Preventing Hydrogen Embrittlement: The Role of Barrier Coatings for the Hydrogen Economy
Abstract
:1. Introduction
2. Hydrogen Embrittlement Mechanisms
3. Hydrogen Permeation and Permeability
4. Experimental Approaches for Characterisation of Hydrogen Permeation
5. Materials for Hydrogen Permeation Barriers
6. Coating Methods
7. Identification of Improvement Potentials
8. Conclusions and Outlook
Funding
Data Availability Statement
Conflicts of Interest
References
- Stolten, D.; Emonts, B. Hydrogen Science and Engineering, 2 Volume Set: Materials, Processes, Systems, and Technology; John Wiley & Sons: Hoboken, NJ, USA, 2016; Volume 1. [Google Scholar]
- Stolten, D. Hydrogen and Fuel Cells: Fundamentals, Technologies and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2010. [Google Scholar]
- Lynch, S. Hydrogen embrittlement phenomena and mechanisms. Corros. Rev. 2012, 30, 105–123. [Google Scholar] [CrossRef]
- Farrar, J.C.M. The Alloy Tree: A Guide to Low-Alloy Steels, Stainless Steels and Nickel-base Alloys; Woodhead Publishing: Sawston, UK, 2004. [Google Scholar]
- Nanninga, N.E.; Levy, Y.S.; Drexler, E.S.; Condon, R.T.; Stevenson, A.E.; Slifka, A.J. Comparison of hydrogen embrittlement in three pipeline steels in high pressure gaseous hydrogen environments. Corros. Sci. 2012, 59, 1–9. [Google Scholar] [CrossRef]
- Wang, D.; Hagen, A.B.; Fathi, P.U.; Lin, M.; Johnsen, R.; Lu, X. Investigation of hydrogen embrittlement behavior in X65 pipeline steel under different hydrogen charging conditions. Mater. Sci. Eng. A 2022, 860, 144262. [Google Scholar] [CrossRef]
- Jack, T.A.; Pourazizi, R.; Ohaeri, E.; Szpunar, J.; Zhang, J.; Qu, J. Investigation of the hydrogen induced cracking behaviour of API 5L X65 pipeline steel. Int. J. Hydrogen Energy 2020, 45, 17671–17684. [Google Scholar] [CrossRef]
- Robertson, I.M.; Sofronis, P.; Nagao, A.; Martin, M.L.; Wang, S.; Gross, D.W.; Nygren, K.E. Hydrogen Embrittlement Understood. Metall. Mater. Trans. B 2015, 46, 1085–1103. [Google Scholar] [CrossRef]
- Chen, Y.S.; Lu, H.; Liang, J.; Rosenthal, A.; Liu, H.; Sneddon, G.; McCarroll, I.; Zhao, Z.; Li, W.; Guo, A.; et al. Observation of hydrogen trapping at dislocations, grain boundaries, and precipitates. Science 2020, 367, 171–175. [Google Scholar] [CrossRef]
- Kirchheim, R. Revisiting hydrogen embrittlement models and hydrogen-induced homogeneous nucleation of dislocations. Scr. Mater. 2010, 62, 67–70. [Google Scholar] [CrossRef]
- Oriani, R.A.; Josephic, P.H. Equilibrium aspects of hydrogen-induced cracking of steels. Acta Metall. 1974, 22, 1065–1074. [Google Scholar] [CrossRef]
- Birnbaum, H.K.; Sofronis, P. Hydrogen-enhanced localized plasticity—A mechanism for hydrogen-related fracture. Mater. Sci. Eng. A 1994, 176, 191–202. [Google Scholar] [CrossRef]
- Sofronis, P.; Robertson, I.M. Transmission electron microscopy observations and micromechanical/continuum models for the effect of hydrogen on the mechanical behaviour of metals. Philos. Mag. A 2002, 82, 3405–3413. [Google Scholar] [CrossRef]
- Kim, J.S.; Lee, Y.H.; Lee, D.L.; Park, K.-T.; Lee, C.S. Microstructural influences on hydrogen delayed fracture of high strength steels. Mater. Sci. Eng. A 2009, 505, 105–110. [Google Scholar] [CrossRef]
- von Pezold, J.; Lymperakis, L.; Neugebeauer, J. Hydrogen-enhanced local plasticity at dilute bulk H concentrations: The role of H–H interactions and the formation of local hydrides. Acta Mater. 2011, 59, 2969–2980. [Google Scholar] [CrossRef]
- Song, J.; Curtin, W.A. Atomic mechanism and prediction of hydrogen embrittlement in iron. Nat. Mater. 2013, 12, 145–151. [Google Scholar] [CrossRef] [PubMed]
- Lynch, S.P. Environmentally assisted cracking: Overview of evidence for an adsorption-induced localised-slip process. Acta Metall. 1988, 36, 2639–2661. [Google Scholar] [CrossRef]
- Lynch, S. Some fractographic contributions to understanding fatigue crack growth. Int. J. Fatigue 2017, 104, 12–26. [Google Scholar] [CrossRef]
- Nagumo, M. Hydrogen related failure of steels—A new aspect. Mater. Sci. Technol. 2013, 20, 940–950. [Google Scholar] [CrossRef]
- Bhadeshia, H.K.D.H. Prevention of Hydrogen Embrittlement in Steels. ISIJ Int. 2016, 56, 24–36. [Google Scholar] [CrossRef]
- Tamura, M.; Eguchi, T. Nanostructured thin films for hydrogen-permeation barrier. J. Vac. Sci. Technol. A Vac. Surf. Film. 2015, 33, 041503. [Google Scholar] [CrossRef]
- Hatano, Y. Permeation and Permeation Barrier. In Tritium: Fuel of Fusion Reactors; Springer: Berlin/Heidelberg, Germany, 2017; pp. 207–229. [Google Scholar] [CrossRef]
- Nemanič, V. Hydrogen permeation barriers: Basic requirements, materials selection, deposition methods, and quality evaluation. Nucl. Mater. Energy 2019, 19, 451–457. [Google Scholar] [CrossRef]
- Oriani, R.A. The diffusion and trapping of hydrogen in steel. Acta Metall. 1970, 18, 147–157. [Google Scholar] [CrossRef]
- Choo, W.Y.; Lee, J.Y.; Cho, C.G.; Hwang, S.H. Hydrogen solubility in pure iron and effects of alloying elements on the solubility in the temperature range 20 to 500 °C. J. Mater. Sci. 1981, 16, 1285–1292. [Google Scholar] [CrossRef]
- Fick, A. Ueber Diffusion. Ann. Phys. Chem. 1855, 170, 59–86. [Google Scholar] [CrossRef]
- Suzuki, A.; Yukawa, H.; Murata, Y. Consistent description of hydrogen permeation through metal membrane based on hydrogen chemical potential and its application to alloy design. J. Mater. Res. 2016, 32, 227–238. [Google Scholar] [CrossRef]
- Fraga, S.C.; Monteleone, M.; Lanč, M.; Esposito, E.; Fuoco, A.; Giorno, L.; Pilnáček, K.; Friess, K.; Carta, M.; McKeown, N.B.; et al. A novel time lag method for the analysis of mixed gas diffusion in polymeric membranes by on-line mass spectrometry: Method development and validation. J. Membr. Sci. 2018, 561, 39–58. [Google Scholar] [CrossRef]
- Johnson, D.L.; Nelson, H.G. Determination of hydrogen permeation parameters in alpha titanium using the mass spectrometer. Metall. Trans. 1973, 4, 569–573. [Google Scholar] [CrossRef]
- Nemanič, V.; Zajec, B.; Žumer, M. Sensitivity enhancement in hydrogen permeation measurements. J. Vac. Sci. Technol. A Vac. Surf. Film. 2010, 28, 578–582. [Google Scholar] [CrossRef]
- Perez, E.V.; Balkus, K.J., Jr.; Ferraris, J.P.; Musselman, I.H. Instrument for gas permeation measurements at high pressure and high temperature. Rev. Sci. Instrum. 2013, 84, 065107. [Google Scholar] [CrossRef] [PubMed]
- Fischer, F.D.; Mori, G.; Svoboda, J. Modelling the influence of trapping on hydrogen permeation in metals. Corros. Sci. 2013, 76, 382–389. [Google Scholar] [CrossRef]
- Turnbull, A. 4—Hydrogen diffusion and trapping in metals. In Gaseous Hydrogen Embrittlement of Materials in Energy Technologies; Woodhead Publishing Series in Metals and Surface Engineering; Woodhead Publishing: Sawston, UK, 2012; Volume 1, pp. 89–128. [Google Scholar] [CrossRef]
- Turnbull, A. Perspectives on hydrogen uptake, diffusion and trapping. Int. J. Hydrogen Energy 2015, 40, 16961–16970. [Google Scholar] [CrossRef]
- Svoboda, J.; Fischer, F.D. Modelling for hydrogen diffusion in metals with traps revisited. Acta Mater. 2012, 60, 1211–1220. [Google Scholar] [CrossRef]
- Li, Q.; Wang, J.; Xiang, Q.-Y.; Yan, K.; Yao, W.-Q.; Cao, J.-L. Study on influence factors of permeation reduction factor of Al2O3-hydrogen isotopes permeation barriers. Int. J. Hydrogen Energy 2016, 41, 4326–4331. [Google Scholar] [CrossRef]
- Feng, Z.; Anovitz, L.M.; Blencoe, J.G.; Babu, S.; Korinko, P.S. Hydrogen Permeability and Integrity of Hydrogen Delivery Pipelines; US Department of Energy: Washington, DC, USA, 2005. [Google Scholar]
- Fiaxell Technical Brochures. Available online: https://fiaxell.com/products/auxiliaries/sofc-soec-button-fuel-cell-test-fixture-rig-bench-10x10-stack-system-water-h2o-hydrogen-h2-co2-co-electrolysis-electrolyser-electrolyzer-steam-steamer-sealing-glass-mica-protective-layer-comno4-ceramic-interconnect-crofer-chromium-poisoning-tubular-gold-au-platinum-pt-mesh-gauze-grid-fabric-eis-fra-impedance-spectroscopy-bode-nyquist-plot-h2-generator-inks-paste-slurry-lscf-ysz-nio-gdc-tape-caster (accessed on 8 May 2020).
- Yamabe, J.; Nishimura, S.; Koga, A. A Study on Sealing Behavior of Rubber O-Ring in High Pressure Hydrogen Gas. SAE Int. J. Mater. Manuf. 2009, 2, 452–460. [Google Scholar] [CrossRef]
- Devanathan, M.A.V.; Stachurski, Z. The Mechanism of Hydrogen Evolution on Iron in Acid Solutions by Determination of Permeation Rates. J. Electrochem. Soc. 1964, 111, 619. [Google Scholar] [CrossRef]
- Wu, C.H.; Krieger, W.; Rohwerder, M. On the robustness of the Kelvin probe based potentiometric hydrogen electrode method and its application in characterizing effective hydrogen activity in metal: 5 wt. % Ni cold-rolled ferritic steel as an example. Sci. Technol. Adv. Mater. 2019, 20, 1073–1089. [Google Scholar] [CrossRef]
- Senöz, C.; Evers, S.; Stratmann, M.; Rohwerder, M. Scanning Kelvin Probe as a highly sensitive tool for detecting hydrogen permeation with high local resolution. Electrochem. Commun. 2011, 13, 1542–1545. [Google Scholar] [CrossRef]
- Evers, S.; Rohwerder, M. The hydrogen electrode in the “dry”: A Kelvin probe approach to measuring hydrogen in metals. Electrochem. Commun. 2012, 24, 85–88. [Google Scholar] [CrossRef]
- Schaller, R.F.; Scully, J.R. Measurement of effective hydrogen diffusivity using the Scanning Kelvin Probe. Electrochem. Commun. 2014, 40, 42–44. [Google Scholar] [CrossRef]
- Evers, S.; Senoz, C.; Rohwerder, M. Hydrogen detection in metals: A review and introduction of a Kelvin probe approach. Sci. Technol. Adv. Mater. 2013, 14, 014201. [Google Scholar] [CrossRef] [PubMed]
- Koyama, M.; Rohwerder, M.; Tasan, C.C.; Bashir, A.; Akiyama, E.; Takai, K.; Raabe, D.; Tsuzaki, K. Recent progress in microstructural hydrogen mapping in steels: Quantification, kinetic analysis, and multi-scale characterisation. Mater. Sci. Technol. 2017, 33, 1481–1496. [Google Scholar] [CrossRef]
- Malard, B.; Remy, B.; Scott, C.; Deschamps, A.; Chêne, J.; Dieudonné, T.; Mathon, M.H. Hydrogen trapping by VC precipitates and structural defects in a high strength Fe–Mn–C steel studied by small-angle neutron scattering. Mater. Sci. Eng. A 2012, 536, 110–116. [Google Scholar] [CrossRef]
- Lehmann, E.H.; Vontobel, P.; Kardjilov, N. Hydrogen distribution measurements by neutrons. Appl. Radiat. Isot. 2004, 61, 503–509. [Google Scholar] [CrossRef]
- Chen, Y.-S.; Liu, P.-Y.; Niu, R.; Devaraj, A.; Yen, H.-W.; Marceau, R.K.W.; Cairney, J.M. Atom Probe Tomography for the Observation of Hydrogen in Materials: A Review. Microsc. Microanal. 2023, 29, 1–15. [Google Scholar] [CrossRef]
- Breen, A.J.; Stephenson, L.T.; Sun, B.; Li, Y.; Kasian, O.; Raabe, D.; Herbig, M.; Gault, B. Solute hydrogen and deuterium observed at the near atomic scale in high-strength steel. Acta Mater. 2020, 188, 108–120. [Google Scholar] [CrossRef]
- Weiss, Z. Analysis of Hydrogen in Inorganic Materials and Coatings: A Critical Review. Hydrogen 2021, 2, 225–245. [Google Scholar] [CrossRef]
- Levchuk, D.; Koch, F.; Maier, H.; Bolt, H. Deuterium permeation through Eurofer and α-alumina coated Eurofer. J. Nucl. Mater. 2004, 328, 103–106. [Google Scholar] [CrossRef]
- Serra, E.; Calza Bini, A.; Cosoli, G.; Pilloni, L. Hydrogen Permeation Measurements on Alumina. J. Am. Ceram. Soc. 2004, 88, 15–18. [Google Scholar] [CrossRef]
- Forcey, K.S.; Perujo, A.; Reiter, F.; Lolliceroni, P.L. The Formation of Tritium Permeation Barriers by CVD. J. Nucl. Mater. 1993, 200, 417–420. [Google Scholar] [CrossRef]
- Shan, C.Q.; Wu, A.J.; Li, Y.J.; Zhao, Z.Q.; Chen, Q.W.; Huang, Q.R.; Shi, S.L. The Behavior of Diffusion and Permeation of Tritium through 316l Stainless-Steel with Coating of TiC and TiN + TiC. J. Nucl. Mater. 1992, 191, 221–225. [Google Scholar] [CrossRef]
- Wu, Y.; Zhu, S.; Zhang, Y.; Liu, T.; Rao, Y.; Luo, l.; Wang, Q. The adhesion strength and deuterium permeation property of SiC films synthesized by magnetron sputtering. Int. J. Hydrogen Energy 2016, 41, 10827–10832. [Google Scholar] [CrossRef]
- Wang, P.X.; Liu, J.; Wang, Y.; Shi, B.G. Investigation of SiC films deposited onto stainless steel and their retarding effects on tritium permeation. Surf. Coat. Technol. 2000, 128, 99–104. [Google Scholar] [CrossRef]
- Checchetto, R.; Bonelli, M.; Gratton, L.M.; Miotello, A.; Sabbioni, A.; Guzman, L.; Horino, Y.; Benamati, G. Analysis of the hydrogen permeation properties of TiN-TiC bilayers deposited on martensitic stainless steel. Surf. Coat. Technol. 1996, 83, 40–44. [Google Scholar] [CrossRef]
- Motonori, T. Hydrogen Permeation Characteristics of TiN-Coated Stainless Steels. J. Mater. Sci. Eng. A 2015, 5, 197–201. [Google Scholar] [CrossRef]
- Tamura, M.; Noma, M.; Yamashita, M. Characteristic change of hydrogen permeation in stainless steel plate by BN coating. Surf. Coat. Technol. 2014, 260, 148–154. [Google Scholar] [CrossRef]
- McGuiness, P.J.; Čekada, M.; Nemanič, V.; Zajec, B.; Rečnik, A. Hydrogen permeation through TiAlN-coated Eurofer ′97 steel. Surf. Coat. Technol. 2011, 205, 2709–2713. [Google Scholar] [CrossRef]
- Bazzanella, N.; Checchetto, R.; Miotello, A.; Patton, B.; Kale, A.N.; Kothari, D.C. High temperature efficient deuterium permeation and oxidation (Al,Ti)N barriers deposited on stainless steel. Appl. Phys. Lett. 2002, 81, 3762–3764. [Google Scholar] [CrossRef]
- Henager, C. Hydrogen Permeation Barrier Coatings. In Materials for the Hydrogen Economy; CRC Press: Boca Raton, FL, USA, 2007; Chapter 8; pp. 181–190. [Google Scholar] [CrossRef]
- Motonori, T.; Hidekazu, T. TiAlN/TiMoN Coatings as Hydrogen Barriers. J. Mater. Sci. Eng. A 2019, 9, A9. [Google Scholar] [CrossRef]
- Matějíček, J.; Veverka, J.; Nemanič, V.; Cvrček, L.; Lukáč, F.; Havránek, V.; Illková, K. Characterization of less common nitrides as potential permeation barriers. Fusion Eng. Des. 2019, 139, 74–80. [Google Scholar] [CrossRef]
- Mochizuki, J.; Horikoshi, S.; Oya, Y.; Chikada, T. Deuterium permeation behavior of tritium permeation barrier coating containing carbide nanoparticles. Fusion Eng. Des. 2017, 124, 1073–1076. [Google Scholar] [CrossRef]
- Ueda, M.; Kurokawa, H.; Kawamura, K.; Maruyama, T.; Oyama, Y. Hydrogen Permeation Measurement Of Iron And Its Oxide Membranes By Using A Dew Point Hygrometer. In Proceedings of the Proceedings—Electrochemical Society, Honolulu, HI, USA, 3–8 October 2004. [Google Scholar]
- He, D.; Lei, Y.; Zhang, C.; Li, S.; Liu, X.; Zhang, H.; Lv, Q.; Wu, Y.; Jiang, L. Deuterium permeation of Al2O3/Cr2O3 composite film on 316L stainless steel. Int. J. Hydrogen Energy 2015, 40, 2899–2903. [Google Scholar] [CrossRef]
- Yunyi, W.; Li, S.; He, D.; Liu, X.; Wang, S.; Jiang, L. Influence of annealing atmosphere on the deuterium permeation of Y2O3 coatings. Int. J. Hydrogen Energy 2016, 41, 10374–10379. [Google Scholar] [CrossRef]
- Xiang, X.; Wang, X.; Zhang, G.; Tang, T.; Lai, X. Preparation technique and alloying effect of aluminide coatings as tritium permeation barriers: A review. Int. J. Hydrogen Energy 2015, 40, 3697–3707. [Google Scholar] [CrossRef]
- Xiao, S.; Meng, X.; Shi, K.; Liu, L.; Wu, H.; Lian, W.; Zhou, C.; Lyu, Y.; Chu, P.K. Hydrogen permeation barriers and preparation techniques: A review. J. Vac. Sci. Technol. A 2022, 40, 060803. [Google Scholar] [CrossRef]
- Takalapally, S.; Kumar, S.; Pusuluri, S.H.; Palle, M. A critical review on surface coatings for engineering materials. Int. J. Mech. Eng. Technol. 2016, 7, 80–85. [Google Scholar]
- Bach, F.-W.; Möhwald, K.; Laarmann, A.; Wenz, T. Moderne Beschichtungsverfahren; John Wiley & Sons: Hoboken, NJ, USA, 2006. [Google Scholar]
- Lei, H.; Di, H.; Lijun, J.; Xiaopeng, L.; Quinghe, Y.; Shuai, L.; Miao, D. Y2O3/Al2O3/Cr2O3 Composite Gradient Hydrogen Resistant Coating and Preparation Method Thereof. China Patent CN105667009A, 26 December 2014. [Google Scholar]
- Harhausen, J.; Brinkmann, R.; Foest, R.; Hannemann, M.; Ohl, A.; Schröder, B. On plasma ion beam formation in the Advanced Plasma Source. Plasma Sources Sci. Technol. 2012, 21, 035012. [Google Scholar] [CrossRef]
- Stenzel, O.; Harhausen, J.; Gäbler, D.; Wilbrandt, S.; Franke, C.; Foest, R.; Kaiser, N. Investigation on the reproducibility of optical constants of TiO2, SiO2, and Al2O3 films, prepared by plasma ion assisted deposition. Opt. Mater. Express 2015, 5, 2006–2023. [Google Scholar] [CrossRef]
- Stenzel, O.; Wilbrandt, S.; Wolf, J.; Schürmann, M.; Kaiser, N.; Ristau, D.; Ehlers, H.; Carstens, F.; Schippel, S.; Mechold, L. Investigation of the refractive index repeatability for tantalum pentoxide coatings, prepared by physical vapor film deposition techniques. Appl. Opt. 2017, 56, C193–C200. [Google Scholar] [CrossRef] [PubMed]
- Yamada-Takamura, Y.; Koch, F.; Maier, H.; Bolt, H. Hydrogen permeation barrier performance characterization of vapor deposited amorphous aluminum oxide films using coloration of tungsten oxide. Surf. Coat. Technol. 2002, 153, 114–118. [Google Scholar] [CrossRef]
- Sommer, P. Hydrogen-induced Brittle Fractures in Case-hardened and Electro-galvanized Screws. Heat Treat. Met. 2003, 30, 45–48. [Google Scholar]
- Gabe, D.R. The role of hydrogen in metal electrodeposition processes. J. Appl. Electrochem. 1997, 27, 908–915. [Google Scholar] [CrossRef]
- Kuhn, P.; Norden, M.; Schrooten, A. Surface-Finished Steel Sheet and Method for the Production Thereof. WO2016026885, 25 February 2016. [Google Scholar]
- Dehnavi, V.; Liu, X.Y.; Luan, B.L.; Shoesmith, D.W.; Rohani, S. Phase transformation in plasma electrolytic oxidation coatings on 6061 aluminum alloy. Surf. Coat. Technol. 2014, 251, 106–114. [Google Scholar] [CrossRef]
- Panjan, P.; Drnovšek, A.; Gselman, P.; Čekada, M.; Panjan, M. Review of Growth Defects in Thin Films Prepared by PVD Techniques. Coatings 2020, 10, 447. [Google Scholar] [CrossRef]
- Li, Q.; Wang, J.; Xiang, Q.-Y.; Tang, T.; Rao, Y.-C.; Cao, J.-L. Thickness impacts on permeation reduction factor of Er2O3 hydrogen isotopes permeation barriers prepared by magnetron sputtering. Int. J. Hydrogen Energy 2016, 41, 3299–3306. [Google Scholar] [CrossRef]
- Lee, S.; Kim, S. Electrochemical synthesis and characterization of erbium oxide. Ceram. Int. 2016, 42, 18425–18430. [Google Scholar] [CrossRef]
- Li, H.; Ke, Z.; Xue, L.; Yan, Y. A novel low-temperature approach for fabricating α-Al2O3-based ceramic coating as tritium permeation barrier. Fusion Eng. Des. 2017, 125, 567–572. [Google Scholar] [CrossRef]
- Cao, W.; Ge, S.; Song, J.; Chen, C.a.; Luo, D. A deuterium permeation barrier by hot-dipping aluminizing on AISI321 steel. Int. J. Hydrogen Energy 2016, 41, 23125–23131. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, D.; Feng, S.; Zhang, Y.; Ouyang, T.; Suo, J. Preparation of tritium permeation barrier consisting of titanium by the pack cementation method. Surf. Coat. Technol. 2016, 307, 271–277. [Google Scholar] [CrossRef]
- Zhou, T.; Liu, D.; Zhang, Y.; Ouyang, T.; Suo, J. Microstructure and hydrogen impermeability of titanium nitride thin films deposited by direct current reactive magnetron sputtering. J. Alloys Compd. 2016, 688, 44–50. [Google Scholar] [CrossRef]
- Xu, Y.-P.; Zhao, S.-X.; Liu, F.; Li, X.-C.; Zhao, M.-Z.; Wang, J.; Lu, T.; Hong, S.-H.; Zhou, H.-S.; Luo, G.-N. Studies on oxidation and deuterium permeation behavior of a low temperature α-Al2O3-forming Fe Cr Al ferritic steel. J. Nucl. Mater. 2016, 477, 257–262. [Google Scholar] [CrossRef]
- Li, S.-Y.; Zhao, W.-M.; Wang, Y. Hydrogen Permeation Property and Hydrogen Embrittlement Susceptibility of Pipeline Steel with Oxide Film. In Proceedings of the 2019 International Conference on Power, Energy, Environment and Material Science (PEEMS 2019), Sanya, China, 22–23 December 2019. [Google Scholar]
- Al Bosta, M.M.S.; Ma, K.-J.; Chien, H.-H. The effect of MAO processing time on surface properties and low temperature infrared emissivity of ceramic coating on aluminium 6061 alloy. Infrared Phys. Technol. 2013, 60, 323–334. [Google Scholar] [CrossRef]
- Saikiran, A.; Hariprasad, S.; Arun, S.; Krishna, L.R.; Rameshbabu, N. Effect of electrolyte composition on morphology and corrosion resistance of plasma electrolytic oxidation coatings on aluminized steel. Surf. Coat. Technol. 2019, 372, 239–251. [Google Scholar] [CrossRef]
- Wang, P.; Deng, S.; He, Y.; Liu, C.; Zhang, J. Influence of polyethylene glycol on cathode plasma electrolytic depositing Al2O3 anti-oxidation coatings. Ceram. Int. 2016, 42, 8229–8233. [Google Scholar] [CrossRef]
- Oviroh, P.O.; Akbarzadeh, R.; Pan, D.; Coetzee, R.A.M.; Jen, T.C. New development of atomic layer deposition: Processes, methods and applications. Sci. Technol. Adv. Mater. 2019, 20, 465–496. [Google Scholar] [CrossRef]
- Perednis, D.; Gauckler, L.J. Thin film deposition using spray pyrolysis. J. Electroceram. 2005, 14, 103–111. [Google Scholar] [CrossRef]
- Wang, T.; Pu, J.; Bo, C.; Jian, L. Sol–gel prepared Al2O3 coatings for the application as tritium permeation barrier. Fusion Eng. Des. 2010, 85, 1068–1072. [Google Scholar] [CrossRef]
- Irissou, E.; Legoux, J.-G.; Arsenault, B.; Moreau, C. Investigation of Al-Al2O3 Cold Spray Coating Formation and Properties. J. Therm. Spray Technol. 2007, 16, 661–668. [Google Scholar] [CrossRef]
- Weber, S.B.; Grande, T.; Scherer, G.W.; Einarsrud, M.-A.; Ballarini, R. Crack Engineering in Thick Coatings Prepared by Spray Pyrolysis Deposition. J. Am. Ceram. Soc. 2012, 96, 420–428. [Google Scholar] [CrossRef]
- Zhang, K.; Hatano, Y. Sealing of pores in sol–gel-derived tritium permeation barrier coating by electrochemical technique. J. Nucl. Mater. 2011, 417, 1229–1232. [Google Scholar] [CrossRef]
- Leivo, E.M.; Vippola, M.S.; Sorsa, P.P.A.; Vuoristo, P.M.J.; Mäntylä, T.A. Wear and corrosion properties of plasma sprayed AI2O3 and Cr2O3 coatings sealed by aluminum phosphates. J. Therm. Spray Technol. 1997, 6, 205–210. [Google Scholar] [CrossRef]
- Yan, S.; Maeda, H.; Kusakabe, K.; Morooka, S.; Akiyama, Y. Hydrogen-Permselective SiO2 Membrane Formed in Pores of Alumina Support Tube by Chemical Vapor Deposition with Tetraethylorthosilicate. Ind. Eng. Chem. Res. 1994, 33, 2096–2101. [Google Scholar] [CrossRef]
- Yan, S.; Maeda, H.; Kusakabe, K.; Morooka, S. Thin Palladium Membrane Formed in Support Pores by Metal-Organic Chemical Vapor Deposition Method and Application to Hydrogen Separation. Ind. Eng. Chem. Res. 1994, 33, 616–622. [Google Scholar] [CrossRef]
- Pacheco Tanaka, D.A.; Llosa Tanco, M.A.; Okazaki, J.; Wakui, Y.; Mizukami, F.; Suzuki, T.M. Preparation of “pore-fill” type Pd–YSZ–γ-Al2O3 composite membrane supported on α-Al2O3 tube for hydrogen separation. J. Membr. Sci. 2008, 320, 436–441. [Google Scholar] [CrossRef]
- Zhang, G.; Wang, X.; Xiong, Y.; Shi, Y.; Song, J.; Luo, D. Mechanism for adsorption, dissociation and diffusion of hydrogen in hydrogen permeation barrier of α-Al2O3: A density functional theory study. Int. J. Hydrogen Energy 2013, 38, 1157–1165. [Google Scholar] [CrossRef]
- Zhang, G.; Dou, S.; Lu, Y.; Shi, Y.; Lai, X.; Wang, X. Mechanisms for adsorption, dissociation and diffusion of hydrogen in hydrogen permeation barrier of α-Al2O3: The role of crystal orientation. Int. J. Hydrogen Energy 2014, 39, 610–619. [Google Scholar] [CrossRef]
- Dong, Y.; Wang, F.; Lai, W. Fast hydrogen diffusion along Σ13 grain boundary of α-Al2O3 and its suppression by the dopant Cr: A first-principles study. Int. J. Hydrogen Energy 2017, 42, 10124–10130. [Google Scholar] [CrossRef]
- Turk, A.; Bombač, D.; Jelita Rydel, J.; Ziętara, M.; Rivera-Díaz-del-Castillo, P.E.J.; Galindo-Nava, E.I. Grain boundary carbides as hydrogen diffusion barrier in a Fe-Ni alloy: A thermal desorption and modelling study. Mater. Des. 2018, 160, 985–998. [Google Scholar] [CrossRef]
- Wang, W.; Yu, Q.; Liu, X.; Hao, L.; Mi, J.; Li, S.; Li, S.; Lu, Z.; Li, S.; Liu, H.; et al. Study on the Influence of Introducing Al Transition Layer on Deuterium Resistance of Al2O3 Coating. Int. J. Photoenergy 2021, 2021, 6687288. [Google Scholar] [CrossRef]
- Huang, J.; Xie, H.; Luo, L.M.; Zan, X.; Liu, D.G.; Wu, Y.C. Preparation and properties of FeAl/Al2O3 composite tritium permeation barrier coating on surface of 316L stainless steel. Surf. Coat. Technol. 2020, 383, 125282. [Google Scholar] [CrossRef]
- Wang, Z.; Hu, H.; Nie, X. Preparation and Characterization of Highly Flexible Al2O3/Al/Al2O3 Hybrid Composite. J. Nanomater. 2015, 2015, 412071. [Google Scholar] [CrossRef]
Method | Advantages | Disadvantages |
---|---|---|
Physical vapour deposition (PVD) |
|
|
Chemical vapour deposition (CVD) |
|
|
Galvanic deposition |
|
|
Hot-dipping |
|
|
Thermal spraying |
|
|
Pack cementation |
|
|
Sol-gel |
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wetegrove, M.; Duarte, M.J.; Taube, K.; Rohloff, M.; Gopalan, H.; Scheu, C.; Dehm, G.; Kruth, A. Preventing Hydrogen Embrittlement: The Role of Barrier Coatings for the Hydrogen Economy. Hydrogen 2023, 4, 307-322. https://doi.org/10.3390/hydrogen4020022
Wetegrove M, Duarte MJ, Taube K, Rohloff M, Gopalan H, Scheu C, Dehm G, Kruth A. Preventing Hydrogen Embrittlement: The Role of Barrier Coatings for the Hydrogen Economy. Hydrogen. 2023; 4(2):307-322. https://doi.org/10.3390/hydrogen4020022
Chicago/Turabian StyleWetegrove, Marcel, Maria Jazmin Duarte, Klaus Taube, Martin Rohloff, Hariprasad Gopalan, Christina Scheu, Gerhard Dehm, and Angela Kruth. 2023. "Preventing Hydrogen Embrittlement: The Role of Barrier Coatings for the Hydrogen Economy" Hydrogen 4, no. 2: 307-322. https://doi.org/10.3390/hydrogen4020022
APA StyleWetegrove, M., Duarte, M. J., Taube, K., Rohloff, M., Gopalan, H., Scheu, C., Dehm, G., & Kruth, A. (2023). Preventing Hydrogen Embrittlement: The Role of Barrier Coatings for the Hydrogen Economy. Hydrogen, 4(2), 307-322. https://doi.org/10.3390/hydrogen4020022