Nonlinear Identification of the Suction Manifold of a Supermarket Refrigeration System Using Wavelet Networks †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Dynamic Model of the Suction Manifold of a Supermarket Refrigeration System
2.2. Nonlinear ARX Model
- (i)
- Using historical output data, current and past input values, and past input values, it calculates regressor values. Regressors are simply delayed inputs and outputs, like u(t−1) and y(t−3). We refer to these regressors as linear regressors. Custom, periodic, and polynomial regressors are among the additional regressors that can be made. Any of the regressors can be assigned as an input to either the nonlinear function block or the output function’s linear function block, or both.
- (ii)
- An output function block is used to translate the regressors to the model output. Multiple mapping objects, each having parallel blocks for linear, nonlinear, and offset functions, may be included in the output function block. Consider, for instance, the following equation:
3. Results and Discussions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, G.P.; Billings, S.A.; Kadirkamanathan, V. Nonlinear System Identification using Wavelet Networks. Int. J. Sys. Sci. 2000, 31, 1531–1541. [Google Scholar] [CrossRef]
- Shi, H.; Cai, Y.; Qui, Z. Improved system identification approach using wavelet networks. J. Shanghai Uni. 2005, 9, 159–163. [Google Scholar] [CrossRef]
- Liu, G.P.; Billings, S.A.; Kadirkamanathan, V. Nonlinear System Identification via Variable Wavelet Networks. In Proceedings of the 14th IFAC World Congress, Beijing, China, 5–9 July 1999; Volume H, pp. 109–114. [Google Scholar]
- Billings, S.A.; Wei, H.L. A new class of wavelet networks for nonlinear system identification. IEEE Trans. Neural Netw. 2005, 16, 862–874. [Google Scholar] [CrossRef] [PubMed]
- Maria, X.B.R.; Adrien, G.; Luisa, P.; Shin, F.; Flavio, P.; Kohei, T.; Toshiya, H. Deep Adaptive Wavelet Networks. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), Snowmass Village, CO, USA, 1–5 March 2020; pp. 3111–3119. [Google Scholar]
- Guo, T.; Zhang, T.; Lim, E.; López-Benítez, M.; Ma, F.; Yu, L. A Review of Wavelet Analysis and Its Applications: Challenges and Opportunities. IEEE Access 2022, 10, 58869–58903. [Google Scholar] [CrossRef]
- Dantas, T.S.S.; Franco, I.C.; Fileti, A.M.F.; Vasconcelos da Silva, F. Nonlinear System Identification of a Refrigeration System. Int. J. Ref. Air Cond. 2016, 24, 1650024. [Google Scholar] [CrossRef]
- Bankole, A.T.; Moses, S.O.; Ibitoye, T.Y. Smell Agent Optimization Based Supervisory Model Predictive Control for Energy Efficiency Improvement of a Cold Storage System. In Proceedings of the IEEE Nigeria 4th International Conference on Disruptive Technologies for Sustainable Development, Nile University, Abuja, Nigeria, 15–17 May 2022; pp. 1–5. [Google Scholar] [CrossRef]
- Bankole, A.T.; Bello-Salau, H.; Haruna, Z. Aquila-Based Model Predictive Control of an Adapted Fridge Display Case Model for Vaccine Preservation. Eng. Proc. 2023, 37, 99. [Google Scholar] [CrossRef]
- Bankole, A.T.; Mu’azu, M.B.; Igbonoba, E.E.C. Trajectory Tracking of a Data-Based Model of a Two-Link Robotic Manipulator Using Model Predictive Controller. Eng. Proc. 2023, 37, 100. [Google Scholar] [CrossRef]
- Vinther, K.; Rasmussen, H.; Izadi-Zamanabadi, R.; Stoustrup, J.; Alleyne, A.G. Learning-based precool algorithms for exploiting foodstuff as thermal energy reserve. IEEE Trans. Control. Syst. Technol. 2015, 23, 557–569. [Google Scholar] [CrossRef]
- Ljung, L. System Identification Toolbox User’s Guide. 1988–2024. Available online: https://www.mathworks.com/help/pdf_doc/ident/index.html (accessed on 17 February 2024).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bankole, A.T.; Bello-Salau, H.; Haruna, Z. Nonlinear Identification of the Suction Manifold of a Supermarket Refrigeration System Using Wavelet Networks. Eng. Proc. 2024, 67, 37. https://doi.org/10.3390/engproc2024067037
Bankole AT, Bello-Salau H, Haruna Z. Nonlinear Identification of the Suction Manifold of a Supermarket Refrigeration System Using Wavelet Networks. Engineering Proceedings. 2024; 67(1):37. https://doi.org/10.3390/engproc2024067037
Chicago/Turabian StyleBankole, Adesola Temitope, Habeeb Bello-Salau, and Zaharuddeen Haruna. 2024. "Nonlinear Identification of the Suction Manifold of a Supermarket Refrigeration System Using Wavelet Networks" Engineering Proceedings 67, no. 1: 37. https://doi.org/10.3390/engproc2024067037
APA StyleBankole, A. T., Bello-Salau, H., & Haruna, Z. (2024). Nonlinear Identification of the Suction Manifold of a Supermarket Refrigeration System Using Wavelet Networks. Engineering Proceedings, 67(1), 37. https://doi.org/10.3390/engproc2024067037