon Segmental Dynamics and Diffusion in the Biodegradable Ultrafine Fibers of Polyhydroxybutyrate-Polylactide Blends. Eur. Polym. J. 2019, 117, 208–216. [Google Scholar] [CrossRef]
- Olkhov, A.A.; Tyubaeva, P.M.; Vetcher, A.A.; Karpova, S.G.; Kurnosov, A.S.; Rogovina, S.Z.; Iordanskii, A.L.; Berlin, A.A. Aggressive Impacts Affecting the Biodegradable Ultrathin Fibers Based on Poly(3-Hydroxybutyrate), Polylactide and Their Blends: Water Sorption, Hydrolysis and Ozonolysis. Polymers 2021, 13, 941. [Google Scholar] [CrossRef]
- Madbouly, S.A.; Schrader, J.A.; Srinivasan, G.; Liu, K.; McCabe, K.G.; Grewell, D.; Graves, W.R.; Kessler, M.R. Biodegradation Behavior of Bacterial-Based Polyhydroxyalkanoate (PHA) and DDGS Composites. Green Chem. 2014, 16, 1911–1920. [Google Scholar] [CrossRef] [Green Version]
- Chan, C.; Vandi, L.-J.; Pratt, S.; Halley, P.; Richardson, D.; Werker, A.; Laycock, B. Insights into the Biodegradation of PHA/Wood Composites: Micro- and Macroscopic Changes. Sustain. Mater. Technol. 2019, 21, e00099. [Google Scholar] [CrossRef] [Green Version]
- Muthuraj, R.; Misra, M.; Mohanty, A.K. Reactive Compatibilization and Performance Evaluation of Miscanthus Biofiber Reinforced Poly(Hydroxybutyrate-Co-Hydroxyvalerate) Biocomposites. J. Appl. Polym. Sci. 2017, 134. [Google Scholar] [CrossRef]
- El-Hadi, A.M. Increase the Elongation at Break of Poly (Lactic Acid) Composites for Use in Food Packaging Films. Nat. Publ. Group 2017, 7, 46767. [Google Scholar] [CrossRef] [Green Version]
- Chan, C.M.; Vandi, L.-J.; Pratt, S.; Halley, P.; Richardson, D.; Werker, A.; Laycock, B. Composites of Wood and Biodegradable Thermoplastics: A Review. Polym. Rev. 2018, 58, 444–494. [Google Scholar] [CrossRef]
- Guo, Y.; Wang, L.; Chen, Y.; Luo, P.; Chen, T. Properties of Luffa Fiber Reinforced PHBV Biodegradable Composites. Polymers 2019, 11, 1765. [Google Scholar] [CrossRef] [Green Version]
- Vizireanu, S.; Mihaela Panaitescu, D.; Nicolae, C.A.; Nicoleta Frone, A.; Chiulan, I.; Daniela Ionita, M.; Satulu, V.; Carpen, L.G.; Petrescu, S.; Birjega, R.; et al. Cellulose Defibrillation and Functionalization by Plasma in Liquid Treatment. Sci. Rep. 2018, 8, 15473. [Google Scholar] [CrossRef]
- Bao, C.; Song, L.; Xing, W.; Yuan, B.; Wilkie, C.; Huang, J.; Guo, Y.; Hu, Y. Preparation of Graphene by Pressurized Oxidation and Multiplex Reduction and Its Polymer Nanocomposites by Masterbatch-Based Melt Blending. J. Mater. Chem. 2012, 22, 6088–6096. [Google Scholar] [CrossRef]
- Petersson, L.; Kvien, I.; Oksman, K. Structure and Thermal Properties of Poly(Lactic Acid)/Cellulose Whiskers Nanocomposite Materials. Compos. Sci. Technol. 2007, 67, 2535–2544. [Google Scholar] [CrossRef]
- Yano, H.; Sugiyama, J.; Nakagaito, A.N.; Nogi, M.; Matsuura, T.; Hikita, M.; Handa, K. Optically Transparent Composites Reinforced with Networks of Bacterial Nanofibers. Adv. Mater. 2005, 17, 153–155. [Google Scholar] [CrossRef]
- Eichhorn, S.J.; Dufresne, A.; Aranguren, M.; Marcovich, N.E.; Capadona, J.R.; Rowan, S.J.; Weder, C.; Thielemans, W.; Roman, M.; Renneckar, S.; et al. Review: Current International Research into Cellulose Nanofibres and Nanocomposites. J. Mater. Sci. 2010, 45, 1–33. [Google Scholar] [CrossRef] [Green Version]
- Nogi, M.; Yano, H. Transparent Nanocomposites Based on Cellulose Produced by Bacteria Offer Potential Innovation in the Electronics Device Industry. Adv. Mater. 2008, 20, 1849–1852. [Google Scholar] [CrossRef]
- Cazón, P.; Velázquez, G.; Vázquez, M. Regenerated Cellulose Films Combined with Glycerol and Polyvinyl Alcohol: Effect of Moisture Content on the Physical Properties. Food Hydrocoll. 2020, 103, 105657. [Google Scholar] [CrossRef]
- Bousfield, G.; Morin, S.; Jacquet, N.; Richel, A. Extraction and Refinement of Agricultural Plant Fibers for Composites Manufacturing. Comptes Rendus Chim. 2018, 21, 897–906. [Google Scholar] [CrossRef]
- Melo, J.D.D.; Carvalho, L.F.M.; Medeiros, A.M.; Souto, C.R.O.; Paskocimas, C.A. A Biodegradable Composite Material Based on Polyhydroxybutyrate (PHB) and Carnauba Fibers. Compos. Part B Eng. 2012, 43, 2827–2835. [Google Scholar] [CrossRef]
- Chilali, A.; Assarar, M.; Zouari, W.; Kebir, H.; Ayad, R. Mechanical Characterization and Damage Events of Flax Fabric-Reinforced Biopolymer Composites. Polym. Polym. Compos. 2020, 28, 631–644. [Google Scholar] [CrossRef]
- Pasangulapati, V.; Ramachandriya, K.D.; Kumar, A.; Wilkins, M.R.; Jones, C.L.; Huhnke, R.L. Effects of Cellulose, Hemicellulose and Lignin on Thermochemical Conversion Characteristics of the Selected Biomass. Bioresour. Technol. 2012, 114, 663–669. [Google Scholar] [CrossRef]
- Pérez, J.; Muñoz-Dorado, J.; de la Rubia, T.; Martínez, J. Biodegradation and Biological Treatments of Cellulose, Hemicellulose and Lignin: An Overview. Int. Microbiol. 2002, 5, 53–63. [Google Scholar] [CrossRef]
- Meng, D.-C.; Shen, R.; Yao, H.; Chen, J.-C.; Wu, Q.; Chen, G.-Q. Engineering the Diversity of Polyesters. Curr. Opin. Biotechnol. 2014, 29, 24–33. [Google Scholar] [CrossRef]
- Seymour, R.A.; Heasman, P.A. Tetracyclines in the Management of Periodontal Diseases. J. Clin. Periodontol. 2005, 22, 22–35. [Google Scholar] [CrossRef]
- Panith, N.; Assavanig, A.; Lertsiri, S.; Bergkvist, M.; Surarit, R.; Niamsiri, N. Development of Tunable Biodegradable Polyhydroxyalkanoates Microspheres for Controlled Delivery of Tetracycline for Treating Periodontal Disease. J. Appl. Polym. Sci. 2016, 133, 44128–44140. [Google Scholar] [CrossRef]
- Ke, Y.; Liu, C.; Zhang, X.; Xiao, M.; Wu, G. Surface Modification of Polyhydroxyalkanoates toward Enhancing Cell Compatibility and Antibacterial Activity. Macromol. Mater. Eng. 2017, 302, 1700258. [Google Scholar] [CrossRef]
- Kandhasamy, S.; Perumal, S.; Madhan, B.; Umamaheswari, N.; Banday, J.A.; Perumal, P.T.; Santhanakrishnan, V.P. Synthesis and Fabrication of Collagen-Coated Ostholamide Electrospun Nanofiber Scaffold for Wound Healing. ACS Appl. Mater. Interfaces 2017, 9, 8556–8568. [Google Scholar] [CrossRef]
- Shishatskaya, E.I.; Nikolaeva, E.D.; Vinogradova, O.N.; Volova, T.G. Experimental Wound Dressings of Degradable PHA for Skin Defect Repair. J. Mater. Sci. Mater. Med. 2016, 27, 165. [Google Scholar] [CrossRef] [Green Version]
- Sharma, V.; Sehgal, R.; Gupta, R. Polyhydroxyalkanoate (PHA): Properties and Modifications. Polymer 2021, 212, 123161. [Google Scholar] [CrossRef]
- Mohammed Gumel, A.; Aris, M.; Annuar, M.S. Modification of Polyhydroxyalkanoates (PHAs). RSC Green Chem. 2015, 2015, 141–182. [Google Scholar]
- Anjum, A.; Zuber, M.; Zia, K.M.; Noreen, A.; Anjum, M.N.; Tabasum, S. Microbial Production of Polyhydroxyalkanoates (PHAs) and Its Copolymers: A Review of Recent Advancements. Int. J. Biol. Macromol. 2016, 89, 161–174. [Google Scholar] [CrossRef] [PubMed]
- Puppi, D.; Pecorini, G.; Chiellini, F. Bioengineering Biomedical Processing of Polyhydroxyalkanoates. Bioengineering 2019, 6, 108. [Google Scholar] [CrossRef] [Green Version]
- Kumar, V.; Sehgal, R.; Gupta, R. Blends and Composites of Polyhydroxyalkanoates (PHAs) and Their Applications. Eur. Polym. J. 2021, 161, 110824. [Google Scholar] [CrossRef]
- Esmail, A.; Pereira, J.; Zoio, P.; Silvestre, S.; Menda, U.; Sevrin, C.; Grandfils, C.; Fortunato, E.; Reis, M.; Henriques, C.; et al. Oxygen Plasma Treated-Electrospun Polyhydroxyalkanoate Scaffolds for Hydrophilicity Improvement and Cell Adhesion. Polymers 2021, 13, 1056. [Google Scholar] [CrossRef]
- Lopresti, F.; Liga, A.; Capuana, E.; Gulfi, D.; Zanca, C.; Inguanta, R.; Brucato, V.; la Carrubba, V.; Carfì Pavia, F. Effect of Polyhydroxyalkanoate (PHA) Concentration on Polymeric Scaffolds Based on Blends of Poly-L-Lactic Acid (PLLA) and PHA Prepared via Thermally Induced Phase Separation (TIPS). Polymers 2022, 14, 2494. [Google Scholar] [CrossRef] [PubMed]
- Sashiwa, H.; Fukuda, R.; Okura, T.; Sato, S.; Nakayama, A. Microbial Degradation Behavior in Seawater of Polyester Blends Containing Poly(3-Hydroxybutyrate-Co-3-Hydroxyhexanoate) (PHBHHx). Mar. Drugs 2018, 16, 34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carofiglio, V.E.; Stufano, P.; Cancelli, N.; de Benedictis, V.M.; Centrone, D.; de Benedetto, E.; Cataldo, A.; Sannino, A.; Demitri, C. Novel PHB/Olive Mill Wastewater Residue Composite Based Film: Thermal, Mechanical and Degradation Properties. J. Environ. Chem. Eng. 2017, 5, 6001–6007. [Google Scholar] [CrossRef]
- Babaniyi, R.B.; Afolabi, F.J.; Obagunwa, M.P. Recycling of Used Polyethylene through Solvent Blending of Plasticized Polyhydroxybutyrate and Its Degradation Potential. Compos. Part C Open Access 2020, 2, 100021. [Google Scholar] [CrossRef]
- Anjum, M.N.; Malik, S.A.; Bilal, C.H.; Rashid, U.; Nasif, M.; Mahmood Zia, K. Polyhydroxyalkanoates-Based Bionanocomposites. In Bionanocomposites Green Synthesis and Applications; Elsevier: Amsterdam, The Netherlands, 2020; pp. 321–333. [Google Scholar] [CrossRef]
- Liau, C.P.; bin Ahmad, M.; Shameli, K.; Yunus, W.M.Z.W.; Ibrahim, N.A.; Zainuddin, N.; Then, Y.Y. Preparation and Characterization of Polyhydroxybutyrate/Polycaprolactone Nanocomposites. Sci. World J. 2014, 2014, 572726. [Google Scholar] [CrossRef] [PubMed]
- Jacquel, N.; Lo, C.-W.; Wei, Y.-H.; Wu, H.-S.; Wang, S.S. Isolation and Purification of Bacterial Poly(3-Hydroxyalkanoates). Biochem. Eng. J. 2008, 39, 15–27. [Google Scholar] [CrossRef]
- Lizarraga-Valderrama, L.R.; Nigmatullin, R.; Ladino, B.; Taylor, C.S.; Boccaccini, A.R.; Knowles, J.C.; Claeyssens, F.; Haycock, J.W.; Roy, I. Modulation of Neuronal Cell Affinity of Composite Scaffolds Based on Polyhydroxyalkanoates and Bioactive Glasses. Biomed. Mater. 2020, 15, 045024. [Google Scholar] [CrossRef]
- Choi, S.Y.; Cho, I.J.; Lee, Y.; Park, S.; Lee, S.Y. Biocatalytic Synthesis of Polylactate and Its Copolymers by Engineered Microorganisms. Methods Enzymol. 2019, 627, 125–162. [Google Scholar] [CrossRef]
- Lizarraga-Valderrama, L.R.; Taylor, C.S.; Claeyssens, F.; Haycock, J.W.; Knowles, J.C.; Roy, I. Unidirectional Neuronal Cell Growth and Differentiation on Aligned Polyhydroxyalkanoate Blend Microfibres with Varying Diameters. J. Tissue Eng. Regen. Med. 2019, 13, 1581–1594. [Google Scholar] [CrossRef]
- Madbouly, S.A. 8 Bio-Based Polyhydroxyalkanoates Blends and Composites. In Biopolymers and Composites; De Gruyter: Berlin, Germany, 2021; pp. 235–254. [Google Scholar]
- Rai, R.; Boccaccini, A.R.; Knowles, J.C.; Mordon, N.; Salih, V.; Locke, I.C.; Moshrefi-Torbati, M.; Keshavarz, T.; Roy, I. The Homopolymer Poly(3-Hydroxyoctanoate) as a Matrix Material for Soft Tissue Engineering. J. Appl. Polym. Sci. 2011, 122, 3606–3617. [Google Scholar] [CrossRef] [Green Version]
- Meng, W.; Xing, Z.C.; Jung, K.H.; Kim, S.Y.; Yuan, J.; Kang, I.K.; Yoon, S.C.; Shin, H.I. Synthesis of Gelatin-Containing PHBV Nanofiber Mats for Biomedical Application. J. Mater. Sci. Mater. Med. 2008, 19, 2799–2807. [Google Scholar] [CrossRef] [PubMed]
- Grande, D.; Ramier, J.; Versace, D.L.; Renard, E.; Langlois, V. Design of Functionalized Biodegradable PHA-Based Electrospun Scaffolds Meant for Tissue Engineering Applications. New Biotechnol. 2017, 37, 129–137. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Emaimo, A.J.; Olkhov, A.A.; Iordanskii, A.L.; Vetcher, A.A. Polyhydroxyalkanoates Composites and Blends: Improved Properties and New Applications. J. Compos. Sci. 2022, 6, 206. https://doi.org/10.3390/jcs6070206
Emaimo AJ, Olkhov AA, Iordanskii AL, Vetcher AA. Polyhydroxyalkanoates Composites and Blends: Improved Properties and New Applications. Journal of Composites Science. 2022; 6(7):206. https://doi.org/10.3390/jcs6070206
Chicago/Turabian StyleEmaimo, Atim J., Anatoly A. Olkhov, Alexey L. Iordanskii, and Alexandre A. Vetcher. 2022. "Polyhydroxyalkanoates Composites and Blends: Improved Properties and New Applications" Journal of Composites Science 6, no. 7: 206. https://doi.org/10.3390/jcs6070206
APA StyleEmaimo, A. J., Olkhov, A. A., Iordanskii, A. L., & Vetcher, A. A. (2022). Polyhydroxyalkanoates Composites and Blends: Improved Properties and New Applications. Journal of Composites Science, 6(7), 206. https://doi.org/10.3390/jcs6070206