Deduction of Strategic Planning Guidelines for Urban Medium Voltage Grids with Consideration of Electromobility and Heat Pumps
Abstract
:1. Introduction
1.1. Related Work and the State of the Art
1.2. Objective and Structure of the Work
- 1-
- Consideration of several charging powers for the charging infrastructure;
- 2-
- Differentiation in the charging infrastructure between private and public charging points;
- 3-
- Integration of charging hubs and charging points at customer substations;
- 4-
- Application of demand factors for different charging powers up to 500 charging points;
- 5-
- Analysis of three HP models different in the power rating;
- 6-
- Modeling and application of innovative technologies:
- LM system with three different regulation variants and six system layouts;
- RPM systems;
- ES with two independent storage capacities.
- 7-
- Consideration of two separate load development scenarios for each load type;
- 8-
- Application of grid planning to representative MV grid models from six major German cities;
- 9-
- Deduction of generally valid PGs:
- Introduction of concrete power values for the new load types for the two planning perspectives (feeder and substation);
- Recommendation of standard equipment dimensions.
- 10-
- Establishment of a decision path for urban MV strategic grid planning;
- 11-
- Application of an alternative assessment model for the planning variants.
2. Integration of Electromobility and Heat Pumps
2.1. Development Scenarios
2.2. Regionalization
2.3. Nominal Power Assumptions
- 1-
- 3.0 kW (basic HP system);
- 2-
- 6.5 kW (hybrid distribution of HP systems 1 and 3);
- 3-
- 9.0 kW (basic HP system + electric heating element).
2.4. Load Modeling
3. Methodology of Strategic Grid Planning
3.1. Identification of Grid Limits
3.1.1. Equipment Loading Limits
3.1.2. Permissible Voltage Range
3.2. Planning Strategies
3.2.1. Conventional Planning Strategy
- Cable measures
- 2.
- Substation transformer measures
- Transformer reinforcement
- Transformer replacement
- Boosting the transformer loading
3.2.2. Innovative Planning Strategy
- Decentralized automation systems
- 2.
- Load management
- Reactive power management
- 2.
- Electrical Energy Storage
4. Derivation of Strategic Planning Guidelines
4.1. Technical and Economic Assessment
4.2. Medium Voltage Strategic Planning Guidelines
4.2.1. First Medium Voltage Planning Guideline
4.2.2. Second Medium Voltage Planning Guideline
4.2.3. Third Medium Voltage Planning Guideline
4.2.4. Fourth Medium Voltage Planning Guideline
4.2.5. Fifth Medium Voltage Planning Guideline
4.2.6. Sixth Medium Voltage Planning Guideline
4.2.7. Seventh Medium Voltage Planning Guideline
4.3. Decision Path for Medium Voltage Grid Planning
4.4. Across Voltage Level Planning Guidelines
4.4.1. First across Voltage Planning Guideline
4.4.2. Second across Voltage Planning Guideline
4.4.3. Third across Voltage Planning Guideline
4.5. Results for the Application of an Alternative Assessment Model
- Losses of the power grid: This criterion calculates the yearly energy losses in the power grid, hence representing energy costs that are paid by the DSO;
- Frequency of faults: This criterion calculates the frequency of equipment faults in the grid. Thus, it roughly depicts the amount of maintenance work that needs to be performed by the DSO;
- Stability of voltage: This criterion calculates the difference between the slack node voltage and the minimum node voltage in the grid. It shows how much voltage drop occurs in the grid and in turn how stable is the voltage level against unexpected voltage drops;
- Effort of construction: Since the performance of construction works constitutes an inconvenience for the residents and the users of the grid, this criterion is based on the required cable construction works per planning variant [62].
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CapEx | Capital Expenditures |
cons | Conservative |
CP | Charging point |
DAS | Decentralized automation system |
DSO | Distribution System Operator |
ES | Energy storage |
HP | Heat pump |
LM | Load management |
LV | Low voltage |
MICT | Measuring, information, and communication technology |
MV | Medium voltage |
OpEx | Operational Expenditures |
PG | Planning guideline |
PrCP | Private charging point |
prog | Progressive |
PuCP | Public charging point |
RPM | Reactive power management |
Appendix A
Grid Voltage Level | Installed Transformer Power (MVA) | Total Cable Length (km) | No. of Distribution/ Customer Stations | No. of Building Connections | No. of Metering Points | No. of Feeders | No. of Charging Points | No. of Heat Pumps | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
G01 10 kV | 2 × 12.5 | 40.9 | 44/11 | 3095 | 8797 | 6 | 1194 | 2175 | 3834 | 144 | 178 | 253 |
1913 | 4072 | 8433 | 182 | 344 | 544 | |||||||
G02 10 kV | 2 × 40 | 40.0 | 37/18 | 4041 | 15,982 | 14 | 1637 | 3343 | 6028 | 186 | 229 | 323 |
2726 | 6319 | 12,014 | 235 | 444 | 708 | |||||||
G03 10 kV | 32 | 16.6 | 41/3 | 484 | 4139 | 13 | 195 | 399 | 773 | 20 | 24 | 40 |
324 | 758 | 1673 | 25 | 54 | 83 | |||||||
G04 20 kV | 3 × 40 | 70.9 | 39/24 | 1815 | 6728 | 9 | 737 | 1512 | 2905 | 84 | 103 | 147 |
1226 | 2849 | 6280 | 107 | 201 | 320 | |||||||
G05 10 kV | 40 | 16.9 | 22/16 | 504 | 4221 | 16 | 203 | 420 | 803 | 24 | 29 | 41 |
340 | 791 | 1745 | 29 | 55 | 87 | |||||||
G06 10 kV | - | 4.6 | 7/- | 182 | 2142 | 2 | 63 | 119 | 210 | 7 | 8 | 14 |
98 | 231 | 483 | 14 | 21 | 35 | |||||||
G07 10 kV | - | 17.0 | 9/- | 2034 | 2601 | 2 | 657 | 1287 | 2385 | 90 | 117 | 162 |
1125 | 2529 | 5409 | 117 | 225 | 360 | |||||||
G08 10/20 kV | 2 × 63 | 183.4 | 170/62 | 5312 | 37,802 | 32 | 2156 | 4415 | 8517 | 240 | 298 | 425 |
3623 | 8341 | 17,557 | 305 | 588 | 935 | |||||||
G09 10 kV | 40 | 44.9 | 59/3 | 2663 | 14,400 | 15 | 1076 | 2070 | 3500 | 122 | 147 | 212 |
1804 | 3707 | 7461 | 154 | 295 | 471 | |||||||
G10 10/20 kV | 2 × 63 | 134.8 | 131/46 | 4619 | 48,424 | 26 | 1869 | 3854 | 7398 | 213 | 265 | 374 |
3135 | 7229 | 15,961 | 275 | 517 | 816 | |||||||
G11 10/20 kV | 2 × 63 | 174.9 | 171/66 | 6546 | 54,478 | 23 | 2686 | 5522 | 10,646 | 297 | 368 | 526 |
4482 | 10,396 | 20,804 | 375 | 721 | 1151 |
Structure | G01 | G02 | G03 | G04 | G05 | G06 | G07 | G08 | G09 | G10 | G11 |
---|---|---|---|---|---|---|---|---|---|---|---|
One/Two- family houses | X | X | - | X | - | - | X | - | - | - | - |
Multi-family houses | O | X | X | O | X | X | - | X | X | X | X |
Industrial | - | O | O | X | O | - | - | X | O | O | O |
Suburban | X | X | X | X | |||||||
Semi-dense urban | X | X | X | X | |||||||
Downtown | X | X | X |
Equipment | Parameter | Value | Unit |
---|---|---|---|
3-phase NA2XS2Y Cable 10/20 kV | Service life | 45 | [a] |
Operational costs | 2.5 | [% CapEx/a] | |
Price increase | 0.5 | [%/a] | |
150 mm² single | Cable cost + installation | 225,000 | [Euro/km] |
150 mm² parallel | Cable cost + installation | +50,000 | [Euro/km] |
185 mm² single | Cable cost + installation | 237,500 | [Euro/km] |
185 mm² parallel | Cable cost + installation | +65,000 | [Euro/km] |
240 mm² single | Cable cost + installation | 250,000 | [Euro/km] |
240 mm² parallel | Cable cost + installation | +80,000 | [Euro/km] |
300 mm² single | Cable cost + installation | 275,000 | [Euro/km] |
300 mm² parallel | Cable cost + installation | +95,000 | [Euro/km] |
Energy storage | Service life | 16 | [a] |
Operational costs | 2.5 | [% CapEx/a] | |
Basic cost | 46,000 | [Euro/unit] | |
Power cost for 2 h capacity | 550 | [Euro/kW] | |
Decentralized automation | Service life | 15 | [a] |
Operational costs | 2.5 | [% CapEx/a] | |
Basic cost | 15,000 | [Euro/unit] | |
MV-sensor | 8000 | [Euro/unit] | |
LV-sensor | 3500 | [Euro/unit] | |
HV/MV substation components | Service life | 40 | [a] |
Operational costs | 2.5 | [% CapEx/a] | |
New construction | 1,500,000 | [Euro/unit] | |
GIS switchgear | 70,000 | [Euro/unit] | |
AIS switchgear | 60,000 | [Euro/unit] | |
Disconnector | 4500 | [Euro/unit] | |
Transformer | |||
31.5 MVA | Transformer cost + installation | 450,000 | [Euro/unit] |
40.0 MVA | Transformer cost + installation | 500,000 | [Euro/unit] |
63.5 MVA | Transformer cost + installation | 650,000 | [Euro/unit] |
References
- Knobloch, F.; Hanssen, S.V.; Lam, A.; Pollitt, H.; Salas, P.; Chewpreecha, U.; Huijbregts, M.A.J.; Mercure, J.-F. Net emission reductions from electric cars and heat pumps in 59 world regions over time. Nat. Sustain. 2020, 3, 437–447. [Google Scholar] [CrossRef] [Green Version]
- Ruhnau, O.; Bannik, S.; Otten, S.; Praktiknjo, A.; Robinius, M. Direct or indirect electrification? A review of heat generation and road transport decarbonisation scenarios for Germany 2050. Energy 2018, 166, 989–999. [Google Scholar] [CrossRef] [Green Version]
- Nadel, S. Electrification in the Transportation, Buildings, and Industrial Sectors: A Review of Opportunities, Barriers, and Policies. Curr. Sustain. Energy Rep. 2019, 6, 158–168. [Google Scholar] [CrossRef]
- Khator, S.; Leung, L. Power distribution planning: A review of models and issues. IEEE Trans. Power Syst. 1997, 12, 1151–1159. [Google Scholar] [CrossRef]
- Seifi, H.; Sepasian, M.S. Electric Power System Planning; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar] [CrossRef]
- Hadjsaïd, N.; Sabonnadière, J.-C. (Eds.) Electrical Distribution Networks; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2013. [Google Scholar] [CrossRef]
- Schlabbach, J.; Rofalski, K.-H. Power System Engineering: Planning, Design and Operation of Power Systems and Equipment, 2nd ed.; Wiley-VCH: Weinheim, Germany, 2014. [Google Scholar]
- Thurner, L.; Kassel University Press GmbH. Structural Optimizations in Strategic Medium Voltage Power System Planning; University of Kassel: Kassel, Germany, 2018. [Google Scholar] [CrossRef]
- Yong, J.Y.; Ramachandaramurthy, V.K.; Tan, K.M.; Mithulananthan, N. A review on the state-of-the-art technologies of electric vehicle, its impacts and prospects. Renew. Sustain. Energy Rev. 2015, 49, 365–385. [Google Scholar] [CrossRef]
- Foley, A.M.; Winning, I.J.; Gallachóir, B.P.Ó. State-of-the-art in electric vehicle charging infrastructure. In Proceedings of the 2010 IEEE Vehicle Power and Propulsion Conference, Lille, France, 1–3 September 2010; IEEE: Piscataway, NJ, USA, 2014; pp. 1–6. [Google Scholar] [CrossRef]
- Arif, S.; Lie, T.; Seet, B.; Ayyadi, S.; Jensen, K. Review of Electric Vehicle Technologies, Charging Methods, Standards and Optimization Techniques. Electronics 2021, 10, 1910. [Google Scholar] [CrossRef]
- Ahmad, A.; Alam, M.S.; Chabaan, R. A Comprehensive Review of Wireless Charging Technologies for Electric Vehicles. IEEE Trans. Transp. Electrification 2017, 4, 38–63. [Google Scholar] [CrossRef]
- Dulău, L.I.; Bică, D. Effects of Electric Vehicles on Power Networks. Procedia Manuf. 2020, 46, 370–377. [Google Scholar] [CrossRef]
- Putrus, G.A.; Suwanapingkarl, P.; Johnston, D.; Bentley, E.C.; Narayana, M. Impact of electric vehicles on power distribution networks. In Proceedings of the 2009 IEEE Vehicle Power and Propulsion Conference, Dearborn, MI, USA, 7–10 September 2009; pp. 827–831. [Google Scholar] [CrossRef]
- Konstantinidis, G.; Karapidakis, E.; Paspatis, A. Mitigating the Impact of an Official PEV Charger Deployment Plan on an Urban Grid. Energies 2022, 15, 1321. [Google Scholar] [CrossRef]
- Garcia-Valle, R.; Peças Lopes, J.A. (Eds.) Electric Vehicle Integration into Modern Power Networks; Springer: New York, NY, USA, 2013. [Google Scholar] [CrossRef] [Green Version]
- Kleiwegt, E.; Lukszo, Z. Grid Impact Analysis of Electric Mobility on a Local Electricity Grid. In Proceedings of the 2012 9th IEEE International Conference on Networking, Sensing and Control, Beijing, China, 11–14 April 2012; pp. 316–321. [Google Scholar] [CrossRef]
- Love, J.; Smith, A.Z.; Watson, S.; Oikonomou, E.; Summerfield, A.; Gleeson, C.; Biddulph, P.; Chiu, L.F.; Wingfield, J.; Martin, C.; et al. The addition of heat pump electricity load profiles to GB electricity demand: Evidence from a heat pump field trial. Appl. Energy 2017, 204, 332–342. [Google Scholar] [CrossRef]
- Arnold, M.P. Integration of Residential Distributed Generators and Heat Pumps into the Low Voltage Grid from a Voltage Level Perspective; Technischen Universitat Dortmund: Dortmund, Germany, 2016; Available online: https://core.ac.uk/download/pdf/46917314.pdf (accessed on 5 July 2022).
- De Vos, L.; Leemput, N.; Refa, N.; Bernards, R.; Fidder, H.; de Rijke, F. Optimal Integration of Electric Vehicles, PV, Heat Pumps in Existing Distribution Grids in the Netherlands. In Proceedings of the CIRED 2019 Conference, Madrid, Spain, 3–6 June 2019. [Google Scholar]
- Thormann, B.; Kienberger, T. Evaluation of Grid Capacities for Integrating Future E-Mobility and Heat Pumps into Low-Voltage Grids. Energies 2020, 13, 5083. [Google Scholar] [CrossRef]
- Oliyide, R.O.; Cipcigan, L.M. The impacts of electric vehicles and heat pumps load profiles on low voltage distribution networks in Great Britain by 2050. Int. Multidiscip. Res. J. 2021, 11, 30–45. [Google Scholar] [CrossRef]
- Blonsky, M.; Nagarajan, A.; Ghosh, S.; McKenna, K.; Veda, S.; Kroposki, B. Potential Impacts of Transportation and Building Electrification on the Grid: A Review of Electrification Projections and Their Effects on Grid Infrastructure, Operation, and Planning. Curr. Sustain. Energy Rep. 2019, 6, 169–176. [Google Scholar] [CrossRef]
- Fischer, D.; Madani, H. On heat pumps in smart grids: A review. Renew. Sustain. Energy Rev. 2017, 70, 342–357. [Google Scholar] [CrossRef] [Green Version]
- Nykamp, S.; Molderink, A.; Bakker, V.; Toersche, H.; Hurink, J.; Smit, G. Integration of heat pumps in distribution grids: Economic motivation for grid control. In Proceedings of the 2012 3rd IEEE PES Innovative Smart Grid Technologies Europe (ISGT Europe), Berlin, Germany, 14–17 October 2012; pp. 1–8. [Google Scholar] [CrossRef] [Green Version]
- Kreuder, L.; Spataru, C. Assessing demand response with heat pumps for efficient grid operation in smart grids. Sustain. Cities Soc. 2015, 19, 136–143. [Google Scholar] [CrossRef]
- Mahmood, A.; Javaid, N.; Khan, M.A.; Razzaq, S. An overview of load management techniques in smart grid. Int. J. Energy Res. 2015, 39, 1437–1450. [Google Scholar] [CrossRef]
- Probst, A.; Siegel, M.; Braun, M.; Tenbohlen, S. Impacts of electric mobility on distribution grids and possible solution through load management. In Proceedings of the CIRED 2011—21st International Conference on Electricity Distribution, Frankfurt, Germany, 6–9 June 2011; p. 126. [Google Scholar]
- Masoum, A.S.; Deilami, S.; Moses, P.S.; Masoum, M.A.S.; Abu-Siada, A. Smart load management of plug-in electric vehicles in distribution and residential networks with charging stations for peak shaving and loss minimisation considering voltage regulation. IET Gen. Transmiss. Distrib. 2011, 5, 877. [Google Scholar] [CrossRef]
- Almutairi, A.; Alrumayh, O. Optimal Charging Infrastructure Portfolio for Minimizing Grid Impact of Plug-In Electric Vehicles. IEEE Trans. Ind. Inf. 2022, 18, 5712–5721. [Google Scholar] [CrossRef]
- Khan, R.H.; Stüdli, S.; Khan, J.Y. A network controlled load management scheme for domestic charging of electric vehicles. In Proceedings of the 2013 Australasian Universities Power Engineering Conference (AUPEC), Hobart, TAS, Australia, 29 September–3 October 2013; pp. 1–6. [Google Scholar] [CrossRef]
- Sawant, M.; Moyalan, J.; Bhagyashree, U.; Sheikh, A.; Wagh, S.; Singh, N. Power Grid Load Management using Electric Vehicles: A Distributed Resource Allocation Approach. In Proceedings of the 2019 27th Mediterranean Conference on Control and Automation (MED), Akko, Israel, 1–4 July 2019; pp. 428–433. [Google Scholar] [CrossRef]
- Mahmud, K.; Hossain, M.J.; Ravishankar, J. Peak-Load Management in Commercial Systems with Electric Vehicles. IEEE Syst. J. 2018, 13, 1872–1882. [Google Scholar] [CrossRef]
- Arteaga, J.; Zareipour, H.; Thangadurai, V. Overview of Lithium-Ion Grid-Scale Energy Storage Systems. Curr. Sustain. Energy Rep. 2017, 4, 197–208. [Google Scholar] [CrossRef]
- Rackliffe, G. Guidelines for planning distributed generation systems. In Proceedings of the 2000 Power Engineering Society Summer Meeting (Cat. No.00CH37134), Seattle, WA, USA, 16–20 July 2000; Volume 3, pp. 1666–1667. [Google Scholar] [CrossRef]
- Zhang, R.; Du, Y.; Yuhong, L. New challenges to power system planning and operation of smart grid devel-opment in China. In Proceedings of the 2010 International Conference on Power System Technology, Hangzhou, China, 24–28 October 2010; pp. 1–8. [Google Scholar] [CrossRef]
- Harnisch, S.; Steffens, P.; Thies, H.H.; Cibis, K.; Zdrallek, M.; Lehde, B. New planning principles for low voltage networks with a high share of decentralized generation. In CIRED Workshop 2016; IET: Helsinki, Finland, 14–15 June 2016; pp. 1–4. [Google Scholar] [CrossRef] [Green Version]
- Mosquet, X.; Zablit, H.; Dinger, A.; Xu, G.; Andersen, M.; Tominaga, K. The Electric Car Tipping Point—The Future of Powertrains for Owned and Shared Mobility; The Boston Consulting Group: Boston, MA, USA, 2018; Available online: https://web-assets.bcg.com/ef/8b/007df7ab420dab1164e89d0a6584/bcg-the-electric-car-tipping-point-jan-2018.pdf (accessed on 1 July 2021).
- Kuhnert, F.; Stürmer, C. Autofacts; PricewaterhouseCoopers PwC: Toronto, ON, Canada, 2016. [Google Scholar]
- RBC Electric Vehicle Forecast Through 2050 & Primer’, RBC Capital Markets, May 2018. Available online: http://www.fullertreacymoney.com/system/data/files/PDFs/2018/May/14th/RBC%20Capital%20Markets_RBC%20Electric%20Vehicle%20Forecast%20Through%202050%20%20Primer_11May2018.pdf (accessed on 29 July 2021).
- Monscheidt, J.; Gemsjäger, B.; Slupinski, A.; Yan, X.; Ali, S.A.; Wintzek, P.; Zdrallek, M. Energy demand model for electric load forecast in urban distribution networks. CIRED Open Access Proc. J. 2020, 2020, 31–33. [Google Scholar] [CrossRef]
- Wintzek, P.; Ali, S.; Kotthaus, K.; Wruk, J.; Zdrallek, M.; Monscheidt, J.; Gemsjäger, B.; Slupinski, A. Application and Evaluation of Load Management Systems in Urban Low-Voltage Grid Planning. World Electr. Veh. J. 2021, 12, 91. [Google Scholar] [CrossRef]
- Liste der Ladesäulen (Stand 1. Juli 2021)’. Bundesnetzagentur, 1 July 2021. Available online: https://www.bundesnetzagentur.de/SharedDocs/Downloads/DE/Sachgebiete/Energie/Unternehmen_Institutionen/E_Mobilitaet/Ladesaeulenkarte_Datenbankauszug.xlsx;jsessionid=EF0F9B1F6B36E1FA218A42606D92A6FE?__blob=publicationFile&v=8 (accessed on 1 July 2021).
- Goebelsmann, F.; Wintzek, P.; Ali, S.; Zdrallek, M.; Monscheidt, J.; Gemsjaeger, B.; Slupinski, A. Potentials of a cost-optimized application of regulated distribution transformers in urban low-voltage grid planning with a high share of charging infrastructure, heat pumps and photovoltaic systems. In Proceedings of the PESS 2021—Power and Energy Student Summit, online, 25–26 November 2021; pp. 1–6. [Google Scholar]
- Population Structure Data’; GfK SE Growth from Knowledge: Nuremberg, Germany, 2018.
- Bollerslev, J.; Andersen, P.B.; Jensen, T.V.; Marinelli, M.; Thingvad, A.; Calearo, L.; Weckesser, T. Coincidence Factors for Domestic EV Charging from Driving and Plug-In Behavior. IEEE Trans. Transp. Electrification 2021, 8, 808–819. [Google Scholar] [CrossRef]
- Uhlig, R.; Stotzel, M.; Zdrallek, M.; Neusel-Lange, N. Dynamic grid support with EV charging management considering user requirements. In Proceedings of the CIRED Workshop 2016, Helsinki, Finland, 14–15 June 2016. [Google Scholar] [CrossRef] [Green Version]
- Follmer, R.; Gruschwitz, D.; Jesske, B.; Quandt, S.; Lenz, B.; Nobis, C.; Köhler, K.; Mehlin, M. Mobilität in Deutschland 2008; Ergebnisbericht: Struktur—Aufkommen—Emissionen—Trends; Federal Ministry for Digital and Transport: Bonn and Berlin, Germany, 2010; Available online: http://www.mobilitaet-in-deutschland.de/pdf/infas_MiD2008_Abschlussbericht_I.pdf (accessed on 24 February 2022).
- IEC 60050: 691-10-05. Available online: https://www.electropedia.org/ (accessed on 24 February 2022).
- Ali, S.; Wintzek, P.; Zdrallek, M.; Böse, C.; Monscheidt, J.; Gemsjäger, B.; Slupinski, A. Demand Factor Identification of Electric Vehicle Charging Points for Distribution System Planning. In Proceedings of the CIRED 2021—The 26th International Conference and Exhibition on Electricity Distribution, Online Conference, 20–23 September 2021; pp. 2574–2578. [Google Scholar] [CrossRef]
- Rehtanz, C.; Greve, M.; Häger, U.; Hagemann, Z.; Kippelt, S.; Kittl, C.; Klouber, M.; Pohl, O.; Rewald, F.; Wagner, C. Verteilnetzstudie für das Land Baden-Württemberg. Technische Universität Dortmund—ie3—Institut für Energiesysteme, Energieeffizienz und Energiewirtschaft, Stuttgart, Studie für das Ministerium für Umwelt, Klima und Energiewirtschaft Baden-Württemberg, April 2017. Available online: https://um.baden-wuerttemberg.de/fileadmin/redaktion/mum/intern/Dateien/Dokumente/5_Energie/Versorgungssicherheit/170413_Verteilnetzstudie_BW.pdf (accessed on 29 July 2021).
- DIN EN 60076-1:2012-03 VDE 0532-76-1:2012-03 Power Transformers—Part 1: General (IEC 60076-1:2011); German version EN 60076-1:2011’. VDE, March 2012. Available online: https://www.vde-verlag.de/standards/0532078/din-en-60076-1-vde-0532-76-1-2012-03.html (accessed on 20 July 2022).
- DIN VDE 0276-1000 VDE 0276-1000:1995-06 Power Cables; Current-Carrying Capacity, General; Conversion Factors’. VDE, June 1995. Available online: https://www.vde-verlag.de/standards/0276001/din-vde-0276-1000-vde-0276-1000-1995-06.html (accessed on 20 July 2022).
- DIN EN 50588-1:2019-12—Medium Power Transformers 50 Hz, with Highest Voltage for Equipment Not Exceeding 36 kV—Part 1: General Requirements, German version EN 50588-1:2017’; Beuth Verlag GmbH: Berlin, Germany, December 2019.
- DIN EN 50160:2020-11, Voltage Characteristics of Electricity Supplied by Public Electricity Networks; GERMAN Version EN 50160:2010 + Cor.:2010 + A1:2015 + A2:2019 + A3:2019; Beuth Verlag GmbH: Berlin, Germany, 2019. [CrossRef]
- Dorsemagen, F.; Korotkiewicz, K.; Oerter, C.; Zdrallek, M.; Birkner, P.; Friedrich, W.; Neusel-Lange, N.; Stiegler, M. Decentralized, Integrated Automation System for Medium- and Low Voltage Grids. In Proceedings of the International ETG Congress 2015, Bonn, Germany, 17 November 2015; pp. 20–26. [Google Scholar]
- Dorsemagen, F.; Oerter, C.; Zdrallek, M.; Antoni, J.; Birkner, P.; Stiegler, M. State Identification Methods for MV-Grid Automation with Special Regard to LV-Interconnections. In Proceedings of the 23rd International Conference on Electricity Distribution (CIRED), Lyon, France, 15–18 June 2015; paper 1126. [Google Scholar]
- Ali, S.A.; Wintzek, P.; Talmond, F.; Zdrallek, M.; Mayer, D.; Monscheidt, J.; Gemsjäger, B.; Slupinski, A. Methodology and application of a dynamic load management system on a medium-voltage distribution power system. In Proceedings of the ETG-Kongress, Online Conference, 18–19 May 2021; Volume 163, pp. 320–325. [Google Scholar]
- Wintzek, P.; Ali, S.A.; Monscheidt, J.; Gemsjäger, B.; Slupinski, A.; Zdrallek, M. Planungs- und Betriebsgrundsätze für städtische Verteilnetze—Leitfaden zur Ausrichtung der Netze an ihren zukünftigen Anforderungen. Wuppertal 2021, 35. Available online: https://d-nb.info/1252809050/34 (accessed on 20 July 2022).
- Koutsopoulos, I.; Tassiulas, L. Challenges in demand load control for the smart grid. IEEE Netw. 2011, 25, 16–21. [Google Scholar] [CrossRef]
- Fan, Z.; Kulkarni, P.; Gormus, S.; Efthymiou, C.; Kalogridis, G.; Sooriyabandara, M.; Zhu, Z.; Lambotharan, S.; Chin, W.H. Smart Grid Communications: Overview of Research Challenges, Solutions, and Standardization Activities. IEEE Commun. Surv. Tutorials 2012, 15, 21–38. [Google Scholar] [CrossRef] [Green Version]
- Ali, S.; Wintzek, P.; Zdrallek, M.; Gemsjäger, B.; Monscheidt, J.; Slupinski, A. An alternative assessment model for electric power system planning. In Proceedings of the CIRED Porto Workshop 2022: E-mobility and power distribution systems, Porto, Portugal, 2–3 June 2022; Volume 2022, pp. 67–71. [Google Scholar] [CrossRef]
- Wintzek, P.; Ali, S.A.; Zdrallek, M.; Monscheidt, J.; Gemsjäger, B.; Slupinski, A. Development of Planning and Operation Guidelines for Strategic Grid Planning of Urban Low-Voltage Grids with a New Supply Task. Electricity 2021, 2, 614–652. [Google Scholar] [CrossRef]
Charging Power | Private Charging Infrastructure | Public Charging Infrastructure | ||||
---|---|---|---|---|---|---|
2030 | 2040 | 2050 | 2030 | 2040 | 2050 | |
3.7 kW | 10% | 0% | 0% | 0% | 0% | 0% |
11 kW | 60% | 65% | 65% | 5% | 5% | 5% |
22 kW | 30% | 35% | 35% | 75% | 20% | 20% |
50 kW | 0% | 0% | 0% | 15% | 50% | 50% |
150 kW | 0% | 0% | 0% | 5% | 25% | 25% |
Measure | Application in Voltage Level | Use Case of the Measure | ||
---|---|---|---|---|
I/Ith > 120% * | V/Vn < 96% | V/Vn > 106% | ||
Conventional Planning Strategy | ||||
Cable | MV | ✓ | ✓ | ✓ |
Substation transformer | MV | ✓ | - | - |
Innovative Planning Strategy | ||||
Load management | LV | ✓ | ✓ | - |
Reactive power management | LV | ✓ | ✓ | ✓ |
Energy storage | MV | ✓ | ✓ | ✓ |
Regulated Load | LM Variant 1 | LM Variant 2 | LM Variant 3 |
---|---|---|---|
Heat Pumps | ✓ | - | - |
Private Charging Points | ✓ | ✓ | - |
Public Charging Points | - | - | ✓ |
Load Management Layout | Specifications |
---|---|
Total costs (MV + LV) | MICT is needed in the MV grid as well as all the LV grids |
Half the costs (MV + 50% LV) | MICT is needed in the MV grid and half of the LV grids as the other half is already equipped |
MV costs (MV) | MICT is needed in the MV grid, whereas the LV grids are already equipped with MICT |
Reduced MV costs (Red. MV) | MICT is needed in a reduced coverage in the MV grid since it is already partially equipped with MICT |
Base costs (B) | A remote terminal unit is needed to operate LM since MICT is fully constructed in the MV grid |
No costs (0) | All the LM components are already constructed |
Load Type | Substation Transformer | Outgoing Feeder | ||
---|---|---|---|---|
kW per Building Connection | kW per Charging Point | kW per Building Connection | kW per Charging Point | |
Private charging points | [0.3 1; 2.4 2] | 1.0 | [0.8 1; 2.7 2] | [3.3 1; 1.3 2] |
Public charging points | [0.05 1; 0.8 2] | 0.3 | [0.1 1; 0.9 2] | [4.5 1; 3.7 2] |
Households | 2.0 | - | 2.4 | - |
3.0 kW heat pumps | [0.1 1; 0.5 2] | |||
6.5 and 9.0 kW heat pumps | Factor: 2.2 and 3, respectively |
Assessment Criterion | Equal Weighting | Economically Oriented | Grid Resilience | Technically Oriented | Conservation of Resources |
---|---|---|---|---|---|
Cost of measures | 20% | 60% | 10% | 5% | 10% |
Losses of the power grid | 20% | 10% | 10% | 30% | 35% |
Frequency of breakdown | 20% | 10% | 35% | 30% | 10% |
Stability of voltage | 20% | 10% | 35% | 30% | 10% |
Effort of construction | 20% | 10% | 10% | 5% | 35% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali, S.; Wintzek, P.; Zdrallek, M.; Monscheidt, J.; Gemsjäger, B.; Slupinski, A. Deduction of Strategic Planning Guidelines for Urban Medium Voltage Grids with Consideration of Electromobility and Heat Pumps. Electricity 2022, 3, 505-541. https://doi.org/10.3390/electricity3040026
Ali S, Wintzek P, Zdrallek M, Monscheidt J, Gemsjäger B, Slupinski A. Deduction of Strategic Planning Guidelines for Urban Medium Voltage Grids with Consideration of Electromobility and Heat Pumps. Electricity. 2022; 3(4):505-541. https://doi.org/10.3390/electricity3040026
Chicago/Turabian StyleAli, Shawki, Patrick Wintzek, Markus Zdrallek, Julian Monscheidt, Ben Gemsjäger, and Adam Slupinski. 2022. "Deduction of Strategic Planning Guidelines for Urban Medium Voltage Grids with Consideration of Electromobility and Heat Pumps" Electricity 3, no. 4: 505-541. https://doi.org/10.3390/electricity3040026
APA StyleAli, S., Wintzek, P., Zdrallek, M., Monscheidt, J., Gemsjäger, B., & Slupinski, A. (2022). Deduction of Strategic Planning Guidelines for Urban Medium Voltage Grids with Consideration of Electromobility and Heat Pumps. Electricity, 3(4), 505-541. https://doi.org/10.3390/electricity3040026