Next Issue
Volume 5, December
Previous Issue
Volume 5, June
 
 

Neuroglia, Volume 5, Issue 3 (September 2024) – 9 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
12 pages, 3773 KiB  
Article
High-Impact AMPAkines Elevate Calcium Levels in Cortical Astrocytes by Mobilizing Endoplasmic Reticular Calcium Stores
by Daniel P. Radin, Rok Cerne, Jeffrey Witkin and Arnold Lippa
Neuroglia 2024, 5(3), 344-355; https://doi.org/10.3390/neuroglia5030023 - 9 Sep 2024
Viewed by 665
Abstract
Ampakines—positive allosteric modulators of AMPA-type glutamate receptors (AMPARs)—are drug candidates that have shown substantial promise in pre-clinical models of various neurodegenerative and neuropsychiatric diseases. Much of the study of ampakines has focused on how these drugs modulate neuronal AMPARs to achieve certain therapeutic [...] Read more.
Ampakines—positive allosteric modulators of AMPA-type glutamate receptors (AMPARs)—are drug candidates that have shown substantial promise in pre-clinical models of various neurodegenerative and neuropsychiatric diseases. Much of the study of ampakines has focused on how these drugs modulate neuronal AMPARs to achieve certain therapeutic effects. However, astrocytes also express functional AMPARs and their physiology may be sensitive to modulation by ampakines. Herein, we investigate the effects of multiple ampakines on calcium levels in cortical astrocytes. We find that ampakines augment cytosolic calcium elevations in astrocytes to an extent far greater than that achieved by AMPA alone. This effect is amenable to competitive AMPAR blockade. Furthermore, calcium induction is sensitive to phospholipase Cβ antagonism and blockade of inositol triphosphate receptors located on the endoplasmic reticulum. Low-impact ampakines exerted weaker effects on cytosolic calcium levels in astrocytes and higher concentrations were required to observe an effect. Furthermore, high doses of the low-impact ampakine, CX717, were not toxic to cortical astrocytes at high concentrations, which may serve to differentiate low-impact ampakines from classical AMPAR positive modulators like cyclothiazide. As ampakines are further developed for clinical use, it would be prudent to determine the extent to and manner by which they affect astrocytes, as these effects may also underpin their therapeutic utility in CNS pathologies. Full article
Show Figures

Figure 1

21 pages, 4425 KiB  
Article
Functional Glial Activation Mediates Phenotypic Effects of APOEɛ4 and Sex in Alzheimer’s Disease
by Roger M. Lane, Dan Li and Taher Darreh-Shori
Neuroglia 2024, 5(3), 323-343; https://doi.org/10.3390/neuroglia5030022 - 5 Sep 2024
Viewed by 738
Abstract
Background: This study examined the impact of apolipoprotein ɛ4 (APOEɛ4) allele frequency and sex on the phenotype of Alzheimer’s disease (AD). Methods: This post hoc study evaluated the baseline characteristics, cerebrospinal fluid (CSF) and neuroimaging biomarkers, and cognition scores collected from [...] Read more.
Background: This study examined the impact of apolipoprotein ɛ4 (APOEɛ4) allele frequency and sex on the phenotype of Alzheimer’s disease (AD). Methods: This post hoc study evaluated the baseline characteristics, cerebrospinal fluid (CSF) and neuroimaging biomarkers, and cognition scores collected from 45 patients aged 50–74 years with CSF-biomarker-confirmed mild cognitive impairment or mild dementia due to AD from clinical trial NCT03186989. Results: A phenotypic spectrum was observed from a predominant amyloid and limbic–amnestic phenotype in male APOEɛ4 homozygotes to a predominantly tau, limbic-sparing, and multidomain cognitive impairment phenotype in female APOEɛ4 noncarriers. Amyloid pathology was inversely correlated with tau pathophysiology, glial activation, and synaptic injury, with the strongest associations observed in male APOEɛ4 carriers. Tau pathophysiology was correlated with glial activation, synaptic injury, and neuroaxonal damage, with the strongest correlation observed in female APOEɛ4 noncarriers. Conclusions: These data support the hypothesis that functional glial activation is influenced by apoE isoform and sex and might explain much of the biological and clinical heterogeneity in early clinical AD in those aged 50–74 years. Conclusions are limited because of the retrospective nature and small sample size. Trial Registration: Clinical Trial NCT03186989. Full article
Show Figures

Figure 1

17 pages, 10016 KiB  
Article
Impacts of Electroconvulsive Therapy on the Neurometabolic Activity in a Mice Model of Depression: An Ex Vivo 1H-[13C]-NMR Spectroscopy Study
by Ajay Sarawagi, Pratishtha Wadnerkar, Vrundika Keluskar, Narra Sai Ram, Jerald Mahesh Kumar and Anant Bahadur Patel
Neuroglia 2024, 5(3), 306-322; https://doi.org/10.3390/neuroglia5030021 - 2 Sep 2024
Viewed by 948
Abstract
Electroconvulsive therapy (ECT) is an effective treatment for severe and drug-resistant depression, yet its mode of action remains poorly understood. This study aimed to evaluate the effects of ECT on neurometabolism using ex vivo 1H-[13C]-NMR spectroscopy in conjunction with intravenous [...] Read more.
Electroconvulsive therapy (ECT) is an effective treatment for severe and drug-resistant depression, yet its mode of action remains poorly understood. This study aimed to evaluate the effects of ECT on neurometabolism using ex vivo 1H-[13C]-NMR spectroscopy in conjunction with intravenous infusion of [1,6-13C2]glucose in a chronic variable mild stress (CVMS) model of depression. Both CVMS and control mice were subjected to seven sessions of electroconvulsive shock under mild isoflurane anesthesia. The CVMS mice exhibited a reduction in sucrose preference (CVMS 67.1 ± 14.9%, n = 5; CON 86.5 ± 0.6%, n = 5; p = 0.007), and an increase in immobility duration (175.9 ± 22.6 vs. 92.0 ± 23.0 s, p < 0.001) in the forced-swim test. The cerebral metabolic rates of glucose oxidation in glutamatergic (CMRGlc(Glu)) (CVMS 0.134 ± 0.015 µmol/g/min, n = 5; CON 0.201 ± 0.045 µmol/g/min, n = 5; padj = 0.04) and GABAergic neurons (CMRGlc(GABA)) (0.030 ± 0.002 vs. 0.046 ± 0.011 µmol/g/min, padj = 0.04) were reduced in the prefrontal cortex (PFC) of CVMS mice. ECT treatment in CVMS mice normalized sucrose preference [F(1,27) = 0.0024, p = 0.961] and immobility duration [F(1,28) = 0.434, p = 0.515], but not the time spent in the center zone (CVMS + ECT 10.4 ± 5.5 s, CON + sham 22.3 ± 11.4 s, padj = 0.0006) in the open field test. The ECT-treated CVMS mice exhibited reduced (padj = 0.021) CMRGlc(Glu) in PFC (0.169 ± 0.026 µmol/g/min, n = 8) when compared with CVMS mice, which underwent the sham procedure (0.226 ± 0.030 µmol/g/min, n = 8). These observations are consistent with ECT’s anticonvulsant hypothesis for its anti-depressive action. Full article
Show Figures

Figure 1

17 pages, 4906 KiB  
Article
Ethanol Exacerbates the Alzheimer’s Disease Pathology in the 5xFAD Mouse Model
by Hassan E. Mohammed, James C. Nelson and S. Alex Marshall
Neuroglia 2024, 5(3), 289-305; https://doi.org/10.3390/neuroglia5030020 - 2 Aug 2024
Viewed by 1079
Abstract
Alzheimer’s disease (AD) is the most common form of dementia with characteristic biological markers. Clinically, AD presents as declines in memory, reasoning, and decision making, but the loss of memory is particularly associated with hippocampal damage. Likewise, excessive ethanol consumption has been found [...] Read more.
Alzheimer’s disease (AD) is the most common form of dementia with characteristic biological markers. Clinically, AD presents as declines in memory, reasoning, and decision making, but the loss of memory is particularly associated with hippocampal damage. Likewise, excessive ethanol consumption has been found to disrupt hippocampal function and integrity. To assess the potential shared consequences of AD pathology and ethanol, 5xFAD mice were administered 5 g/kg ethanol daily for 10 days. Immunohistochemical analysis revealed ethanol and AD converged to lead to microglial and astrocytic senescence as well as increased Aß-plaque formation in the hippocampus. Despite the exacerbation of these potential mechanisms of neurodegeneration, there were no additive effects of ethanol exposure and AD-related genotype on Fluoro-Jade C (FJC)+ cells or cognitive deficits in the novel object recognition task. Overall, these results are the first to characterize the effects of ethanol exposure on early adulthood in the 5xFAD mouse model. Together these findings support the idea that alcohol can influence AD pathology; however, the mechanisms involved in AD progression (e.g., glial activation and Aß-plaque) may be impacted prior to evidence of pathology (e.g., cognitive decline or neuronal loss). Full article
Show Figures

Figure 1

15 pages, 805 KiB  
Review
Sexual Dimorphism and Hypothalamic Astrocytes: Focus on Glioprotection
by Natalie K. Thomaz, Larissa Daniele Bobermin and André Quincozes-Santos
Neuroglia 2024, 5(3), 274-288; https://doi.org/10.3390/neuroglia5030019 - 2 Aug 2024
Viewed by 859
Abstract
Sexual dimorphism refers to biological differences between males and females in the same species, including morphological, physiological, and behavioral characteristics. Steroid hormones are associated with changes in several brain regions, as well as the pathophysiology of aging, obesity, and neuropsychiatric diseases. The hypothalamus [...] Read more.
Sexual dimorphism refers to biological differences between males and females in the same species, including morphological, physiological, and behavioral characteristics. Steroid hormones are associated with changes in several brain regions, as well as the pathophysiology of aging, obesity, and neuropsychiatric diseases. The hypothalamus controls several physiological processes, including metabolism, reproduction, circadian rhythm, and body homeostasis. Refined communication between neurons and glial cells, particularly astrocytes, coordinates physiological and behavioral hypothalamic functions. Therefore, from previously published studies, this review aims to highlight sex-related differences in rodent hypothalamic astrocytes, since we believe that this brain region is essential for the understanding of dimorphic patterns that are influenced by steroid sex hormones. Thus, we review concepts of sexual dimorphism, the hypothalamic-pituitary-gonadal axis, the role of hormonal influence on hypothalamic astrocyte functions, neuroglial communication, as well as sexual dimorphism and neuropsychiatric disorders and glioprotective mechanisms associated with the hypothalamus. Full article
Show Figures

Figure 1

20 pages, 8474 KiB  
Review
The Gut Microbiome-Neuroglia Axis: Implications for Brain Health, Inflammation, and Disease
by Josué Camberos-Barraza, Alma M. Guadrón-Llanos and Alberto K. De la Herrán-Arita
Neuroglia 2024, 5(3), 254-273; https://doi.org/10.3390/neuroglia5030018 - 1 Aug 2024
Viewed by 1755
Abstract
The human central nervous system is convolutedly connected to the gut microbiome, a diverse community of microorganisms residing in the gastrointestinal tract. Recent research has highlighted the bidirectional communication between the gut microbiome and neuroglial cells, which include astrocytes, microglia, oligodendrocytes, and ependymal [...] Read more.
The human central nervous system is convolutedly connected to the gut microbiome, a diverse community of microorganisms residing in the gastrointestinal tract. Recent research has highlighted the bidirectional communication between the gut microbiome and neuroglial cells, which include astrocytes, microglia, oligodendrocytes, and ependymal cells. These neuroglial cells are essential for maintaining CNS homeostasis, supporting neuronal function, and responding to pathological conditions. This review examines the interactions between the gut microbiome and neuroglia, emphasizing their critical roles in brain health and the development of neurological disorders. Dysbiosis, or imbalance in the gut microbiome, has been associated with various neurological and psychiatric conditions, such as autism spectrum disorder, anxiety, depression, and neurodegenerative diseases like Alzheimer’s and Parkinson’s. The microbiome influences brain function through microbial metabolites, immune modulation, and neuroinflammatory responses. Understanding these interactions paves the way for new therapeutic targets and strategies for preventing and treating CNS disorders. This scoping review aims to highlight the mechanisms of the microbiome-neuroglia axis in maintaining brain health and its potential as a therapeutic target. Full article
Show Figures

Figure 1

20 pages, 2654 KiB  
Review
The Neuroimmunological Nexus of Multiple Sclerosis: Deciphering the Microglial Transcriptomic Tapestry
by Akanksha Jha and Hemant Kumar
Neuroglia 2024, 5(3), 234-253; https://doi.org/10.3390/neuroglia5030017 - 20 Jul 2024
Viewed by 1396
Abstract
Microglia are poorly understood immune cells of the central nervous system that play a determining role in the progression of multiple sclerosis. With the advent of genomic techniques such as single-cell RNA sequencing and single-nucleus RNA sequencing, a more comprehensive understanding of microglia [...] Read more.
Microglia are poorly understood immune cells of the central nervous system that play a determining role in the progression of multiple sclerosis. With the advent of genomic techniques such as single-cell RNA sequencing and single-nucleus RNA sequencing, a more comprehensive understanding of microglia at the transcriptomic level has uncovered various disease-specific clusters, context-dependent heterogeneity, and region-specific microglia, unlocking the recondite secrets embedded within these glial cells. These techniques have raised questions regarding the conventional and widely accepted categorization of microglia as M1 and M2 phenotypes. The neuroimmune component of multiple sclerosis, which is the microglia, makes it a complex and challenging disease. This review aims to demystify the complexities of microglia in multiple sclerosis, providing a vivid map of different clusters and subclusters of microglia found in multiple sclerosis and outlining the current knowledge of the distinctive roles of microglia. Also, this review highlights the neuroimmune interaction with microglia as the epicenter and how they act as sabotaging agents. Moreover, this will provide a more comprehensive direction toward a treatment approach focusing on local, region-specific microglia. Full article
Show Figures

Figure 1

11 pages, 936 KiB  
Opinion
Reducing Brain Edema Using Berotralstat, an Inhibitor of Bradykinin, Repurposed as Treatment Adjunct in Glioblastoma
by Richard E. Kast
Neuroglia 2024, 5(3), 223-233; https://doi.org/10.3390/neuroglia5030016 - 2 Jul 2024
Viewed by 1160
Abstract
Glioblastomas synthesize, bear receptors for, and respond to bradykinin, triggering migration and proliferation. Since centrifugal migration into uninvolved surrounding brain tissue occurs early in the course of glioblastoma, this attribute defeats local treatment attempts and is the primary reason current treatments almost always [...] Read more.
Glioblastomas synthesize, bear receptors for, and respond to bradykinin, triggering migration and proliferation. Since centrifugal migration into uninvolved surrounding brain tissue occurs early in the course of glioblastoma, this attribute defeats local treatment attempts and is the primary reason current treatments almost always fail. Stopping bradykinin-triggered migration would be a step closer to control of this disease. The recent approval and marketing of an oral plasma kallikrein inhibitor, berotralstat (Orladeyo™), and pending FDA approval of a similar drug, sebetralstat, now offers a potential method for reducing local bradykinin production at sites of bradykinin-mediated glioblastoma migration. Both drugs are approved for treating hereditary angioedema. They are ideal for repurposing as a treatment adjunct in glioblastoma. Furthermore, it has been established that peritumoral edema, a common problem during the clinical course of glioblastoma, is generated in large part by locally produced bradykinin via kallikrein action. Both brain edema and the consequent use of corticosteroids both shorten survival in glioblastoma. Therefore, by (i) migration inhibition, (ii) growth inhibition, (iii) edema reduction, and (iv) the potential for less use of corticosteroids, berotralstat may be of service in treatment of glioblastoma, slowing disease progression. This paper recounts the details and past research on bradykinin in glioblastoma and the rationale of treating it with berotralstat. Full article
Show Figures

Figure 1

21 pages, 30515 KiB  
Article
Xc- System as a Possible Target for ConBr Lectin Interaction in Glioma Cells
by Vanir Reis Pinto-Junior, Rodrigo Lopes Seeger, Cláudio Henrique Dahne Souza-Filho, Angela Patricia França, Nicole Sartori, Messias Vital Oliveira, Vinicius Jose Silva Osterne, Kyria Santiago Nascimento, Rodrigo Bainy Leal and Benildo Sousa Cavada
Neuroglia 2024, 5(3), 202-222; https://doi.org/10.3390/neuroglia5030015 - 1 Jul 2024
Viewed by 785
Abstract
Studies have revealed the dependence of glioma cells on iron, making them sensitive to ferroptosis. Ferroptosis can be triggered by inhibition of the xc- system, resulting in redox imbalance and membrane lipid peroxidation. The xc- system is composed of two coupled proteins, xCT [...] Read more.
Studies have revealed the dependence of glioma cells on iron, making them sensitive to ferroptosis. Ferroptosis can be triggered by inhibition of the xc- system, resulting in redox imbalance and membrane lipid peroxidation. The xc- system is composed of two coupled proteins, xCT and CD98hc. The control of transporters, such as xCT, by the CD98hc glycoprotein suggests that molecules targeting glycans may have an impact on the treatment of glioma. This study evaluated the effect of the Canavalia brasiliensis (ConBr) lectin on C6 glioma cells and compared it with erastin, an xc- system inhibitor. Both induced dose-dependent cell death, accompanied by an increase in the production of reactive oxygen species and a decrease in reduced glutathione. However, co-treatment did not show an additive effect. The analysis was updated by molecular dynamics assessments of the xc- system interacting with ConBr or erastin. The interaction of erastin with the xc- system affects its interaction with ConBr, reducing the antagonistic effect when both are in the protein complex. The data show that ConBr is effective in inducing cell death in glioma cells and regulates the xc system through interaction with CD98hc glycans, showing that lectins have the potential to promote ferroptosis in glioma cells. Full article
Show Figures

Graphical abstract

Previous Issue
Next Issue
Back to TopTop