The Effects of Substrate Temperature on the Growth, Microstructural and Magnetic Properties of Gadolinium-Containing Films on Aluminum Nitride
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. SEM and AFM
3.2. In Situ RHEED Measurements
3.3. XRD Pattern Analysis
3.4. Raman Spectroscopy Analysis
3.5. Isothermal Magnetic Properties
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Miller, C.W.; Williams, D.V.; Bingham, N.S.; Srikanth, H. Magnetocaloric effect in Gd/W thin-film heterostructures. J. Appl. Phys. 2010, 107, 9A903. [Google Scholar] [CrossRef] [Green Version]
- Kirby, H.F.; Belyea, D.D.; Willman, J.T.; Miller, C.W. Effects of preparation conditions on the magnetocaloric properties of Gd thin films. J. Vac. Sci. Technol. A Vac. Surf. Film. 2013, 31, 31506. [Google Scholar] [CrossRef]
- Ba, D.N.; Zheng, Y.; Becerra, L.; Marangolo, M.; Almanza, M.; LoBue, M. Magnetocaloric Effect in Flexible, Free-Standing Gadolinium Thick Films for Energy Conversion Applications. Phys. Rev. Appl. 2021, 15, 64045. [Google Scholar] [CrossRef]
- Khazen, K.; von Bardeleben, H.J.; Cantin, J.L. Ferromagnetic resonance study of GdN thin films with bulk and extended lattice constants. Phys. Rev. B 2006, 74, 245330. [Google Scholar] [CrossRef] [Green Version]
- Natali, F.; Plank, N.O.V.; Galipaud, J.; Ruck, B.J.; Trodahl, H.J.; Semond, F.; Sorieul, S.; Hirsch, L. Epitaxial growth of GdN on silicon substrate using an AlN buffer layer. J. Cryst. Growth 2010, 312, 3583–3587. [Google Scholar] [CrossRef]
- Michels, D.; Krill, C.E., III; Birringer, R. Grain-size-dependent Curie transition in nanocrystalline Gd: The influence of interface stress. J. Magn. Magn. Mater. 2002, 250, 203–211. [Google Scholar] [CrossRef]
- Tober, E.D.; Ynzunza, R.X.; Westphal, C.; Fadley, C.S. Relationship between morphology and magnetic behavior for Gd thin films on W(110). Phys. Rev. B 1996, 53, 5444. [Google Scholar] [CrossRef]
- Weller, D.; Alvarado, S.F.; Gudat, W.; Schroder, K.; Campagna, M. Observation of Surface-Enhanced Magnetic Order and Magnetic Surface Reconstruction on Gd(0001). Phys. Rev. Lett. 1985, 54, 1555. [Google Scholar] [CrossRef]
- Rau, C. Electron spin polarization esp at surfaces of ferromagnetic metals. J. Magn. Magn. Mater. 1983, 31–34, 874. [Google Scholar] [CrossRef] [Green Version]
- Rau, C.; Eichner, S. Evidence for ferromagnetic order at gadolinium surfaces above the bulk Curie temperature. Phys. Rev. B 1986, 34, 6347. [Google Scholar] [CrossRef] [Green Version]
- Weller, D.; Alvarado, S.F. Possible evidence for a first-order magnetic phase transition on the Gd(0001) surface. Phys. Rev. B 1988, 37, 9911. [Google Scholar] [CrossRef] [PubMed]
- Vescovo, E.; Carbone, C.; Rader, O. Surface magnetism of Gd(0001) films: Evidence for an unexpected phase transition. Phys. Rev. B 1993, 48, 7731. [Google Scholar] [CrossRef] [PubMed]
- Weller, H.T.D.; Walker, T.G.; Scott, J.C.; Chappert, C.; Hopster, H.; Pang, A.W.; Dessau, D.S.; Pappas, D.P. Magnetic reconstruction of the Gd(0001) surface. Phys. Rev. Lett. 1993, 71, 444. [Google Scholar] [CrossRef]
- Tang, H.; Walker, T.G.; Hopster, H.; Pang, A.W.; Weller, D.; Scott, J.C.; Chappert, C.; Pappas, D.P.; Dessau, D.S. Spin-polarized photoemission study of epitaxial Gd(0001) films on W(110). J. Appl. Phys. 1993, 73, 6769. [Google Scholar] [CrossRef]
- Pearton, S.; Zolper, J.C.; Shul, R.J.; Ren, F. GaN: Processing, defects, and devices. Mater. Res. Soc. Symp. Proc. 1993, 313, 451. [Google Scholar] [CrossRef]
- Li, D.; Pearson, J.; Bader, S.D.; McIlroy, D.N.; Waldfried, C.; Dowben, P.A. Spin polarization of the conduction bands and secondary electrons of Gd(0001). J. Appl. Phys. 1996, 79, 5838. [Google Scholar] [CrossRef] [Green Version]
- Dowben, P.A.; McIlroy, D.N.; Li, D. Handbook on the Physics and Chemistry of Rare Earth Metals; Elsevier: North-Holland, The Netherlands, 1997; Volume 24. [Google Scholar]
- Tober, E.D.; Palomares, F.J.; Ynzunza, R.X.; Denecke, R.; Morais, J.; Wang, Z.; Bino, G.; Liesegang, J.; Hussain, Z.; Fadley, C.S. Observation of a Ferromagnetic-to-Paramagnetic Phase Transition on a Ferromagnetic Surface Using Spin-Polarized Photoelectron Diffraction: Gd(0001). Phys. Rev. Lett. 1998, 81, 2360. [Google Scholar] [CrossRef]
- Aspelmeier, A.; Gerhardter, F.; Baberschke, K. Magnetism and structure of ultrathin Gd films. J. Magn. Magn. Mater. 1994, 132, 22. [Google Scholar] [CrossRef]
- Berger, A.; Pang, A.W.; Hopster, H. Magnetic reorientation transition of Gd(0001)/W(110) films. Phys. Rev. B 1995, 52, 1078. [Google Scholar] [CrossRef]
- Donath, M.; Gubanka, B.; Passek, F. Temperature-Dependent Spin Polarization of Magnetic Surface State at Gd(0001). Phys. Rev. Lett. 1996, 77, 5138. [Google Scholar] [CrossRef]
- Bode, M.G.M.; Heinze, S.; Pascal, R.; Wiesendanger, R. Temperature-dependent exchange splitting of the magnetic Gd(0 0 0 1) surface state. J. Magn. Magn. Mater. 1997, 184, 155–165. [Google Scholar] [CrossRef]
- Farle, M.; Baberschke, K. Curie Temperature and Magnetic Anisotropies as a Function of Growth Conditions for Gd(0001)/W(110). In Magnetism and Electronic Correlations in Local-Moment Systems: Rare-Earth Elements and Compounds; Donath, M., Dowben, P.A., Nolting, W., Eds.; World Scientific: Singapore, 1998; pp. 35–54. [Google Scholar]
- Berger, A. Micromagnetic Structures and the Reorientation Transition of Gd(0001)/W(110). In Magnetism and Electronic Correlations in Local-Moment Systems in Local-Moment Systems: Rare-Earth Elements and Compounds; Donath, M., Dowben, P.A., Nolting, W., Eds.; World Scientific: Singapore, 1998; pp. 93–112. [Google Scholar]
- Pappas, D.P.; Arnold, C.S.; Popov, A.P. Spin Reorientation Phase Transition of Ultra-Thin Fe Films Grown onf Gd (0001). In Magnetism and Electronic Correlations in Local-Moment Systems in Local-Moment Systems: Rare-Earth Elements and Compounds; Donath, M., Dowben, P.A., Nolting, W., Eds.; World Scientific: Singapore, 1998; pp. 141–152. [Google Scholar]
- Zeybek, O.; Tucker, N.P.; Barrett, S.D.; Seddon, E.A. High-resolution secondary electron spin-polarisation from gadolinium. J. Magn. Magn. Mater. 1999, 674, 198–199. [Google Scholar] [CrossRef]
- Williams, D.V., Jr. Characterization of the Structural and Magnetic Properties of Gd Thin Films. Master’s Thesis, University of South Florida, Tampa, FL, USA, 2010. [Google Scholar]
- Nepijko, S.A.; Getzlaff, M.; Pascal, R.; Zarnitz, C.; Bode, M.; Wiesendanger, R. Lattice relaxation of Gd on W(110). Surf. Sci. 2000, 466, 89–96. [Google Scholar] [CrossRef]
- O’Shea, M.J.; Perera, P. Influence of nanostructure (layers and particles) on the magnetism of rare-earth materials. J. Appl. Phys. 1999, 85, 4322. [Google Scholar] [CrossRef]
- Kolaczkiewicz, J.; Bauer, E. The adsorption of Eu, Gd and Tb on the W(110) surface. Surf. Sci. 1986, 175, 487. [Google Scholar] [CrossRef]
- Farle, M.; Lewis, W.A.; Baberschke, K. Detailed analysis of the in situ magneto-optic Kerr signal of gadolinium films near the Curie temperature. Appl. Phys. Lett. 1993, 62, 2728. [Google Scholar] [CrossRef]
- Farle, M.; Baberschke, K.; Stetter, U.; Aspelmeier, A.; Gerhardter, F. Thickness-dependent Curie temperature of Gd(0001)/W(110) and its dependence on the growth conditions. Phys. Rev. B 1993, 47, 11571–11574. [Google Scholar] [CrossRef]
- Lin, W.; Pak, J.; Ingram, D.C.; Smith, A.R. Molecular beam epitaxial growth of zinc-blende FeN(111) on wurtzite GaN(0001). J. Alloys Compd. 2008, 463, 257–262. [Google Scholar] [CrossRef]
- Seema, N.; Gupta, M. In-situ RHEED analysis of reactively sputtered epitaxial FeN thin films. J. Cryst. Growth 2021, 560–561, 126049. [Google Scholar] [CrossRef]
- He, K.; Chen, N.; Wang, C.; Wei, L.; Chen, J. Method for Determining Crystal Grain Size by X-Ray Diffraction. Cryst. Res. Technol. 2018, 53, 1700157. [Google Scholar] [CrossRef]
- Yadavalli, T.; Raja, P.; Ramaswamy, S.; Chandrasekharan, G.; Chennakesavulu, R. Proton Relaxivity and Magnetic Hyperthermia Evaluation of Gadolinium Doped Nickel Ferrite Nanoparticles as Potential Theranostic Agents. J. Nanosci. Nanotechnol. 2016, 16, 1533–4880. [Google Scholar] [CrossRef] [PubMed]
- Paul, R.; Sen, P.; Das, I. Effect of morphology on the magnetic properties of Gd2O3 nanotubes. Phys. E Low-Dimens. Syst. Nanostructures 2016, 80, 149–154. [Google Scholar] [CrossRef]
- Naresh, G.; Borah, J.P.; Borgohain, C.; Paul, N. Synthesis, characterization and effect of dopant on magnetic hyperthermic efficacy of Gd2O3 nanoparticles. Mater. Res. Express 2021, 8, 115014. [Google Scholar] [CrossRef]
- Dhananjaya, N.; Nagabhushana, H.; Nagabhushana, B.M.; Rudraswamy, B.; Shivakumara, C.; Chakradhar, R.P.S. Hydrothermal synthesis, characterization and Raman studies of Eu3+ activated Gd2O3 nanorods. Physica B 2011, 406, 1639–1644. [Google Scholar] [CrossRef]
- Lee, I.-H.; Choi, I.-H.; Lee, C.-R.; Shin, E.-J.; Kim, D.; Noh, S.K.; Son, S.-J.; Lim, K.Y.; Lee, H.J. Stress relaxation in Si-doped GaN studied by Raman spectroscopy. J. Appl. Phys. 1998, 83, 5787. [Google Scholar] [CrossRef]
Sample Temperature (°C) | GdN (111) FWHM | GdN (111) 2θ | Crystallite Size (nm) | GdN (111) d (Å) | Strain (%) | Magnetization (emu/g) |
---|---|---|---|---|---|---|
400 | 0.15 | 30.973 | 54.43 | 2.885 | 0.01 | 6.29 |
330 | 0.14 | 30.998 | 56.96 | 2.883 | 0.09 | 17.52 |
270 | 0.16 | 31.002 | 51.51 | 2.882 | 0.10 | 24.00 |
255 | 0.15 | 31.048 | 54.97 | 2.878 | 0.24 | 55.58 |
240 | 0.17 | 31.005 | 47.05 | 2.882 | 0.11 | 25.13 |
210 | 0.23 | 31.028 | 35.23 | 2.880 | 0.18 | 19.66 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ekstrum, C.A.; Venkatesan, R.; Kendrick, C.; Einav, M.; Sivaprakash, P.; Mayandi, J.; Arumugam, S.; Pearce, J.M. The Effects of Substrate Temperature on the Growth, Microstructural and Magnetic Properties of Gadolinium-Containing Films on Aluminum Nitride. Surfaces 2022, 5, 321-333. https://doi.org/10.3390/surfaces5020024
Ekstrum CA, Venkatesan R, Kendrick C, Einav M, Sivaprakash P, Mayandi J, Arumugam S, Pearce JM. The Effects of Substrate Temperature on the Growth, Microstructural and Magnetic Properties of Gadolinium-Containing Films on Aluminum Nitride. Surfaces. 2022; 5(2):321-333. https://doi.org/10.3390/surfaces5020024
Chicago/Turabian StyleEkstrum, Craig A., Ragavendran Venkatesan, Chito Kendrick, Moshe Einav, Paramasivam Sivaprakash, Jeyanthinath Mayandi, Sonachalam Arumugam, and Joshua M. Pearce. 2022. "The Effects of Substrate Temperature on the Growth, Microstructural and Magnetic Properties of Gadolinium-Containing Films on Aluminum Nitride" Surfaces 5, no. 2: 321-333. https://doi.org/10.3390/surfaces5020024
APA StyleEkstrum, C. A., Venkatesan, R., Kendrick, C., Einav, M., Sivaprakash, P., Mayandi, J., Arumugam, S., & Pearce, J. M. (2022). The Effects of Substrate Temperature on the Growth, Microstructural and Magnetic Properties of Gadolinium-Containing Films on Aluminum Nitride. Surfaces, 5(2), 321-333. https://doi.org/10.3390/surfaces5020024